From fabd69874e3a447a765c04580900a000cb743bd5 Mon Sep 17 00:00:00 2001 From: David Ortiz Date: Mon, 13 Jun 2022 22:34:52 -0500 Subject: [PATCH 1/3] EDA G2M Case Study --- Data Intake Report_G2M case study.docx | Bin 0 -> 16818 bytes ...nsight for Cab Investment Case Study.ipynb | 1786 +++++++++++++++++ 2 files changed, 1786 insertions(+) create mode 100644 Data Intake Report_G2M case study.docx create mode 100644 G2M insight for Cab Investment Case Study.ipynb diff --git a/Data Intake Report_G2M case study.docx b/Data Intake Report_G2M case study.docx new file mode 100644 index 0000000000000000000000000000000000000000..b16b705f4f84b98ca7a62900bcbc5a9f6c073fc9 GIT binary patch literal 16818 zcmeIZgLh`j)-U`d>DWnkY;~-TZQHhOqhs40+qP}nR>!t(_Ib~_d!K#I_x%I+UC(&t z7^|v&bJbd7&Z=1xGU6a#z5>7i5C8xGA3z^tt!xAY0OW%L0LTCcV0C_LD+fa>2Wf%SudT9{^9|GR}rW=;TT1fNzhI66}F-@L< zLK&n4?)Y-s-aB?#=<5M4g`<;6^d2vc*~Y+6<;M#4v{7AoM_;czT1)*((R(tOt4 z4Cf*Y8;&bcL@@~B)B@k~tLU47KH_X^)m*bxs?)CoWHj(IYR-H*D`;J#$P69pSJ6n26+l(?=K?C-w>M^AJIC00 z$w$(Ii+x7*>lV@xLKXlFoA1k5>Z$TEbF7hEc;yL?QPmIbxk`r&Hb0YZkCYclV(*r3 zc-v#Y7J)2#v>F6)e@fQJ2M9ps-_#Q)2BY!fvq$Pv`=CG7Q`^qa!k&iu5Bk4q`Twvk z{^ixnV!J=p5{Bo(@6B(zU3R4#Emw+0e`*zN85}}gR04T*$!zicjbmvESo26%cywkq zZpzI*O~`R8Uh@(oQ4uz@9dhAGt5^M{%>|GU(3Vf( z5(6yeF*td=3wfVh;C{al+LVB7a!#M9HaEjoaq%J9>qk}!-TZ=?h`Kv?38!F3Aa=_H zx)+oYcXiSas_3YmjT+59h2yv;`Uo?!J4y@-S{mZC7`-wmjLWv^W4GMS!v2r|O2}-; z5SkYcBMl_A_ruTwbZ({#eAPPbZEMUlP2QW&P3k}O!&)&of(8x%FtP*y5I;YPv$dT8 zje)hkqvhuw_Q&RRs%dV$BZBhQG4l={Fa2YNWUh5&+Cj+cUZA!eQ}SWV3$0vjfTf## zK&U~K?d_y-1iowFC+wG4rNVr$*Cxl4M}>9wDCnEnN$rB|t!e2QyvPmBE(#mEOF|kP z@af*xuuX2(q#eCzBP#}{UY6@kO^%nN{z+!t>?fjfGvR=H}< zi>lcX*6JjZT4Ucst^Xob$Qxz(v}udfrOSb^-Jxfi#JYr+1Wuql^OHGOYkZ)w6-u}- z?NCO(WEc4lD}=ZDAmQt>fB-U_hlZ}8S(now7Y)^rP0g{m-z^*;cD5aMZ!IjH9;#{E zLF>N~#!dM@#8C=V9j#_STX!5v(^Tx{0z+`cuy#q)ztr}h(ylN5T4OB^=dc3Vvc*su zs|_8kVp!^byIzs(?YTKa!T)W;m=MyBuBlPfsOn0e0Hej!hRQ&()e{*f zZ3rkw*U8wVQ&C_NFxCG}CEQqp?0}_|kiJtw%HEBnvSbTq!B(q>hi$woN<&f9<5)D| z_``Xp06K>v%!|A5chB0518DAYuP(^8C(@*`xOunkf>o0IPMnyO+Y&kW+%cXsy#2v$ zU;1#0-Ld8-mw@d~B;QdC77obpC9fCg+(#_wF|qfF_i$sWIj4;MSbxM=iO|)fYWu_< zmmQ})@`F+=5`7jO^00w~Wda?Uyt?bt_eQNz7^~OSR%n1fki!^CD&@yUdQi$ruD*$k z%vrPgay+w3Qc==}tKCN~#dkMpsb5}pbPDQmddAQ7E26U1gl}dAcb2`^zqfk~fHwS^;|^0Y{c8$vi55$aMXUy&=2O0uBp46Zvhk{Q zkw5dW?3Zygo$d{uvffg#ctINQN5wG1?;2s`*Q_fPw8HZ;r9@q0Ib)S}#|$}_4C1~~ zw#R4R$O(;(8rHQbOkay-%FA4E@n{SB(lvz zmYCG1Mwq)^9h*WONuQhGw1k9So$H($TOkxUA~p2FN#HT?Di%EIRT<}2d62bZ2QcD@ zZSGSdi4(N!3e-$%rrqPZ4#hDPN*KrTUQn;OCdM&tzD=^cm(l|VXW)`RCL4A3OPeJR zMP;jdshu@lQY)I&!TfA%6!r^N<3nYdIz|8js`gWE@j}25 z#oAmA(G%O2XS?BN{kcX&0e#7KoL>(N#merjH0wy%SGQW1YrDKmEOnd@C=ycKLztyM zQ6ScUFo+eBbHFIE^9AKys%VU$D$yNR9q9jcvRPPa1!YYRphWN0dCXMXYh>O6u4!K6Yf5-53b1;Rn=>_vrvDyk zJbz+@ztkij>rd8!yyDU}*%5TBV~PN)W1~>pWdSd!o+S9|G>quvNMG~%l|r6KLlyXI zaQgERaongM<8(oY=;4#ytOH*+%Z*kZnOGm_9*>m`0d;$Si0vZs`gm!aIgA_wui z{{yMfgyJp{E{|QTH_JDIp!na6!dE6z27e7xqQSEy_1v zY%P@V%DgA7zb>z}^=ly*mf9{bX~yJN@BdT`oU(^J7S>Gp^H%^a$~Jw>P~VUf&rxH){J# z6UpVhE3Ij`SKVeYe3paxHU3L&(tSgN>k<;-yg0rmlYX33b~Yn98l_((jHJ3_J)zlH zKrb|WXIL$J-*SLRvvX=QejxlJFl2X z#&nBc8f^)|1saM^FiN6o!2~Ew;t^dzFboS9fTdR*rb1*%YN|rm=Pd_~;?>M_b3Htl zPV^Pbk6^-7`m}e#}Uj-F<(yuv18) zcm@IJt);#i#)L6koZuH~-_ptC8-}pYZOHWuY^M8UOYOv{ObP6_u`b1;&jH@X{^-w5 z#7-3v)W-McU3Y1p7)*`GSV61CvpOUrrYd1MOgZOYS(9a>r zSyl60b6`1`K(4fkaVeUl$_A!;oVdSXvT|L;`Rf2;fo*EH6!b3AP0Mpm|#y5b~USA5kUj2Jt^>n74^Q|3$fUnva{V zadIFGYPQ>~D1Lr#-=knSQu50C50;!&v=XA(EjIlLuTvJZ7wl*-d3)8r(LK z!)G}+(GG8N9PBv4hM$X2N^v(9YcW@fggbHY%J zJL&VuSw)?WnsA9w0h^q!Yt+_BSDf#Qmxs+6;IxPGH?%DZJ=7GjQebS1O02o?FTyNI zbzk<2Qb}A(%uX-dI)tG&@xUaQT{e)kT4wUivjt5di#|_Qx2|}|Uyo5Lgv4Bp^u)o( zwhLrv2qJjUT+kq~L~)>;(-@xy?VE5(;Ns)Fchry2)D z`4K)~0Tf_G7h6g4o39}e$t~StCp0vdEEUDj_uNgZ3wqp^$)S!h;XL8e61sk(g=c&x zTxPl}oKJ_}{Y6>Bi7b^J*nEAgV5dNEO~cVtFmU;*eJL=0RuO!4NktQ*G*GU!uhE`! z)$EW$^#Swrp7+~D`b${`{NocphgC_P`sh5We}!h`d9bD>ZE2F8dg-r`DnFog;i_e> zAZ%XAd=-1FP|Q0#Fq!18;!3-tySfmic{_+$4- zlBm_-QNDcfnR~kmMg3w0sMF;(t-TJVY z%@d~n=QAHwN%T%}qzA1xJ+Ww`d~)iO!<`{K4}}#wd@q{&^~h4o1if~aY`)@qon=^& z3T{cy*;~bvJ0)b>I+5@n`BMcTG?Dbo!C<>jlrS83BG5-qZ877g*QX`Df&qO467C7R z!TNg1k+vJQbLSWhDY6?U$44s_98W6m1@sjgR7FeEF;Uk<_1~a#a17HLA1`I!WPDpp z{Sk(v(u%;XA>}xy9=82TSB7^|^yF1OQXjvlnJC~(in6o?%sd)%rVh-@1KMyw_XudcfE2F#Y$@$;Wsi|jhlNYz(U>c&hr2jdnExx-4z-C*g; z3w=4bcLG02>Qm?iDL0a6w*4SDe1@}X!1Sy6X-IZYN~bZEcr^CJ6<>am4GiWGmEh*z znucI_7??A7#Httius8&i;cN2x*iD_l=9|;^J%*!?)u=S7IuZKrR}6eqS!R@eEo9O( zXK=_4xE1M(b2aj%h}N?m6Bt9fuIceig6gYxIrfI=jC*4W;w?1K(hL|U#@cDPf1_Sa zt(Tg*T95|gE@leRO+spBtn<$^TkDrDk=&^e4~Z46kTY_OUDD^YhZfvt3y~`|G{P>H z9@Lh{Q^9+>bfksP#Dg?8^2@k?q*ay@)^HRUw;V{EROd6^nzXfQ#X1Cu>#syz5W#sM zpY+1nrTLVh|8#aV+!`m(fB^u*cmTk+&k_F+M+Xx_OGBD}P`ZCOJXFQQFoh91z^`!w zn@8Qof9sYp&WK!_FEVY^`$e_OnHQ92m`<;+)YAs)WZFS~NsH!(Y2HWRgQ4r&i^bKi z5>3O6ImQwFL3P&`rRfLR>Z{1zQS#nW($d0UzrFL8%qE-+-4h$B&Z%sRoff{7Or$&5 z?nz5ouOTcFAC71UdENv~xfaHr>ForRo`e`#4RRgA62)dkw14W+OesVg-p9(+3ppl< z78T=94L_mmO{hKNYQVJ-CCev}<`#2lX-+Q8n9|E)1z9V)z# zk!rBFw?6CeNh`N?p%O^JY8PyrSAR<7WEQ}H(JduUT`*xpb(y$?MQW+$@R0iEHs5u4 zyV!WCsqG2V29_^r4b6=OmI7;^Rd-~){ifBr$b4rmvtnVfotj{^X^!Cn8%io#p#D2_ zvk1I&y#gOuh(>+eaubuuT-+s){4j?iLE1pJtp7L8EI68#YErIez~jBB7K~&8`+`xfR^?aer7+ zR7R)A?aSz3ls4D1WAlB(nqj=ZYcn&q=gs6SO?s#I%hh7w`RllE~w z?@6n1WhS@#-P@w~+iM^2g`Gok5NkAn= zv>P5Fh^MCyY0Z|~Qr#{#+))o$8$+it!ba4i1`_n8+E>gj&Hg-FG*E(E&P2ZUkc>Q62F_Sf61+a9_$l6NoM7O3h$|Hg zG1ORTf+*yAi9!zwKQt{>LQRzR#=nT`5r{b8yo0}L`@AvpY&AOY6e!2&V9kk$_Q&L| zuM|Q9*~RseNVTR^+4OX3kdVoRp2RdAhW_bVhhA@OitbJL?L0)yh@nO8xT3*8$?nuFHKzC7Yq-upo9&cjPnEzK4?pLWG5un7(u)OL{dSSm3B z?do42p)z_hNL%SO2~$qh{yHctc-mZK5IlS;i)Ae}m>@@Q9TF}wsM!(Z23F(zJ*~FW zQ^(qyoZ&ACVa)MUpbfS5^MGgGlhB{B zp14TO{Sruy&>;tAmsCWz6H)D zC37C4O=zrxGZHeKG$B6@e;IcHd-fku2o4k-#2(Ji<|e8gYl`+H%K2JQIP*3rpm#2V z#9wx}&J!1|UcaE={wgqBPm!6if2+JP>_Xp7s7f2_s7tM=m(Gc=;<$t*av{8{e;7US zMD-=`I#toIiw@Dwa-43vd26DqDW)P(c-mz%7F$-p7*TD5^vNKj$I)H#dn5d~gT1nm zcXLXw4C_%}4#G#V0R!$6b|5&+RMxw4vcU zC7BhR{iCkhNS;<6VxGKVyyVI#|~lt;_HW6f zi~m(cOa>Vwi&Rjgwz)p82Fg<1fL$V{N$(pq&>F2&jK6e8J=so_BjXrac{Gu^9D-{d z=ODT|6>O?HBTa9jo`~o`iVkM61Yg5)G)&`1IH-5X<^Ykds-!Jhy>RL-u%1r-Qj8cH z)3Xv2z&X(1qgL|NRQDFH;>Pz32W?Usg$7a@T_Md-1%d@nEg2xX%zB@RnC_wNbKw;B z3u;VLxN?FJUQ2k3lMv1L@yHQtHnA6M)E+0cGt$^&2VYZf{c6>hl@OtM%(+tUN#%otF}JvCk2 z87*)pO>-5OSjwTYNK4p3Cj=f;)x+T@VCtL~zbu~wcXJ#N4Z@Re zQ@B#vKy_CRF}IQ4NY_VyLA#sy5dOjq4Y-EN;N}nEz@kXgBQh76WoMoJ9)psnhBSfR zNnu|U?`$u`ggMp?O55x1$f)yad-=5Pxzd_tomLvKGbdpz@U z(9@~M|zs@_R6tenShn+VCXFH20I_Mdk^lXdtfS+5;EiU9Kg5b(Khw?;B zA1T~@TL7Q(%u9b#pCW|dVr?~{BEeCKD#~d+-8$O`?`31h9E1GQ?lmJw zYi?(mX%-%MynOSWnS!whtgbp3QPbWRO#F_vCSl+gw@@C#BS!C;-(-wpJJXiU62Lbn zMS4tpZD?$rZysr`4y0qIp-=@@q&9;~w@@A8@v=offMu8DzsHmx9Q!Q3* z1KDgZN2@Yi5%OUlT_Ne|kaN-Xc*Y)rn4u15??D6}tUPRVdr>j&v}}uF{?;X=q$CCV zq@2AGs%BkOxxUrE5^H1fS-<^GZEQAqQRf-N(9Ae%otiDh*udD0kPy?6eskzm3I$Dd zYIs11Nr}EGjxH$d6>%V0mHa928z}qMYeR2l$S=K)qwO1LfGQ>J*AiAZXM@TJ1 zmhVVji3&u8zePF8Io9jSoqQt85>Z>A0@7l_|ADUStX5lIKJPMf4`&I^KSLTvPZn34~c}WYm0mt<)~-8o*HRV z-ZTx$RK}E>)Zf^Z*!| zyJ=+JKr09#8cd1{^F|vql<-fTAl)fJK|fjfNtbz`{#>3d#UKWB;pc&af?W~aBnC|3 z(3ZR>7P&*V>T^(3&;!~gq*#1d?)?>g5w4{EZ$F{)hGS)N9=dJ|VZjjJIeG}I%pfU8 zz>tk_kkJcd7i9W+sEDP_UP>1>nlcpb9cR^aR;*Q3&IfwgB@?VH3~|rMZ=4CJ&<|Eh z4n!q*g}W7{LYdgBsu|G6FozD@fi2K14=ls7jEmls&D@o-dx4e)-=0s=$~iu`=q}yU z3V7>KJT+J}Yp?vfVYw(d#C{Rl`eh6k0{LTiG4yldh6U19qHDPYTlL~|_Lgib6zZ|; z;aN=m0Pk=(fXJdx-}fWc%`G*yh!J9yI}>CU;20|w4O^`xj0nAR^|{mvtznrOa;+QW z7hC&vYyc>QE84|VK4iV269zR9OC*UhrzTR9yM*ZJ^}#$}LZ;2Mk(JQz+(|!UHa<(n z+TGw&4M-Fdk3WVdwwLna>{<7}hA|20lZg|ZRaMk+rij>A51Fn_(IeGJag2ra_2-1f zA@TA+ZO%Z~C7$1dZ|lA_)!s6a>d+R8eKQ>>LN7fqQ<^dovf=Jb6|nEb$j1D^lU1B1 z=D@q{c&q<0@bK34tmA1hPQgx!fvd9GOi9+?Ld?}2HVxzX_L_h8!D;D6rZqns)|qDt z!Mw__UNt%87E9RCuy4*#KjC&}pvnyIYi`)5Naln2Xgitct2WC%b(ZI612A?8;7P$S zBFk_*%}3%D4jH=dIsuVh0!u|VrXUPFM(Vp_(LEO=gG`(NZ{w6Z6tpgBK@KWLaZ*Tq zb(!z*dN(ez(xt^NT>YMG`OaHRI4|`Q2&tf%GYfdZ{eppIv+eO-N=V%?6byn*&9+nW z*wPjpmK#I%DlEKq%SQ;eaixuITN@VMG;Co|@h*zU+&LATIzTA@_=I?vuF!ZVg#BVF zripCRpdnQ=gEHHIyw(o6OZrQ-UaDl*s59bYjia~{gg#l8qFE%J{c=Dwb zK9hv^R}2w>2GOm-wb<}kR*gUnAN&dA=lVe-+1!C6y`3KNN$C_PE! zyM4K#WP{^!kK_RXu7eZ!?BGQredqzzd$#q}LIiF3*8Ab?O+QbF>>W#Rdh8bPr9F=ywo(qwBu z5K9*hV2tnCSKosiUEXkcuL@!?WgZKKk;N*)6fi>?rbIfT#aJP4DNbKQa8x3i*Cd3! z(6p!$C5wf#$w9;y3#v@Cf5*d0O{?>!e5d{KgXSpgNyAz9TF?|9X&Y2CHqE%$i{irI zslmheT{DD8-0x67HZVM0;#{?C?JhY|&Ln%JP{MC#7a%NU^>2~S)4<>^*A-1oNTI0=yi zJSmb)?j+m^)3FNGuhV(ex;1);Z}mCDlkq~SlOIj=1T@?bf*D1NFTy`|X)=V8Xz(>p z;gK^reSAL$9+czvX(|uTju2Kz_jd}@&Or&<7tNWXBK~)!0%?MeyraYx~q?XID zuXtBtW4A3v!fl!h*FLOFPrIM}o^?MP(s|Eh*AvZ?t6Ro72a{>Er8E<;r_|%Or&Qy! zrAzn5~pb8j5ikZgCrP(zllBJZFc-}q|jS{0t zzx_!@ug;1XRS?kEwuyr;ly`pPT3}woL+MBCK13`j%$!Cd9UsOBEAo{rLpUo>m70oh z2Wd8zx;Rf%#1pK6o75N*HkL!nC3u|C^>QFbbkFsXJSQnn2ApBIHUS0l24Rj4G9PV| zfwyfxsFD(!TL}XxZ9h$3y3E>(Z>(xy5e)1{2Lo;LRf116+Neqiw4(Ix|^E^YIe4*Xem0wCAI@1N*@#KE4?ctyc?K zR0^20KrFcELMaa}_xS+ROZfU^O0brnJFdN&(2(0jy}a3j^WY+ zS0t5jOqy!-dWi+-I&<#3F%E5m^c==K-kfyg3{>cqD>K67M~GF3tJG ztqC*d=OK?&rAX_gKt?Sk>)P1Gg9H)y@;w5N+ql3=?L~!>np0bbBQYE54AZ?RmdQL) zy>hZA&fQqv*v{}pidcGiih6|J!sp{2pRL3)VdvkG$cc|vtNTI8v^bCIyc(OEUa;r= zYDp<>I*M0a!VEZg^d;6C+TpK6h^_?1h9u(2 zNvw01?~>Z6zC%OsXHqjeYU$x_1QVid)F{|Eb@|sjwIkd(O8kKj-(w_jQLl+h+-a%? zbbA@JUxNa7<=2@JU0CUFIVZ=iglp#*7v61llOUWD~gHhzqKkVlp9PD5oXt#38v}-`SVD@K3r&8fhS2bV;osONc zliQ0UN@w-(k_@6kyY&T^D@l2`;})I0Y-=LUON}m0@pg=(XgoRBuvHx={?%FWim9@WimfUL*ZM*RAB9!3+ zJ&@uH_*y4}4@{*H{Mkd@Wy2S6{~5({N6qF74U@qK{h#(vL;%G93>&O(pI;L#iuOez z7sv{LLNv+#b+-fYiAa;lZvRB|3;wl_?~7Uyg3ljA{h`Lv{h`QAvj5p+W?P!wDwEAA zRW!Bn3E3e~5aIpD)c*CLKjuU5A5)x9qr}2jFo{AYuX9Eu&ufDCCimyu{sH;pHeSZ3 zIquKdKkw9X2%5Hzd7*mG&ARo!U&<>R=6W$$?_1^E2j!M1Evxok2(lpW(EV<^ve}%& z?8UR_PN5AdqAHwE)vy=+a@=?LaP!XY@#{7QUX%PHfc8)V=vAkPn5DpO3iVo2TxJjZ zR?ux0sf-Q&xyE`HNx~1@Q*`lnO$(`@q;OXg%{W82Gu46Ta*HlpP!o+XGt4%`gW*9S zKGs%;#~LjMjDww*xhIQFn$g`|{?94YNZ6j3^eNQDDP={rz#gU8Iy&Bn_7@u{WTJ8=KEEAY#AWsvaJ zQv8wSd4&A~Ga2GsO;|`3Wq#m=`RJ`Zv!Axki~_8!7&*@xmXSGi8WGnvy;zM9=4d-4 zdx7}WtjsXjCHaB%`t@^oEK1^2$_bOU^K!GMPCYUg%aHu*Cf~DOP5Za7&4sf$ErdTO ztW4$DyrNm;^vS--Z1~trqkit>U&O$fu|nNj~+z5#rL)&-qmTi^Q&fKDBuC-^kx4;ZQ1(93;#$u1`?gwRy8s zA=)xB^caNvEYXFI)mW-6+n&bN==CmEJ6`#_`0NLx(KF=lh}DFg9mp!;DGL|m zd2adq2uE?>>%!KNC`rH3+4_E*2>dn0Cb<`=QDbFQC&z@+hMC}sd?NAc#N&J>msa!9 zTr){|CVUl3O}JyDzR)wZ-TBpPi69T@(t0A18D_BnGYi;PjRGG_DupxE%bmvcxv*3s zxu1vE;Ju-VLNs|i#TS!ghmCnlYGr4sb}eI})}K}+KlFx2Cuv5faeWertUA!FlYVI9 z{za4OK&uOZw=1ZR;n*SNHaT`oBoH%dT{!j$(Dc;3H)$;G_ZS#^I7~$%Nzb}sEcu-K zYfbak_ZBET@z&DS0mG5H)p28X_QID|W5s*xfq~B`Rf5n(z{U9ev(K#I?1x-jlxsB! zez|vzl;Le0hkqiT z!P)&lwzgtC3oSNsJBKK|c8inTIfpKHL{u3wz{39a+){PjD#Kl{OFRlmlZhr1?n{Tx zfP#OD-fm3}Rc|Ls@{}ZBgHq?{< zi-R^TUNUMG@6&~m@Qh1&j>#^&Td+VvAy`^YZpmG@ejf=mSk$G$v*Y6J34TgsHQU>Q z`lIcVD+36&(OI}W)~`y+S2ga5@-qz&rir1I@#*T-rj{V&X3nOhE12=fpU^qA(b{S? z=i9#XHs`qmq+B=!gL>S`OM!^|pjmctDlZ`nwUQ3w9ZP+yg8Ym5<{Ir3>|IT~*fX`J zfvOZ(xF;-Vi5R^tyhUZe)pVv>b~MDme2wjQwHFLE=tO3eWE;4X>5@ZJ@^SPZ-p-&i zv8pyQPv|H=48F>mWE#`W90RLJflyWeSdj-!!{@t1rdba}xFX^*S!1JEK9a^Dwwey_ zh(>lCDoiisq|J|y>0~9u&0Gf@+0tT+`U}&6#Ki-M+U~y4P={ps^Vo|7+vKJ|d|W60#!VkAYTo+ORn z!?tNSDo8|GZe%)0W;&5eGVY<||;{l305CZ}EM=6`ixC9d;&N_W|PW}cWL?n?Qy1y+zs z#MzKO)8zv;yALQR`HUDveF)yf5?8gf(bl%@_tC8YOa!%YQI24du5Ys`GO4Uj?`eX%bgKFt`a~!> zjNFa$*t0b`N@ap%r(6;_CK77l%>g+#8no}SwdH#w&rjLg#7OnNdy|lrr<=NpV`J%;7ut`f;a)QyF-lzPf%!gAVk<*$yb`(19gV}EI09l zHC|~~F@!b96PZ*8UjQlNp<3~KTZ|6&#rdECJMlv=RAvr+XZiL-%crwKru>VmzyYe6p6+-R2gE6Rz&Dh9wRc(ViWeC@DQmGLzPnUYw_@vyUNs#md zGKFI&lDA#`T_vwqQb!S=YL=rrhSU$A8mKqm7-vdB-0c>Mm> z9`jwp{<==B9Ya;mfF9fPH(K*YI-)lwbJ}VI<=p~=RazVc6N$;zhPo}&j22VgL{oDf zAu4;u`Z)o1M?e_vqy5Rd(Uw@gLnKZDU!&3oe?U!Mz6z!-F|iWYx3v^KJEC?uU^Aep zN}d^U(U`orMzZJuflE~jDEIlG+RMym6U?f||LRVGT>gUW`?>O5e##%>XRgj?f{u)x zwT(TEzO~&yMDMd+>VFe-KGoJER#v))_G`eVO=F?t;R^x0lTJGMUAO?D5b#t^yjZ32o}nwQR$LeUV(ejl zAbN3kjH{Dt3{+h3OiwKptct=Gu=ETyqLC0&FiG}Y2<+Fjh&FzATg4UMT#!g2;v9m^Lt31Ift@WdkB2g>r*4+8`QijKS6RlWJvDFj>qw zL)+ai6s*fi%oHNjOE6Fj2F}IAp zNrukxRMx4!gxj1_RV6>ZI8>n~yjc*G);iAv#+8{TepA#IX?>CSKoq7r)F>O|YIzaeHM`9Qq2BVv z7dWizCkMCwZP0GUDGmQ>JWO(G_{UB`%*r3yZY5DZ$D*?QsAYW7+SjQ{m(vLK!iMIv zK5ZGX+(J9NmiWUdTYdNWDD%y5`>O3(#AJ6p|sF;_#qZd0_IenmVf__ zv#xHrFfG;Kxuh4If@R8jnBI~_5cPC=1gGLA`?+~&HEF`!vZuH zTRSDPxFt$+lpl-qsb7ZgEvvTW6km(=k<%mmnrg`E511-YDN(2A0bIq!4(Jitu&1J; z{>>TvqBqNps730G)c(Cp*mEY{BaY1eeaB{y{+Oj`XjoWBtWlF-_7=XnCy?8URX+QX zrx!fy`Ps|H&qJ4im~^Mm_b4ab*NDA8)7^l8sXpz-|6ZK_KVtAF{V%2JGUETv;NQz< z|AYbnnV;JBmtxw#1OHxE_$RdUGXd{Esto@Q|M$evKfwS1_GjYW|6dyE-#Ps~=kHHm zWvKrj8GwIh@%N00KUq}c{FB9B^C$ie|9edGPk1EZKjHrtq5M1k?{SVl@owM$_4xlA z_4p6)-_8?%f~6V$3I5yZ;_n>(Zj=7WL6Yg89RAHh{X72O?TSCqpJ|vZ0Kk7(8GncW j`|AEzxG(!(;Qw6fWyC>0#R~v{`TPNWN@yzAA9w!;2=2gA literal 0 HcmV?d00001 diff --git a/G2M insight for Cab Investment Case Study.ipynb b/G2M insight for Cab Investment Case Study.ipynb new file mode 100644 index 00000000..abf5c66c --- /dev/null +++ b/G2M insight for Cab Investment Case Study.ipynb @@ -0,0 +1,1786 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "63b21722", + "metadata": {}, + "source": [ + "# Go-to-Market(G2M) insight for Cab Investment firm\n", + "\n", + "## Introduction\n", + "\n", + "**The Client**\n", + "\n", + "XYZ is a private firm in US. Due to remarkable growth in the Cab Industry in last few years and multiple key players in the market, it is planning for an investment in Cab industry and as per their Go-to-Market(G2M) strategy they want to understand the market before taking final decision.