Skip to content

ValueError trying WMH-Segmenter-K2 #14

@fepegar

Description

@fepegar

Hi, I'm getting the following error. Do you know what could be happening?

model: wmh_segmenter
Using TensorFlow backend.
/opt/conda/lib/python3.6/site-packages/h5py/__init__.py:34: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
  from ._conv import register_converters as _register_converters
starting deployment and inference...
-------------------------------------- INPUT AND OUTPUT PATHS --------------------------------------
input t1 volume path: /data/t1.nrrd
input flair volume path: /data/t2_on_t1.nrrd
output label path: /data/wmh_label.nrrd
---------------------------------------- INPUT T1 IMAGE INFO ----------------------------------------
image spacing: (0.48829999999999996, 0.48829999999999996, 1.1999955414012737)
image size: (512, 512, 158)
image pixel type: 16-bit signed integer
-------------------------------------- INPUT FLAIR IMAGE INFO --------------------------------------
---------------------------------------- T1 BRAIN EXTRACTION ----------------------------------------
-------------------------------------- FLAIR BRAIN EXTRACTION --------------------------------------
-------------------------- CALCULATING OR OF THE MASKS AND MASKING INPUTS --------------------------
output path: /data/t1.nrrd
output path: /data/t2_on_t1.nrrd
----------------------------------------------------------------------------------------------------
Starting Transformation...
----------------------------------------------------------------------------------------------------
####################################################################################################
image: /data/t1.nrrd
####################################################################################################
----------------------------------------------------------------------------------------------------
original spacing: (0.4882999999999999, 0.4882999999999999, 1.1999955414012737)
original size: (512, 512, 108)
----------------------------------------------------------------------------------------------------
Resampling image...
----------------------------------------------------------------------------------------------------
Padding image...
----------------------------------------------------------------------------------------------------
Cropping image...
----------------------------------------------------------------------------------------------------
Rescale intensity...
####################################################################################################
image: /data/t2_on_t1.nrrd
####################################################################################################
----------------------------------------------------------------------------------------------------
original spacing: (0.4882999999999999, 0.4882999999999999, 1.1999955414012742)
original size: (512, 512, 108)
----------------------------------------------------------------------------------------------------
Resampling image...
----------------------------------------------------------------------------------------------------
Padding image...
----------------------------------------------------------------------------------------------------
Cropping image...
----------------------------------------------------------------------------------------------------
Rescale intensity...
model folder: /deepinfer/models/brain/wmh_segmenter/models/general1
/deepinfer/models/brain/wmh_segmenter/model.py:77: UserWarning: The `merge` function is deprecated and will be removed after 08/2017. Use instead layers from `keras.layers.merge`, e.g. `add`, `concatenate`, etc.
  x = merge([x1, x2], mode='concat', concat_axis=-1)
/opt/conda/lib/python3.6/site-packages/keras/legacy/layers.py:460: UserWarning: The `Merge` layer is deprecated and will be removed after 08/2017. Use instead layers from `keras.layers.merge`, e.g. `add`, `concatenate`, etc.
  name=name)
/deepinfer/models/brain/wmh_segmenter/model.py:100: UserWarning: The `merge` function is deprecated and will be removed after 08/2017. Use instead layers from `keras.layers.merge`, e.g. `add`, `concatenate`, etc.
  up6 = merge([UpSampling2D(size=(2, 2))(conv5), conv4_cropped], mode='concat', concat_axis=-1)
/deepinfer/models/brain/wmh_segmenter/model.py:105: UserWarning: The `merge` function is deprecated and will be removed after 08/2017. Use instead layers from `keras.layers.merge`, e.g. `add`, `concatenate`, etc.
  up7 = merge([UpSampling2D(size=(2, 2))(conv6), conv3_cropped], mode='concat', concat_axis=-1)
/deepinfer/models/brain/wmh_segmenter/model.py:110: UserWarning: The `merge` function is deprecated and will be removed after 08/2017. Use instead layers from `keras.layers.merge`, e.g. `add`, `concatenate`, etc.
  up8 = merge([UpSampling2D(size=(2, 2))(conv7), conv2_cropped], mode='concat', concat_axis=-1)
/deepinfer/models/brain/wmh_segmenter/model.py:115: UserWarning: The `merge` function is deprecated and will be removed after 08/2017. Use instead layers from `keras.layers.merge`, e.g. `add`, `concatenate`, etc.
  up9 = merge([UpSampling2D(size=(2, 2))(conv8), conv1_cropped], mode='concat', concat_axis=-1)
2019-11-07 23:12:33.186835: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2019-11-07 23:12:33.186857: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2019-11-07 23:12:33.186863: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2019-11-07 23:12:33.186868: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2019-11-07 23:12:33.186873: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
Traceback (most recent call last):
  File "deepinfer/fit.py", line 59, in <module>
    deployer.run()
  File "/deepinfer/models/brain/wmh_segmenter/deploy.py", line 139, in run
    segmenter.segment_transformed_image(transformed_images, os.path.join(output_dir, probmap_path))
  File "/deepinfer/models/brain/wmh_segmenter/segmenter.py", line 25, in segment_transformed_image
    prediction = self.__predict(processd_ndas)
  File "/deepinfer/models/brain/wmh_segmenter/segmenter.py", line 51, in __predict
    predicted_prob = model.predict(vol_nda, verbose=1)
  File "/opt/conda/lib/python3.6/site-packages/keras/engine/training.py", line 1576, in predict
    check_batch_axis=False)
  File "/opt/conda/lib/python3.6/site-packages/keras/engine/training.py", line 139, in _standardize_input_data
    str(array.shape))
ValueError: Error when checking : expected input_1 to have shape (None, 348, 348, 1) but got array with shape (48, 278, 278, 1)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions