-
Notifications
You must be signed in to change notification settings - Fork 65
Description
Recently, I tried to implement VINet[1] and open source it to GitHub HTLife/VINet
I already complete whole network structure, but the network can't converge properly in training.
How could I fix this problem?
Possible problems & solutions:
-
The dataset is too challenging:
I'm using the EuRoC MAV dataset, which is more challenging than the KITTI VO Dataset used by the DeepVO, Vinet(because the KITTI vehicle image does not shake up and down). NN cannot learn camera movement correctly. -
Loss function:
L1 loss is been used and identical to the design in [1]. (I'm not very confident about whether I understand the loss design in [1] currently.) Related code -
Other hyperparameter problems
Chinese translation
VINet 實作,訓練無法收斂,我的網路設計是否有誤?
最近嘗試復現了VINet[1]並將其開源至GitHub HTLife/VINet
目前己經完整整體架構,但在訓練上一直無法正確收斂,想詢問問題出在哪?
推測可能的問題:
-
資料集太有挑戰性:資料集目前用的是EuRoC MAV dataset,比起DeepVO、VINet等論文使用的KITTI VO Dataset更有挑戰性(因為KITTI車載影像不太會有上下方向晃動),網路無法正確學習到相機移動
-
Loss function:在HTLife/VINet main.py 中(https://github.com/HTLife/VINet/blob/master/main.py#L210),目前以L1Loss作為計算方式,加總[1]中提到的兩種loss,這裡我的理解可能不夠充份而實作錯誤。
-
其它超參數問題