\n", + "\n", + "**Data Set:**\n", + "\n", + "We have been provided 4 individual data sets. Time period of data is from 31/01/2016 to 31/12/2018.\n", + "\n", + "Below are the list of datasets which are provided for the analysis:\n", + "\n", + "**Cab_Data.csv** – This file includes details of transaction for 2 cab companies\n", + "\n", + "**Customer_ID.csv** – This is a mapping table that contains a unique identifier which links the customer’s demographic details\n", + "\n", + "**Transaction_ID.csv** – This is a mapping table that contains transaction to customer mapping and payment mode\n", + "\n", + "**City.csv** – This file contains list of US cities, their population and number of cab users" + ] + }, + { + "cell_type": "markdown", + "id": "71f56ea5", + "metadata": {}, + "source": [ + "## To decide which company is a better investment opportunity for XYZ we will try to respond the following questions:\n", + "\n", + "•\tWhich company has had more profit over the years?\n", + "\n", + "•\tWhich company has users with better income?\n", + "\n", + "•\tWhich company has more users by city?\n", + "\n", + "•\tWhich company has more ride throughout the years?\n", + "\n", + "•\tWhich company tend to retain more customers?" + ] + }, + { + "cell_type": "markdown", + "id": "4f003b9c", + "metadata": {}, + "source": [ + "## Exploratory Data Analysis (EDA)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "c346aa0e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Transaction IDDate of TravelCompanyCityKM TravelledPrice ChargedCost of Trip
01000001142377Pink CabATLANTA GA30.45370.95313.635
11000001242375Pink CabATLANTA GA28.62358.52334.854
21000001342371Pink CabATLANTA GA9.04125.2097.632
31000001442376Pink CabATLANTA GA33.17377.40351.602
41000001542372Pink CabATLANTA GA8.73114.6297.776
\n", + "
" + ], + "text/plain": [ + " Transaction ID Date of Travel Company City KM Travelled \\\n", + "0 10000011 42377 Pink Cab ATLANTA GA 30.45 \n", + "1 10000012 42375 Pink Cab ATLANTA GA 28.62 \n", + "2 10000013 42371 Pink Cab ATLANTA GA 9.04 \n", + "3 10000014 42376 Pink Cab ATLANTA GA 33.17 \n", + "4 10000015 42372 Pink Cab ATLANTA GA 8.73 \n", + "\n", + " Price Charged Cost of Trip \n", + "0 370.95 313.635 \n", + "1 358.52 334.854 \n", + "2 125.20 97.632 \n", + "3 377.40 351.602 \n", + "4 114.62 97.776 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CityPopulationUsers
0NEW YORK NY8,405,837302,149
1CHICAGO IL1,955,130164,468
2LOS ANGELES CA1,595,037144,132
3MIAMI FL1,339,15517,675
4SILICON VALLEY1,177,60927,247
\n", + "
" + ], + "text/plain": [ + " City Population Users\n", + "0 NEW YORK NY 8,405,837 302,149 \n", + "1 CHICAGO IL 1,955,130 164,468 \n", + "2 LOS ANGELES CA 1,595,037 144,132 \n", + "3 MIAMI FL 1,339,155 17,675 \n", + "4 SILICON VALLEY 1,177,609 27,247 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Customer IDGenderAgeIncome (USD/Month)
029290Male2810813
127703Male279237
228712Male5311242
328020Male2323327
427182Male338536
\n", + "
" + ], + "text/plain": [ + " Customer ID Gender Age Income (USD/Month)\n", + "0 29290 Male 28 10813\n", + "1 27703 Male 27 9237\n", + "2 28712 Male 53 11242\n", + "3 28020 Male 23 23327\n", + "4 27182 Male 33 8536" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Transaction IDCustomer IDPayment_Mode
01000001129290Card
11000001227703Card
21000001328712Cash
31000001428020Cash
41000001527182Card
\n", + "
" + ], + "text/plain": [ + " Transaction ID Customer ID Payment_Mode\n", + "0 10000011 29290 Card\n", + "1 10000012 27703 Card\n", + "2 10000013 28712 Cash\n", + "3 10000014 28020 Cash\n", + "4 10000015 27182 Card" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd\n", + "from datetime import datetime\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "cab_data = pd.read_csv(\"Cab_Data.csv\")\n", + "city = pd.read_csv(\"City.csv\")\n", + "custumer = pd.read_csv(\"Customer_ID.csv\")\n", + "transaction = pd.read_csv(\"Transaction_ID.csv\")\n", + "\n", + "display(cab_data.head())\n", + "display(city.head())\n", + "display(custumer.head())\n", + "display(transaction.head())" + ] + }, + { + "cell_type": "markdown", + "id": "007a8982", + "metadata": {}, + "source": [ + "**Checking for missing values**" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "0b361989", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Transaction ID 0\n", + "Date of Travel 0\n", + "Company 0\n", + "City 0\n", + "KM Travelled 0\n", + "Price Charged 0\n", + "Cost of Trip 0\n", + "dtype: int64" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "City 0\n", + "Population 0\n", + "Users 0\n", + "dtype: int64" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "Customer ID 0\n", + "Gender 0\n", + "Age 0\n", + "Income (USD/Month) 0\n", + "dtype: int64" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "Transaction ID 0\n", + "Customer ID 0\n", + "Payment_Mode 0\n", + "dtype: int64" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "display(cab_data.isna().sum())\n", + "display(city.isna().sum())\n", + "display(custumer.isna().sum())\n", + "display(transaction.isna().sum())" + ] + }, + { + "cell_type": "markdown", + "id": "ccd07989", + "metadata": {}, + "source": [ + "**Checking for duplicate values**" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "8224fc19", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Transaction IDDate of TravelCompanyCityKM TravelledPrice ChargedCost of Trip
\n", + "
" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [Transaction ID, Date of Travel, Company, City, KM Travelled, Price Charged, Cost of Trip]\n", + "Index: []" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CityPopulationUsers
\n", + "
" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [City, Population, Users]\n", + "Index: []" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Customer IDGenderAgeIncome (USD/Month)
\n", + "
" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [Customer ID, Gender, Age, Income (USD/Month)]\n", + "Index: []" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Transaction IDCustomer IDPayment_Mode
\n", + "
" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [Transaction ID, Customer ID, Payment_Mode]\n", + "Index: []" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "display(cab_data[cab_data.duplicated()])\n", + "display(city[city.duplicated()])\n", + "display(custumer[custumer.duplicated()])\n", + "display(transaction[transaction.duplicated()])\n" + ] + }, + { + "cell_type": "markdown", + "id": "bc216051", + "metadata": {}, + "source": [ + "Since there are **no missing or duplicate values** in the tables, let's proceed to merge them all to begin the exploration and visualization that we will need for our analysis." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "49358ab3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Transaction IDDate of TravelCompanyCityKM TravelledPrice ChargedCost of TripPopulationUsersCustomer IDPayment_ModeGenderAgeIncome (USD/Month)ProfitProfit per KMAge GroupIncome Group
0100000112016-01-08Pink CabATLANTA GA30.45370.95313.6358148852470129290CardMale281081357.3151.88226626-40Upper-middle class
1100000122016-01-06Pink CabATLANTA GA28.62358.52334.8548148852470127703CardMale27923723.6660.82690426-40Upper-middle class
2100000132016-01-02Pink CabATLANTA GA9.04125.2097.6328148852470128712CashMale531124227.5683.04955841-60Upper-middle class
3100000142016-01-07Pink CabATLANTA GA33.17377.40351.6028148852470128020CashMale232332725.7980.77775118-25Upper-middle class
4100000152016-01-03Pink CabATLANTA GA8.73114.6297.7768148852470127182CardMale33853616.8441.92943926-40Middle class
\n", + "
" + ], + "text/plain": [ + " Transaction ID Date of Travel Company City KM Travelled \\\n", + "0 10000011 2016-01-08 Pink Cab ATLANTA GA 30.45 \n", + "1 10000012 2016-01-06 Pink Cab ATLANTA GA 28.62 \n", + "2 10000013 2016-01-02 Pink Cab ATLANTA GA 9.04 \n", + "3 10000014 2016-01-07 Pink Cab ATLANTA GA 33.17 \n", + "4 10000015 2016-01-03 Pink Cab ATLANTA GA 8.73 \n", + "\n", + " Price Charged Cost of Trip Population Users Customer ID Payment_Mode \\\n", + "0 370.95 313.635 814885 24701 29290 Card \n", + "1 358.52 334.854 814885 24701 27703 Card \n", + "2 125.20 97.632 814885 24701 28712 Cash \n", + "3 377.40 351.602 814885 24701 28020 Cash \n", + "4 114.62 97.776 814885 24701 27182 Card \n", + "\n", + " Gender Age Income (USD/Month) Profit Profit per KM Age Group \\\n", + "0 Male 28 10813 57.315 1.882266 26-40 \n", + "1 Male 27 9237 23.666 0.826904 26-40 \n", + "2 Male 53 11242 27.568 3.049558 41-60 \n", + "3 Male 23 23327 25.798 0.777751 18-25 \n", + "4 Male 33 8536 16.844 1.929439 26-40 \n", + "\n", + " Income Group \n", + "0 Upper-middle class \n", + "1 Upper-middle class \n", + "2 Upper-middle class \n", + "3 Upper-middle class \n", + "4 Middle class " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Int64Index: 359392 entries, 0 to 359391\n", + "Data columns (total 18 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Transaction ID 359392 non-null int64 \n", + " 1 Date of Travel 359392 non-null datetime64[ns]\n", + " 2 Company 359392 non-null object \n", + " 3 City 359392 non-null object \n", + " 4 KM Travelled 359392 non-null float64 \n", + " 5 Price Charged 359392 non-null float64 \n", + " 6 Cost of Trip 359392 non-null float64 \n", + " 7 Population 359392 non-null int64 \n", + " 8 Users 359392 non-null int64 \n", + " 9 Customer ID 359392 non-null int64 \n", + " 10 Payment_Mode 359392 non-null category \n", + " 11 Gender 359392 non-null category \n", + " 12 Age 359392 non-null int64 \n", + " 13 Income (USD/Month) 359392 non-null int64 \n", + " 14 Profit 359392 non-null float64 \n", + " 15 Profit per KM 359392 non-null float64 \n", + " 16 Age Group 359392 non-null category \n", + " 17 Income Group 359392 non-null category \n", + "dtypes: category(4), datetime64[ns](1), float64(5), int64(6), object(2)\n", + "memory usage: 42.5+ MB\n" + ] + } + ], + "source": [ + "datefromxls = lambda x: datetime.fromordinal(datetime(1900,1,1).toordinal() + x - 2)\n", + "cab_data['Date of Travel'] = cab_data['Date of Travel'].apply(datefromxls)\n", + "\n", + "# Merging tables\n", + "trans_per_custumer = transaction.merge(custumer, on = 'Customer ID', how = 'left')\n", + "cab_city_data = cab_data.merge(city, on = 'City', how = 'left')\n", + "data = cab_city_data.merge(trans_per_custumer, on = 'Transaction ID', how = 'left')\n", + "\n", + "# Establish the correct data type for some features\n", + "data['Population'] = data['Population'].str.replace(',','').astype('int64')\n", + "data['Users'] = data['Users'].str.replace(',','').astype('int64')\n", + "data['Payment_Mode'] = data['Payment_Mode'].astype('category')\n", + "data['Gender'] = data['Gender'].astype('category')\n", + "\n", + "# Defining new features for our analysis\n", + "\n", + "# Profit\n", + "data['Profit'] = data['Price Charged'] - data['Cost of Trip']\n", + "\n", + "# Profit per KM\n", + "data['Profit per KM'] = data['Profit'] / data['KM Travelled']\n", + "\n", + "# Age Group\n", + "def age_group(age):\n", + " \n", + " age_dict = {0:'18-25', \n", + " 1:'26-40', \n", + " 2:'41-60', \n", + " 3:'60+'}\n", + " \n", + " if (age >= 18 and age <= 25):\n", + " return age_dict[0]\n", + " elif (age > 25 and age <= 40):\n", + " return age_dict[1]\n", + " elif (age > 40 and age <= 60):\n", + " return age_dict[2]\n", + " elif (age > 60):\n", + " return age_dict[3]\n", + " \n", + "data['Age Group'] = data['Age'].apply(age_group)\n", + "data['Age Group'] = data['Age Group'].astype('category')\n", + "\n", + "# Income Group\n", + "def income_group(income):\n", + " \n", + " income_dict = {0:'Poor or near-poor', \n", + " 1:'Lower-middle class', \n", + " 2:'Middle class', \n", + " 3:'Upper-middle class',\n", + " 4:'Rich'}\n", + " \n", + " if (income <= 32048):\n", + " return income_dict[0]\n", + " elif (income > 32048 and income <= 53413):\n", + " return income_dict[1]\n", + " elif (income > 53413 and income <= 106827):\n", + " return income_dict[2]\n", + " elif (income > 106827 and income <= 373894):\n", + " return income_dict[3]\n", + " elif (income > 373894):\n", + " return income_dict[4]\n", + " \n", + "# The income grouping was decided with the help of this article:\n", + "#https://money.usnews.com/money/personal-finance/family-finance/articles/where-do-i-fall-in-the-american-economic-class-system\n", + "\n", + "data['Income Group'] = (data['Income (USD/Month)']*12).apply(income_group)\n", + "data['Income Group'] = data['Income Group'].astype('category')\n", + "\n", + "display(data.head())\n", + "data.info()" + ] + }, + { + "cell_type": "markdown", + "id": "06010acf", + "metadata": {}, + "source": [ + "## Which company has had more profit over the years?" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "f458c015", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 0, 'Years')" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtcAAAHwCAYAAABtz0NOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABBUUlEQVR4nO3deZhcZZn38e/dSSAQQLYQA2ELS1gChNCsIUBAHUAQEWFAxYALg5pRxlEHdHhdRh3HHdSRQQFZVARBRFyRRQRUSJA9LAEiRBYDyCZblvv945xKV3eql3ROdac638911dVd55w69VRDqn/91H2eOzITSZIkScuvbbAHIEmSJA0VhmtJkiSpIoZrSZIkqSKGa0mSJKkihmtJkiSpIoZrSZIkqSKGa0kaIBExJSLuj4gXIuLNEfHLiJg+2OOSJFXHcC1JPYiIuRHxUhmIn4iIcyJijX6e7jPANzNzjcy8LDMPysxzy+c5LiKu7+cY3xgR10fEMxHxeER8JyLWrNu/akScHRHPlfs/3OXxZ0bEvRGxOCKOa3D+8RFxRUQ8HxFPRsQX+zPO8lxfLv/AeD4i7omId3bZPykiZkXEi+XXSXX7JkbEr8sxLNWkISI2i4hfRMTfy9f5zYgY3t+xSlJ/GK4lqXeHZuYawGRgV+A/ux7QxxC3KXBXxWMDeA3wWWBDYFtgHPCluv2fArYqn38a8LGIOLBu/23A+4Fbup44IlYBrgSuBl5bnvuC5RjrP4BDyzFPB06LiL3qnuun5fnXAc4FflpuB1gAXAS8u5tz/y/wN2AsMAnYt3xdkjRgDNeS1EeZ+Vfgl8BEgIjIiPhARNwP3F9ue29EzImIpyPi8ojYsNz+ADAe+Fk5C75qRFwbEe+JiG2BM4A9y33PlI85OCLuLmd5/xoRH+lmXD/IzF9l5ouZ+XfgO8CUukPeCfxXZv49M2eX+4+re/y3MvMq4OUGpz8OeDQzv5qZ/8jMlzPz9n7+CMnMT2bmPZm5ODP/BPwe2LPcvR8wHPh6Zr6SmacDAexfPvbezDyL7v9A2Ry4qBzj48CvgO37O1ZJ6g/DtST1UURsDBwM/Llu85uB3YHtImJ/4L+BoyhmT/8CXAiQmVsAD1POgmfmK7UTlIH3ROAP5b61y11nAf+SmWtSBPqr+zjUfSgDaESsQzGjfVvd/tvoe+jcA5hb1oc/Wf5BsEMfH9ujiFiN4pOAWljeHrg9M+tLPm5fhrGeBhwdEatHxEbAQRQBW5IGjOFaknp3WTmbfD3wO+Dzdfv+OzOfzsyXgLcDZ2fmLWV4PoViNnqzfj7vAorQvlY567xU2UZXEfF6inKL/1duqtWHP1t32LPAmvTNOOBo4HSKkP5zOpdqLI8zKIL+r8v7a3QZJyzbWH9HEcSfA+YBM4HLlnuUkrQMDNeS1Ls3Z+bamblpZr6/DNI1j9R9vyHFbDUAmfkC8BSwUT+f9wiKmfK/RMTvImLPng6OiD2AHwBvzcz7ys0vlF/Xqjt0LeD5Po7hJeD6zPxlZr4KfBlYj6K2u+vzf7wsa3khIs7oZaxfopiNP6pupvqFLuPs81gjoo0ipF8KjALWp6jb/p/eHitJVTJcS9LyqS9heJTiokEAImIURRD96zKep9iQeXNmHgZsQDEDe1F3D46InYHLgXeV9dO1c/wdeAzYqe7wnej7hZW3NxpbI5n5+bKsZY3MPLGHsX6aomTjDZn5XN2uu4AdIyLqtu3Yx7GuC2xMsRrLK5n5FHAOxR8nkjRgDNeSVJ0fAMeXy8mtSlE+8qfMnNuHxz4BjKuVW0TEKhHx9oh4TWYuoCh1WNTogRExkaK2+F8z82cNDjkP+M+IWCcitgHeC3yv7vGrRMRIiosHR0TEyHImGIqVO/aIiNdFxDDgJOBJYHYfXlOjsZ4CvA14fRmA611bvsYPlhd8zii3X10+Nspx1n5GI8ufM5n5JPAQ8L6IGB4Ra1OUx9yGJA0gw7UkVaScMT4VuIRitngLinrlvriaYob28Yh4stx2LMXFhM9RXPD4jm4e++/AaOCsurKM+tneTwIPUJSs/A74UmbWX+j3G4ryj72AM8vv9ylf073l854B/B04DHhTWSLSH58HNgHurxvrx8vnepXiAtF3As8A76Ioyak916bl2Gqv7SXg3rpzvwU4EJgPzAEWAv/Wz3FKUr9E54uyJUmSJPWXM9eSJElSRQzXkiRJUkUM15IkSVJFDNeSJElSRQzXkiRJUkWGD/YAqrT++uvnZpttNtjDkCRJ0hA2a9asJzNzdKN9Qypcb7bZZsycOXOwhyFJkqQhLCL+0t0+y0IkSZKkihiuJUmSpIoYriVJkqSKDKmaa0mSpJXJggULmDdvHi+//PJgD2VIGjlyJOPGjWPEiBF9fozhWpIkqUXNmzePNddck80224yIGOzhDCmZyVNPPcW8efPYfPPN+/w4y0IkSZJa1Msvv8x6661nsG6CiGC99dZb5k8FDNeSJEktzGDdPP352RquJUmStJTHH3+co48+mi222ILtttuOgw8+mPvuu2+wh7XCM1xLkiSpk8zk8MMPZ7/99uOBBx7g7rvv5vOf/zxPPPHEYA9thWe4liRJUifXXHMNI0aM4MQTT1yybdKkSey999589KMfZeLEieywww786Ec/AuDaa69l33335aijjmLrrbfm5JNP5vvf/z677bYbO+ywAw888AAAxx13HCeeeCJTp05l66235oorrgBg7ty5TJ06lcmTJzN58mRuvPHGJefdb7/9eOtb38o222zD29/+djKTq666isMPP3zJ2K688kre8pa3DNSPp0euFiJJkqRO7rzzTnbZZZeltl966aXceuut3HbbbTz55JPsuuuu7LPPPgDcdtttzJ49m3XXXZfx48fznve8h5tuuonTTjuNb3zjG3z9618HiiD9u9/9jgceeIBp06YxZ84cNthgA6688kpGjhzJ/fffzzHHHMPMmTMB+POf/8xdd93FhhtuyJQpU7jhhhvYf//9+cAHPsD8+fMZPXo055xzDscff/yA/Xx64sy1JEmS+uT666/nmGOOYdiwYYwZM4Z9992Xm2++GYBdd92VsWPHsuqqq7LFFlvwhje8AYAddtiBuXPnLjnHUUcdRVtbG1tttRXjx4/nnnvuYcGCBbz3ve9lhx124Mgjj+Tuu+9ecvxuu+3GuHHjaGtrY9KkScydO5eI4Nhjj+WCCy7gmWee4Q9/+AMHHXTQgP4suuPMtSRJkjrZfvvt+fGPf7zU9szs9jGrrrrqku/b2tqW3G9ra2PhwoVL9nVdgSMi+NrXvsaYMWO47bbbWLx4MSNHjmx43mHDhi051/HHH8+hhx7KyJEjOfLIIxk+fMWItc5cS5IkqZP999+fV155he985ztLtt18882ss846/OhHP2LRokXMnz+f6667jt12222Zzn3xxRezePFiHnjgAR588EEmTJjAs88+y9ixY2lra+P8889n0aJFvZ5nww03ZMMNN+Szn/0sxx133LK+xKZZMSK+JEmSVhgRwU9+8hNOOukkvvCFLzBy5Eg222wzvv71r/PCCy+w0047ERF88Ytf5LWvfS333HNPn889YcIE9t13X5544gnOOOMMRo4cyfvf/36OOOIILr74YqZNm8aoUaP6dK63v/3tzJ8/n+22266/L7Vy0dP0fqtpb2/PWvG7JEnSUDd79my23XbbwR5Gnx133HEccsghvPWtb63kfDNmzGDnnXfm3e9+dyXna6TRzzgiZmVme6PjnbmWpJXaq8Aqgz0ISVpmu+yyC6NGjeIrX/nKYA+lE8O1JK00FgK3ATcCN5S3vwK7AAcArwOmAKsN1gAlDXHf+973KjvXrFmzKjtXlQzXkjRkPQv8gSJE3wj8CfhHuW8cRZDerNz/FeB/gFWBvekI25OBYQM5aElqaYZrSRoSEniQzrPSd5Xb24CdgOMpAvVewCZdHv888Hvgt+Xt4+VtbWB/OsL2VkAgSWrMcC1JLelV4BY6ZqVvAJ4o960F7AkcSRGmdwfW6OV8awIHlzfKc11NR9i+tNy+MUXIPqC8vXb5X4okDSGGa0lqCU/SUeJxAzATeLnctznwejpmpbdn+Us5xgDHlLcEHqAjaF8GnFMeN5GOsL0vRUiXpJWXTWQkaYWTwD3AWcC7gW2A0cCbgK8CC4D3AT8GHqUoBzkfOBHYkeprpAPYsjz/j4H5FOH+CxQz12cAhwLrUtRrf5KixOTVischaUU0bNgwJk2axMSJEznyyCN58cUXmTlzJh/84Ad7fNzcuXOZOHFir+e/7777OPjgg9lyyy3ZdtttOeqoo3jiiSe6Pf7aa6/lkEMOWebXURVnriVp0L1EEVZrs9I3Ak+X+9almI0+jmJmup3BX81jGMUKI7sA/0Exg34jHTPbnwU+A4yimM2u1WtPxDkdaehZbbXVuPXWW4GiqcsZZ5zBhz/8YdrbGy4DvUxefvll3vjGN/LVr36VQw89FIBrrrmG+fPnM2bMmOU+fzP4LidJA+5x4BLg34E9gNcA+wCnAPcDhwHfBWZTzBL/DDgZmMrgB+tGRlJc9Ph54CaKEpZLgenAHIrXuRMwFngbxYz8XwZlpJKaa+rUqcyZM6fT7PGnPvUp3vWud7Hffvsxfvx4Tj/99KUe9+CDD7Lzzjtz8803d9r+gx/8gD333HNJsAaYNm0aEydOZO7cuUydOpXJkyczefJkbrzxxiXHPPfccxx++OFst912nHjiiSxevLhJr3hpzlxLUlMtAu6m86z0g+W+VYFdgQ9TzE7vBaw/CGOs2jrA4eUN4BHgKjpmtn9Ybt+SjlntacB6AztMaaiZ8zC88GK151xjddiy6+pCjS1cuJBf/vKXHHjggUvtu+eee7jmmmt4/vnnmTBhAu973/uW7Lv33ns5+uijOeecc5g0aVKnx915553ssssuDZ9vgw024Morr2TkyJHcf//9HHPMMdQ6dd90003cfffdbLrpphx44IFceumllXWF7I3hWpIq9QLFetK1FTz+ADxX7htDUdrx/vLrzhQBe6jbmKKs5TiKevK76QjaPwD+j6KuezIdYXtvVsxZekldvfTSS0tC8dSpU3n3u9/daRYZ4I1vfCOrrroqq666KhtssMGSmun58+dz2GGHcckll7D99tsv0/MuWLCAGTNmcOuttzJs2DDuu+++Jft22203xo8fD8AxxxzD9ddfb7iWpNbwCJ1npW+jmK0OilU7jqFjFY/xuEZ07eeyPfAhioszb6YjbH8N+CLFHx1T6Ajbu2AzG6kXfZxhrlp9zXV3Vl21YyJh2LBhLFy4EIDXvOY1bLzxxtxwww0Nw/X222/P7373u4bn/NrXvsaYMWO47bbbWLx4MSNHjlyyL6Lze23X+81kzbUk9dlCYBbwDeBoihnZTSgC9DkUDVdOAX5JcUHiHRQraRwLbIHBupERFH94/D/gOoqf2y+AD1DUbn+CYp3u9YG3AN8C7qWYAZfU6lZZZRUuu+wyzjvvPH7wgx8stf9tb3sbN954Iz//+c+XbPvVr37FHXfcwbPPPsvYsWNpa2vj/PPPZ9GiRUuOuemmm3jooYdYvHgxP/rRj9h7770H5PVAE2euI+Js4BDgb5k5sW77vwIzKH5L/TwzP9bgsQcCp1FMU3w3M7/QrHFKUveeAf5Iz+3Da7PSO+GHgVVYAziovAH8jc7NbH5Sbh9H52Y2Ywd2mJIqM2rUKK644gpe//rXM2rUKA477LAl+1ZbbTWuuOIKTjrpJE466SRGjBjBjjvuyGmnncb73/9+jjjiCC6++GKmTZvGqFGjljxuzz335OSTT+aOO+5gn3324fDDD2/01E0Rmc356z8i9qEoPjyvFq4jYhrFNMQbM/OViNggM//W5XHDgPsoOiLMo/i88JjMvLu352xvb89aIbskLZve2odPogjRtUC98aCMcuVW+29UC9pX07Fk4fZ0lJDsS9GlUhr6Zs+ezbbbbjvYwxjSGv2MI2JWZjZca7Bp0yyZeV1EbNZl8/uAL2TmK+Uxf1vqgbAbMCczHwSIiAsp1qXqNVxLUt+9AvyZntuHH0URqPvSPlzNFxTlNVsA/wIsBm6lI2yfCZxO8aHn7nSE7T2AVQZ+uJJWSgP9GebWwNSI+BxF14GPZObNXY7ZiOIKoZp5FO+SkrQcnqQI0bUgfTNFwIbiQsNa+/ApwHZ48VwraKNYYWQy8DGKXyt/oCNsfw74L2B1Ojez2QEvOZLULAMdrodTLIC6B8XirhdFxPjsXJvS6IqfbmtXIuIE4ASATTYZnKtkJa1okuKit/pVPO4t942gCGMfoGNtaet1h4aRFOtlT6MI1s8A11IE7auAj5THjaZoevO68rbZwA5T0pA20OF6HnBpGaZviojFFJeAz+9yTH0x4zjg0e5OmJlnUnwWSHt7u5ePSyullyhmomuz0vXtw9djxWsfroGxNvDm8gbFr5daM5urgB+V27egY1Z7f2xmI2l5DHS4vozinevaiNiaogjuyS7H3AxsFRGbA3+lWO/qbQM5SEkrusfpPCt9C8V6yQATKMJUbRWPCbgEngrjKFqyT6f4dGM2nbtGnknx/8rOdG5ms/pgDFZSi2rmUnw/BPYD1o+IecAngbOBsyPiTuBVYHpmZkRsSLHk3sGZuTAiZgC/pih6PDsz72rWOCWt6BZRrNpRv4rHQ+W+kXS0D59CcRHiUGgfruYLitr67YAPUqwOW2tmcxXwdeBLFHNAXZvZuOSipO417YqOzDwmM8dm5ojMHJeZZ2Xmq5n5jsycmJmTM/Pq8thHM/Pgusf+IjO3zswtMvNzzRqjpBXRCxTh5jPAgcC6FGtIvw+4kmJW8SsUF649S9F45AvAoRis1X/DKf44O5WiTvvvFM2A/rX8/j8pLhdaHzgc+CZwDzaz0couM9l777355S9/uWTbRRddxIEHHrjUsddeey2HHHIIAN/73veYMWNGpWO56aab2GeffZgwYQLbbLMN73nPe3jxxRe7Pb4ZYwD//JY06B6m86z0bRRLrAUwkY724VOAzbHEQwNjFMUfd7WAMJ/OzWwuK7dvRMes9gHAhgM6SmmwRQRnnHEGRx55JNOmTWPRokV84hOf4Fe/+tWAjuOJJ57gyCOP5MILL2TPPfckM7nkkkt4/vnnWX31gS3tci0iSQOo1j78dDrah29KR/vwdSj6TNXah99OR/vw8RisNXhGA/8MfIeiLOkB4P8o6vp/DryTImhvT1FmcjnFJyvS0Ddx4kQOPfRQ/ud//odPf/rTvOMd7+Bzn/scu+66KzvvvDM//elPe3z8X/7yFw444AB23HFHDjjgAB5++GEWLVrE+PHjyUyeeeYZ2trauO666wCYOnUqc+bM6XSOb33rW0yfPp0999wTKEL/W9/6VsaMGcNNN93EXnvtxc4778xee+3Fvffeu+RxjzzyCAceeCATJkzg05/+dCU/D2euJTXRM3S0D7+Bon147SO6jemYkZ4C7IhvSWod4ylWgT2B4pOW2+iY1f4u8A2Ky4Z2o3Mzm1UHY7BaaZxE0VipSpMorkHo2Sc/+UkmT57MKquswiGHHML+++/P2WefzTPPPMNuu+3G6173um4fO2PGDN75zncyffp0zj77bD74wQ9y2WWXsfXWW3P33Xfz0EMPscsuu/D73/+e3XffnXnz5rHlllt2Osedd97J9OnTG55/m2224brrrmP48OH89re/5eMf/ziXXHIJUJSS3Hnnnay++ursuuuuvPGNb6S9vWHjxT7zN5mkitRaU9d3PKy1Dx9GUTf9bjpaiNs+XENFG8W1ADsDH6VoTlRrZnMV8HngsxSrjuxDR9jeET9A1lAxatQo/vmf/5k11liDiy66iJ/97Gd8+ctfBuDll1/m4Ycf7vaxf/jDH7j00ksBOPbYY/nYxz4GFDPU1113HQ899BCnnHIK3/nOd9h3333Zddddl2lszz77LNOnT+f+++8nIliwYMGSfa9//etZb71i+c23vOUtXH/99YZrSYPlFYol8OrXlm7UPnwKxeyd7cO1sliVYrGs/ShC9TPA7+gI2x8tj1ufzs1sNh/YYWoI+vqgPntbWxttbW1L6p0nTJjQaf8TTzzRzSM7iyhKAKdOncoZZ5zBo48+ymc+8xm+9KUvce2117LPPvss9Zjtt9+eWbNmcdhhhy2179RTT2XatGn85Cc/Ye7cuey3335LPVd39/vDP5kl9dGTFHWk/wFMBV5DMQv9EYqPxN8AfJuiTvpp4FcUKy/sj8FaK7e1gcMoSkXupmhmcy5wEHA9RWnJeIpmNicAF7F0CwipdfzTP/0T3/jGN6g14P7zn//c4/F77bUXF154IQDf//732XvvvQHYfffdufHGG2lra2PkyJFMmjSJ//u//2Pq1KlLnWPGjBmce+65/OlPf1qy7YILLuDxxx/n2WefZaONNgKKFULqXXnllTz99NO89NJLXHbZZUyZMqXfr7vGcC2pgaRYZuws4F3ANhQXdB0GfI3iwsQPAJcAj1Fc3HUecCKwA0UZiKTGNqK4API8iqB9N8VFvjtQdI38Z4p/b5MpZrl/Tce1CtKK79RTT2XBggXsuOOOTJw4kVNPPbXH408//XTOOeccdtxxR84//3xOO+00AFZddVU23nhj9thjD6CYyX7++efZYYcdljrHmDFjuPDCC/nIRz7ChAkT2Hbbbfn973/PWmutxcc+9jFOOeUUpkyZwqJFizo9bu+99+bYY49l0qRJHHHEEctdEgIQtb8qhoL29vacOXPmYA9DakF9aR9e63ho+3CpeRYCM+koIbmBovvoKhT//mr12u1Y2SmA2bNns+222w72MIa0Rj/jiJiVmQ2TuP8ypZXSY3QO0vXtw7eho334FGBrXAJPGijDKVYV2YOicc0/KEpHrqII3KeWt7Uoarpr9drb4L9TacVguJaGvFr78PpVPLq2D/93ilkx24dLK5ZRwD+VNyia2VxDR9i+vNy+IZ2b2Ww0sMOUtIThWhpyngduomNt6T8Cz5X7xlDMRs8ov+5M8XGzpNYwmmIVnqPK+w9SBO2rKJovnV9u35aOsL0fxQXIkgaC4VpqeQ/TeVa6a/vwt9FRM237cGloGV/e3kvx7/52Ouq1zwa+SbF2QX0zmz2xmc3QkpmVLCGnpfXn2kTDtdRSFlKE59qs9I0Uqw1A8fHx7hTtw6eU36898EOUNEjaKLrpTaJYIvMVik+uamH7C8DnKC5Irm9msxMuHta6Ro4cyVNPPcV6661nwK5YZvLUU08xcuTIZXqcq4VIK7RnKDq91WalG7UPr81K2z5cUk+epWhmU6vXvrvcvh6dm9mMH5TRqX8WLFjAvHnzePnllwd7KEPSyJEjGTduHCNGjOi03dVCpJZQ3z68NivdqH14LVDbPlzSsngN8KbyBvAoHfXavwUuLrdvTses9v4Udd5aUY0YMYLNN7e754rEcC0Nmp7ah78G24dLaq4NgWPLWwL30lFCcjHw3fK4SXSE7akUJWiSumO4lgbMk3QO0jdTBGwoPoZ9Ax2z0ttjDaSkgRMUa2VvQ7Ga0EJgFh2z2t8AvgKMoPjDv1ZCsitGCakza66lplhMMQtUC9M3APeV+0YAu9C56+FrB2GMktRXL9K5mc2fKWa71wL2pSNsb4srEmllYM211HQvUrQsrgXpP7B0+/B3UYTpXbB9uKTWsjrFp2tvKO8/SedmNj8rt4+lczObcQM7TGkFYLiW+uUxOq8tfQvFx6hQfKx6OB0z07YPlzTUrA8cWd6g6Ppauzjy18AF5fZt6NzMZu2BHKQ0KAzXUq/q24fXAnXX9uEfoQjSe1LMVEvSymRz4D3lbTFwBx2z2ucA36K4jmRXOsL2XtjMRkORNdfSUp6nWE+6Nitd3z78tXReW9r24ZLUs1cp3kdrYftPFJMWqwF701GvPQkv5FarsOZa6lYCj9B5VrpR+/BaoLZ9uCQtm1UoOkLuA3yaYrKivpnNf5THrQdMo3MzG99v1XoM11rJLKAIz/WrePy13DcK2IOO9uF7UKw3LUmqzlrAoeUNimtYrqYI2r8Fflxu34zOzWw2GNBRSv1luNYQ9wzFyh21Wemu7cOn0jErbftwSRp4Y4G3l7ekWLa0Nqv9Y+Cs8rid6NzMxsZaWjGZJDSEJPAAnWel76ajffgkbB8uSSuyACaUt/dT1GbXN7P5JvBVOprZ1ML2ruU2afB5QaNaWK19eG1WulH78FqQtn24JLW+Fyne82th+xaKCZQ16dzMZjus11YzeUGjhoj5dJR43EDRtKXWPnwL4J/oWMVjO7zqXJKGmtWB15c3gKeAa+mo176i3P5aOjez8ZNKDRzDtVZQtfbh9at4dG0fPoOOtaVtHy5JK5/1gCPKG8Bf6JjV/g3w/XL7BDo3s1lnQEeplYvhWiuI3tqHT6GjfXg7RfMWSZLqbUrxu+JdFJM0d9IRts8F/pfiU81d6Cgh2Qt/p6hKhmsNkr60D6/VS9s+XJK0rNooVoHaEfg3imY2f6IjbH8R+G+KYN21mc2wgR+uhgzDtQZAb+3Dd8P24ZKk5lqFYgm/qcCnKJrZXEdH2D65PG5dOjez2QIneLQsDNdqglr78FqQbtQ+/F8pZqVtHy5JGgxrAYeUN4DH6dzM5pJy+6Z0bmYzZmCHqZZjuNZySuBhOq8tfTsd7cN3oKN9+BSKjlvOAEiSVjSvpfh99TaK321z6AjalwJnl8ftSEfY3geXeVVXhmsto1r78Pp66a7tw/+TYlba9uGSpFYUwFbl7X0U5Y230FFC8r/A1yhiVH0zm92wmY1sIqNe/J2irKM2K30THe3DN6FjXekpFLPU/r0mSRrqXqKYYKrNbM+imO1eg87NbLbHT2uHJpvIqI9q7cPrZ6XvKvfV2oe/h45VPMYN/BAlSRp0q1HMVh9AseLI03RuZvPz8rgxdG5ms8lAD1SDwHC9UqtvH14L1H8r972GIkAfTRGmd6Mo+5AkSZ2tC7ylvEFxLVKthOS3wA/K7VvRMas9DZvZDE2G65XKfIoAXZuV7to+/EBsHy5J0vLaBDi+vCXFp8C1oH0e8G2KcpH6ZjZTsJnN0GDN9ZDVW/vwdjqC9F64tJAkSQNhAcX1S7Ww/UeKJmojKX4n18L2ztjMZsXVU8214XrIeBG4mY5Z6fr24evTOUjbPlySpBXD88Dv6Qjbd5Tb16FzM5st8eLIFYcXNA5JtfbhtVnp+vbh29LRPnwKRY2X/yAlSVrxrAkcXN4AnqBzM5tLy+2b0PniSD9xXlEZrlvCIuBOOjdqmVvuq7UP/yjFrLTtwyVJal1jgGPKW20Vr1rQvgw4pzxuIh2z2vtQhHStCAzXK6T69uE3UNRjPV/uq7UP/2D5dRK2D5ckaSgKinKQLYETKSbbbqUjbJ8BfJ0izu1OR9jeHZvZDJ6m1VxHxNnAIcDfMnNil30fAb4EjM7MJxs89kDgNIpK/u9m5hf68pytWXNdax9ev7Z01/bhtVpp24dLkqSal1m6mc1iimY2+9ARtididqjWYNVcfw/4JsWaM/WD2Rh4PUWiXEpEDAO+VR4zD7g5Ii7PzLubONYBVN8+vBaoG7UPn0Lxl6ftwyVJUiMjgf3L2+cpuipfS0fY/kV53JjymFrYtplNMzUtXGfmdRGxWYNdXwM+Bvy0m4fuBszJzAcBIuJC4DCgRcN1b+3D96FjVtr24ZIkqb/WoVjQ4PDy/iN0bmbzw3L7lnRuZrPuwA5ziBvQJBcRbwL+mpm3RXT78cRGFP831MyjmMJtAfXtw2uz0rYPlyRJg2Fj4LjylhTzlLWgfQFFzXYAk+nczGa1gR/qEDJg4ToiVgc+Abyht0MbbOu2MDwiTgBOANhkk8H4mOMm4DqWbh++NsXKHcdQBGnbh0uSpMESwPbl7UMUZao30xG2vwr8D7AqnZvZTMZmNstmIGeutwA2B2qz1uOAWyJit8x8vO64eRR/atWMAx7t7qSZeSZwJhQXNFY96N79B0V905YU7cNra0tvi+3DJUnSimkExeTfXsD/A16gczObj5e3tenczMbeGb0ZsHCdmXcAG9TuR8RcoL3BaiE3A1tFxOYUV/odDbxtoMa57P6XolbJxdwlSVKrWgM4qLxB8Ul8fTObn5TbN6ZzM5vXDuwwW0DTplYj4ocUPbgnRMS8iHh3D8duGBG/AMjMhcAM4NfAbOCizLyru8cOvm0xWEuSpKFlA4r5ze8CDwFzKGq0dwcuB94BjKVY5u8k4Ao6enKs3Jq2zvVgaM11riVJklrJYjo3s/k9xZrbwymuMatvZjM0G931tM61RcGSJElaBm0UFzp+DPgNxbLDV5f3FwKfpVhqeF3gYIqLJWsN8oY+F1WWJEnSchhJcdHjNOBzwDN0bmbz7+VxG9C5mc2mAzzOgWG4liRJUoXWBt5c3qBYCK6+mc2F5fYt6NzMZr0BHGPzGK4lSZLUROOA6eUtKdarqAXtHwD/R7G83850hO29adVmNoZrSZIkDZAAtitvH6So0a5vZvM14IsUzWz2oiNs70KrNLPxgkZJkiQNkuEUHa1PBX5HcXHkLylWZX6aorn37hQlI4cD3wLupYfm3YPOmWtJkiStIEZRdLw+sLw/n87NbC4rt29EMaM9naJee8VhuJYkSdIKajTwz+UN4EE6gvYVwCQM15IkSVK/jAdOKG+LgVcHdzgNWHMtSZKkFtRGscb2isVwLUmSJFXEcC1JkiRVxHAtSZIkVcRwLUmSJFXEcC1JkiRVxHAtSZIkVcRwLUmSJFXEcC1JkiRVxHAtSZIkVcRwLUmSJFXEcC1JkiRVxHAtSZIkVcRwLUmSJFXEcC1JkiRVxHAtSZIkVcRwLUmSJFXEcC1JkiRVxHAtSZIkVcRwLUmSJFXEcC1JkiRVxHAtSZIkVcRwLUmSJFXEcC1JkiRVxHAtSZIkVcRwLUmSJFXEcC1JkiRVxHAtSZIkVcRwLUmSJFXEcC1JkiRVxHAtSZIkVcRwLUmSJFXEcC1JkiRVxHAtSZIkVaRp4Toizo6Iv0XEnXXbvhQR90TE7RHxk4hYu5vHHhgR90bEnIg4uVljlCRJkqrUzJnr7wEHdtl2JTAxM3cE7gNO6fqgiBgGfAs4CNgOOCYitmviOCVJkqRKNC1cZ+Z1wNNdtv0mMxeWd/8IjGvw0N2AOZn5YGa+ClwIHNascUqSJElVGcya63cBv2ywfSPgkbr788ptkiRJ0gptUMJ1RHwCWAh8v9HuBtuyh3OdEBEzI2Lm/PnzqxqiJEmStMwGPFxHxHTgEODtmdkoNM8DNq67Pw54tLvzZeaZmdmeme2jR4+udrCSJEnSMhjQcB0RBwL/AbwpM1/s5rCbga0iYvOIWAU4Grh8oMYoSZIk9Vczl+L7IfAHYEJEzIuIdwPfBNYEroyIWyPijPLYDSPiFwDlBY8zgF8Ds4GLMvOuZo1TkiRJqko0rsxoTe3t7Tlz5szBHoYkSZKGsIiYlZntjfbZoVGSJEmqiOFakiRJqojhWpIkSaqI4VqSJEmqiOFakiRJqojhWpIkSaqI4VqSJEmqiOFakiRJqojhWpIkSaqI4VqSJEmqiOFakiRJqojhWpIkSaqI4VqSJEmqiOFakiRJqojhWpIkSaqI4VqSJEmqiOFakiRJqojhWpIkSaqI4VqSJEmqiOFakiRJqojhWpIkSaqI4VqSJEmqiOFakiRJqojhWpIkSaqI4VqSJEmqiOFakiRJqojhWpIkSarI8L4cFBHtwFRgQ+Al4E7gt5n5dBPHJkmSJLWUHmeuI+K4iLgFOAVYDbgX+BuwN3BlRJwbEZs0f5iSJEnSiq+3metRwJTMfKnRzoiYBGwFPFzxuCRJkqSW02O4zsxv9bL/1kpHI0mSJLWwPl3QGBFfjIi1ImJERFwVEU9GxDuaPThJkiSplfR1tZA3ZOZzwCHAPGBr4KNNG5UkSZLUgvoarkeUXw8GfugqIZIkSdLS+rQUH/CziLiHYhm+90fEaODl5g1LkiRJaj19mrnOzJOBPYH2zFwA/AM4rJkDkyRJklpNX2euAbYFNouI+secV/F4JEmSpJbV1w6N5wNbALcCi8rNieFakiRJWqKvM9ftwHaZmc0cjCRJktTK+rpayJ3Aa5s5EEmSJKnV9XXmen3g7oi4CXiltjEz39SUUUmSJEktqK/h+lPNHIQkSZI0FPQpXGfm7yJiDLBruemmzPxb84YlSZIktZ4+1VxHxFHATcCRwFHAnyLirc0cmCRJktRq+npB4yeAXTNzema+E9gNOLWnB0TE2RHxt4i4s27buhFxZUTcX35dp5vHHhgR90bEnIg4ua8vRpIkSRpMfQ3XbV3KQJ7qw2O/BxzYZdvJwFWZuRVwVXm/k4gYBnwLOAjYDjgmIrbr4zglSZKkQdPXcP2riPh1RBwXEccBPwd+0dMDMvM64Okumw8Dzi2/Pxd4c4OH7gbMycwHM/NV4EJstS5JkqQW0NcLGj8aEUcAU4AAzszMn/Tj+cZk5mPlOR+LiA0aHLMR8Ejd/XnA7v14LkmSJGlA9XUpPjLzEuCSJo6lJho9fbcHR5wAnACwySabNGtMkiRJUq96LAuJiOvLr89HxHN1t+cj4rl+PN8TETG2POdYoNFyfvOAjevujwMe7e6EmXlmZrZnZvvo0aP7MSRJkiSpGj2G68zcu/y6ZmauVXdbMzPX6sfzXQ5ML7+fDvy0wTE3A1tFxOYRsQpwdPk4SZIkaYXWY1lIRKzb0/7M7HrBYv1jfwjsB6wfEfOATwJfAC6KiHcDD1Osm01EbAh8NzMPzsyFETED+DUwDDg7M+/q+0uSJEmSBkdkdlvOTEQ8RFHv3LAOOjPHN2tg/dHe3p4zZ84c7GFIkiRpCIuIWZnZ3mhfjzPXmbl5c4YkSZIkDT29lYVM7ml/Zt5S7XAkSZKk1tXbUnxf6WFfAvtXOBZJkiSppfVWFjJtoAYiSZIktbreykL2z8yrI+ItjfZn5qXNGZYkSZLUenorC9kXuBo4tMG+BAzXkiRJUqm3spBPll+PH5jhSJIkSa2rt5lrACJibeCdwGb1j8nMDzZlVJIkSVIL6lO4Bn4B/BG4A1jcvOFIkiRJrauv4XpkZn64qSORJEmSWlxbH487PyLeGxFjI2Ld2q2pI5MkSZJaTF9nrl8FvgR8gmKVEMqv45sxKEmSJKkV9TVcfxjYMjOfbOZgJEmSpFbW17KQu4AXmzkQSZIkqdX1deZ6EXBrRFwDvFLb6FJ8kiRJUoe+huvLypskSZKkbvQpXGfmuc0eiCRJktTq+lpzLUmSJKkXhmtJkiSpIoZrSZIkqSJ9qrmOiK2BjwKb1j8mM/dv0rgkSZKkltPX1UIuBs4AvkOxLJ8kSZKkLvoarhdm5rebOhJJkiSpxfW15vpnEfH+iBgbEevWbk0dmSRJktRi+jpzPb38+tG6bQmMr3Y4kiRJUuvqaxOZzZs9EEmSJKnV9RiuI2L/zLw6It7SaH9mXtqcYUmSJEmtp7eZ632Bq4FDG+xLwHAtSZIklXoM15n5yfLr8QMzHEmSJKl19bhaSES8IyK6PSYitoiIvasfliRJktR6eisLWQ/4c0TMAmYB84GRwJYUJSNPAic3dYSSJElSi+itLOS0iPgmsD8wBdgReAmYDRybmQ83f4iSJElSa+h1Kb7MXARcWd4kSZIkdaOvHRolSZIk9cJwLUmSJFXEcC1JkiRVpE/hOiI+FBFrReGsiLglIt7Q7MFJkiRJraSvM9fvyszngDcAo4HjgS80bVSSJElSC+pruI7y68HAOZl5W902SZIkSfQ9XM+KiN9QhOtfR8SawOLmDUuSJElqPb2uc116NzAJeDAzX4yI9ShKQyRJkiSV+jpzfWVm3pKZzwBk5lPA15o2KkmSJKkF9ThzHREjgdWB9SNiHTrqrNcCNmzy2CRJkqSW0ltZyL8AJ1EE6Vvqtj8HfKtJY5IkSZJaUo9lIZl5WmZuDnwkMzevu+2Umd/s75NGxL9FxF0RcWdE/LCcIa/fHxFxekTMiYjbI2Jyf59LkiRJGii9lYXsn5lXA3+NiLd03Z+Zly7rE0bERsAHge0y86WIuAg4Gvhe3WEHAVuVt92Bb5dfJUmSpBVWb2Uh+wBXA4c22JfAMofruuddLSIWUNR0P9pl/2HAeZmZwB8jYu2IGJuZj/Xz+SRJkqSm6y1c/738elZmXl/FE2bmXyPiy8DDwEvAbzLzN10O2wh4pO7+vHLbUuE6Ik4ATgDYZJNNqhiiJEmS1C+9LcVXW8v69KqesFx15DBgc4oLJUdFxDu6HtbgodnofJl5Zma2Z2b76NGjqxqmJEmStMx6m7meHRFzgdERcXvd9gAyM3fsx3O+DngoM+cDRMSlwF7ABXXHzAM2rrs/jqVLRyRJkqQVSo/hOjOPiYjXAr8G3lTRcz4M7BERq1OUhRwAzOxyzOXAjIi4kOJCxmett5YkSdKKrtf255n5OLBTRKwCbF1uvjczF/TnCTPzTxHxY4p1sxcCfwbOjIgTy/1nAL8ADgbmAC9iq3VJkiS1gCgW5OjloIh9gfOAuRQlIRsD0zPzuqaObhm1t7fnzJldJ8ElSZKk6kTErMxsb7Sv15nr0leBN2TmveUJtwZ+COxSzRAlSZKk1tfbaiE1I2rBGiAz7wNGNGdIkiRJUmvq68z1rIg4Czi/vP92YFZzhiRJkiS1pr6G6xOBD1C0LQ/gOuB/mzUoSZIkqRX1Gq4jog2YlZkTKWqvJUmSJDXQa811Zi4GbosIe4tLkiRJPehrWchY4K6IuAn4R21jZlbVWEaSJElqeX0N159u6igkSZKkIaDHcB0RIykuZtwSuAM4KzMXDsTAJEmSpFbTW831uUA7RbA+CPhK00ckSZIktajeykK2y8wdAMp1rm9q/pAkSZKk1tTbzPWC2jeWg0iSJEk9623meqeIeK78PoDVyvsBZGau1dTRSZIkSS2kx3CdmcMGaiCSJElSq+u1iYwkSZKkvjFcS5IkSRUxXEuSJEkVMVxLkiRJFTFcS5IkSRUxXEuSJEkVMVxLkiRJFTFcS5IkSRUxXEuSJEkVMVxLkiRJFTFcS5IkSRUxXEuSJEkVMVxLkiRJFTFcS5IkSRUxXEuSJEkVMVxLkiRJFTFcS5IkSRUxXEuSJEkVMVxLkiRJFTFcS5IkSRUxXEuSJEkVMVxLkiRJFTFcS5IkSRUxXEuSJEkVMVxLkiRJFTFcS5IkSRUxXEuSJEkVMVxLkiRJFTFcS5IkSRUZlHAdEWtHxI8j4p6ImB0Re3bZHxFxekTMiYjbI2LyYIxTkiRJWhbDB+l5TwN+lZlvjYhVgNW77D8I2Kq87Q58u/wqSZIkrbAGfOY6ItYC9gHOAsjMVzPzmS6HHQacl4U/AmtHxNiBHakkSZK0bAajLGQ8MB84JyL+HBHfjYhRXY7ZCHik7v68cpskSZK0whqMcD0cmAx8OzN3Bv4BnNzlmGjwuGx0sog4ISJmRsTM+fPnVztSSZIkaRkMRrieB8zLzD+V939MEba7HrNx3f1xwKONTpaZZ2Zme2a2jx49uvLBSpIkSX014OE6Mx8HHomICeWmA4C7uxx2OfDOctWQPYBnM/OxgRynJEmStKwGa7WQfwW+X64U8iBwfEScCJCZZwC/AA4G5gAvAscP0jglSZKkPhuUcJ2ZtwLtXTafUbc/gQ8M5JgkSZKk5WWHRkmSJKkihmtJkiSpIoZrSZIkqSKGa0mSJKkihmtJkiSpIoZrSZIkqSKGa0mSJKkihmtJkiSpIoZrSZIkqSKGa0mSJKkihmtJkiSpIoZrSZIkqSKGa0mSJKkihmtJkiSpIoZrSZIkqSKGa0mSJKkihmtJkiSpIoZrSZIkqSKGa0mSJKkihmtJkiSpIoZrSZIkqSKGa0mSJKkihmtJkiSpIoZrSZIkqSKGa0mSJKkihmtJkiSpIoZrSZIkqSKGa0mSJKkihmtJkiSpIoZrSZIkqSKGa0mSJKkihmtJkiSpIoZrSZIkqSKGa0mSJKkihmtJkiSpIoZrSZIkqSKGa0mSJKkihmtJkiSpIoZrSZIkqSKGa0mSJKkihmtJkiSpIoZrSZIkqSKGa0mSJKkihmtJkiSpIoMWriNiWET8OSKuaLAvIuL0iJgTEbdHxOTBGKMkSZK0LAZz5vpDwOxu9h0EbFXeTgC+PVCDkiRJkvprUMJ1RIwD3gh8t5tDDgPOy8IfgbUjYuyADVCSJEnqh8Gauf468DFgcTf7NwIeqbs/r9wmSZIkrbAGPFxHxCHA3zJzVk+HNdiW3ZzvhIiYGREz58+fX8kYJUmSpP4YjJnrKcCbImIucCGwf0Rc0OWYecDGdffHAY82OllmnpmZ7ZnZPnr06GaMV5IkSeqTAQ/XmXlKZo7LzM2Ao4GrM/MdXQ67HHhnuWrIHsCzmfnYQI9VkiRJWhbDB3sANRFxIkBmngH8AjgYmAO8CBw/iEOTJEmS+mRQw3VmXgtcW35/Rt32BD4wOKOSJEmS+scOjZIkSVJFDNeSJElSRQzXkiRJUkUM15IkSVJFDNeSJElSRQzXkiRJUkUM15IkSVJFDNeSJElSRQzXkiRJUkUM15IkSVJFDNeSJElSRQzXkiRJUkUM15IkSVJFDNeSJElSRQzXkiRJUkUM15IkSVJFDNeSJElSRQzXkiRJUkUM15IkSVJFDNeSJElSRQzXkiRJUkUM15IkSVJFDNeSJElSRQzXkiRJUkUM15IkSVJFDNeSJElSRQzXkiRJUkUM15IkSVJFDNeSJElSRQzXkiRJUkUM15IkSVJFDNeSJElSRQzXkiRJUkUM15IkSVJFDNeSJElSRQzXkiRJUkUM15IkSVJFDNeSJElSRQzXkiRJUkUM15IkSVJFDNeSJElSRQzXkiRJUkUM15IkSVJFDNeSJElSRQY8XEfExhFxTUTMjoi7IuJDDY6JiDg9IuZExO0RMXmgxylJkiQtq+GD8JwLgX/PzFsiYk1gVkRcmZl31x1zELBVedsd+Hb5VZK0rDKL2+KEXFx8XVx+zYRhbdDW1vG1zQ81Jam/BjxcZ+ZjwGPl989HxGxgI6A+XB8GnJeZCfwxItaOiLHlYyVpxVYfZhcvLr/vGmpr9xsF3i73u26rP3ej56g/d23fsojoCNtdg/ewYQ229bKvfn9bG7RF8RySNAQNxsz1EhGxGbAz8KcuuzYCHqm7P6/ctlS4jogTgBMANtlkk6aMU9IKbkmY7SGwLhVAe9jXKMA2mvHt6dxViSjDaBlK28rgWwvAbQHDh3W+3+n4to5z1Gala+G2rQ2CYsyLFsOiRcVrWLR46a+1fQsWLr2vP6+3p/BeRbA3vEsaJIMWriNiDeAS4KTMfK7r7gYPafjunZlnAmcCtLe3V/gbTVK3eiox6HaGtpfA2jUc9zYbW7+tGWG2a4CtD6xLhdkugbVruG0Ucrs+vlMArtvWCiFxcaMw3nXboh721e1/dUHjgL+sIhrPmjecUe8t2A9belur/LeRNOAGJVxHxAiKYP39zLy0wSHzgI3r7o8DHh2IsUkrpD7PuPahxKBhYO0mAHd37maF2e5mXIcPg7bhSwfWnmZzewrHPT3ewLTsajPizfqNUvv/sGEoXwyLF/U92C9cBIsXLB3s+2NZy2GWNdj7/6LUkgY8XEdEAGcBszPzq90cdjkwIyIupLiQ8VnrrTWglqVEoLf61x4Da1/qb5sRZnsJnMPboG1EH2Zj+xJYewjAhln1RUQZYIc15/y1f2ONQnm3gb6HYL9wwdLBfnF/Smei8ax5X2bb+xLsvXBVaorBmLmeAhwL3BERt5bbPg5sApCZZwC/AA4G5gAvAscP/DA1oHqrf+12xrWnMNvP2dz+fATdk4YBtOsM6/C+lw90DbDdhtsGxxhmpaVF3b/JZqmffe8tvPcW7BcugldeXXrfsqq/cLVhAF/OYO/su1ZSg7FayPU0rqmuPyaBDwzMiFZCWTcb2uMKBb3MuPZ6wVcP4bbr46vUbYCtD6xdwmxvgbXRjGu35Qddgqy/XCQN5Ox7o3KYRmU0PQX7hQuXPmZ5LlztqZa9p2Df28Wtvr9qBTSoq4WsNBquMdvfEoFlmLHt6dxV6umirCUhtUG97LIG1p5qc+uPkaSVTf3s+4gmPceS8N5daF+GYL9gISx6tboLV/tSDtNTeO9uxt4JEvWD4Xp5zXkYnv9H97O5tW1V6vWCrbayZrbKC756CMCSpKEvori4eHgTZ98XdxPYewrtDWflF3VeeaZ2XH9+Hy/TcpG9BfsG+/w9OuQYrpdbdA6zvc3G9hZY+7J8lyRJQ0196UyzZt+7C+89LRfZXbBfKrwv6t8nw52WjexDOcyyBntn3wec4Xp5bblx78dIkqTBV7vQciCWjextVZnegv3Ccva9aylOf/Q6o76cwd7w3onhWpIkqQqDsWxkj+G9l/r4hQuWDvZVXLi6TKUyfQj2LbZspOFakiSpFQzUspGNuqf21Fm1u2C/cCG80mDfsqpfNrJr8H7t+jBmvep/DsvBcC1JkqRC7cJVmnnhanZfDrOswb7qFdAqYLiWJEnSwIiAYeVFnCOGZgxtrSIWSZIkaQVmuJYkSZIqYriWJEmSKmK4liRJkipiuJYkSZIqYriWJEmSKmK4liRJkipiuJYkSZIqYriWJEmSKmK4liRJkipiuJYkSZIqYriWJEmSKmK4liRJkipiuJYkSZIqYriWJEmSKmK4liRJkipiuJYkSZIqYriWJEmSKhKZOdhjqExEzAf+MghPvT7w5CA8ryQtL9+/JLWywXoP2zQzRzfaMaTC9WCJiJmZ2T7Y45CkZeX7l6RWtiK+h1kWIkmSJFXEcC1JkiRVxHBdjTMHewCS1E++f0lqZSvce5g115IkSVJFnLmWJEmSKmK4biAiNo6IayJidkTcFREfKrevGxFXRsT95dd1yu3rlce/EBHf7HKuVSLizIi4LyLuiYgjBuM1SVo5VPX+FRFrRsStdbcnI+Lrg/SyJK0kKs5gx0TEHRFxe0T8KiLWH5DXYFnI0iJiLDA2M2+JiDWBWcCbgeOApzPzCxFxMrBOZv5HRIwCdgYmAhMzc0bduT4NDMvM/4yINmDdzHRNWUlNUeX7V5fzzgL+LTOvG4jXIWnlVNV7WEQMBx4FtsvMJyPii8CLmfmpZr8GZ64byMzHMvOW8vvngdnARsBhwLnlYedS/McmM/+RmdcDLzc43buA/y6PW2ywltRMFb9/ARARWwEbAL9v3sglqdL3sChvoyIigLUownbTGa57ERGbUfxF9CdgTGY+BsV/fIpfNj09du3y2/+KiFsi4uKIGNPE4UrSEsvz/tXFMcCP0o86JQ2g5XkPy8wFwPuAOyhnsIGzmjneGsN1DyJiDeAS4KTMfK4fpxgOjANuyMzJwB+AL1c4RElqqIL3r3pHAz9c/lFJUt8s73tYRIygCNc7AxsCtwOnVDrIbhiuu1H+R7kE+H5mXlpufqKsBarVBP2tl9M8BbwI/KS8fzEwuQnDlaQlKnr/qp1rJ2B4Zs5qymAlqYuK3sMmAWTmA+WnbhcBezVnxJ0Zrhsoa3POAmZn5lfrdl0OTC+/nw78tKfzlP8xfwbsV246ALi70sFKUp2q3r/qHIOz1pIGSIXvYX8FtouI0eX911PUbzedq4U0EBF7U1y4cwewuNz8cYqan4uATYCHgSMz8+nyMXMpiuVXAZ4B3pCZd0fEpsD5wNrAfOD4zHx4oF6LpJVLle9f5b4HgYMz856BexWSVlYVZ7ATgQ8BC4C/AMdl5lNNfw2Ga0mSJKkaloVIkiRJFTFcS5IkSRUxXEuSJEkVMVxLkiRJFTFcS5IkSRUxXEvSEBGF6yPioLptR0XErwZzXJK0MnEpPkkaQiJiIkU32J2BYcCtwIGZ+UA/zjUsMxdVO0JJGtoM15I0xETEF4F/AKPKr5sCOwDDgU9l5k8jYjOKBlejyofNyMwbI2I/4JPAYxTtg3elaNwwjiKs/1dm/migXosktRrDtSQNMRExCrgFeBW4ArgrMy+IiLWBmyhmtRNYnJkvR8RWwA8zs70M1z8HJmbmQxFxBMXM93vLc78mM58d8BclSS3CcC1JQ1BEfAZ4ATgKGAksLHetC/wT8CjwTYrZ6UXA1pm5em3mOjOnlefZGvg1xez1FZn5+4F7FZLUeoYP9gAkSU2xuLwFcERm3lu/MyI+BTwB7ERxcfvLdbv/UfsmM++LiF2Ag4H/jojfZOZnmjx2SWpZrhYiSUPbr4F/jYgAiIidy+2vAR7LzMXAsRT11EuJiA2BFzPzAuDLwOTmD1mSWpcz15I0tP0X8HXg9jJgzwUOAf4XuCQijgSuoW62uosdgC9FxGJgAfC+Zg9YklqZNdeSJElSRSwLkSRJkipiuJYkSZIqYriWJEmSKmK4liRJkipiuJYkSZIqYriWJEmSKmK4liRJkipiuJYkSZIq8v8BZTy9nArz//wAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "profit_df = data.groupby(['Company',data['Date of Travel'].dt.year])[['Profit']].sum().reset_index()\n", + "\n", + "\n", + "plt.rcParams['figure.figsize'] = [12, 8]\n", + "\n", + "ax = sns.lineplot(x = 'Date of Travel', y ='Profit', data = profit_df, hue = 'Company', palette = ['pink','yellow'])\n", + "\n", + "from matplotlib.ticker import FuncFormatter\n", + "\n", + "millions_formatter = lambda x, pos: f'{x / 1000000}'\n", + "\n", + "ax.yaxis.set_major_formatter(FuncFormatter(millions_formatter))\n", + "ax.set_ylabel('Profits (in millions)')\n", + "ax.set_xticks(profit_df['Date of Travel'].unique())\n", + "ax.set_title('Profits 2016 - 2018')\n", + "ax.set_xlabel('Years')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "b9ac46b4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "8.294262293256004" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CompanyProfitProfit per KM
0Pink Cab$5.3M2.769908
1Yellow Cab$44.0M7.105508
\n", + "
" + ], + "text/plain": [ + " Company Profit Profit per KM\n", + "0 Pink Cab $5.3M 2.769908\n", + "1 Yellow Cab $44.0M 7.105508" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "profit_table = data.groupby(['Company']).agg({'Profit':'sum', 'Profit per KM':'mean'}).reset_index()\n", + "ratio = profit_table.iloc[1,1] / profit_table.iloc[0,1]\n", + "display(ratio)\n", + "\n", + "format = lambda x:\"${:.1f}M\".format(x/1000000)\n", + "profit_table['Profit'] = profit_table['Profit'].apply(format)\n", + "display(profit_table)" + ] + }, + { + "cell_type": "markdown", + "id": "0685700d", + "metadata": {}, + "source": [ + "Yellow Cab has earned **8.3** times the earnings of Pink Cab" + ] + }, + { + "cell_type": "markdown", + "id": "909648f6", + "metadata": {}, + "source": [ + "## Which company has users with better income?" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "60070d0f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CompanyIncome GroupUsers
0Pink CabLower-middle class5971
1Pink CabMiddle class14743
2Pink CabPoor or near-poor2309
3Pink CabRich3018
4Pink CabUpper-middle class58670
5Yellow CabLower-middle class19545
6Yellow CabMiddle class47278
7Yellow CabPoor or near-poor7258
8Yellow CabRich9702
9Yellow CabUpper-middle class190898
\n", + "
" + ], + "text/plain": [ + " Company Income Group Users\n", + "0 Pink Cab Lower-middle class 5971\n", + "1 Pink Cab Middle class 14743\n", + "2 Pink Cab Poor or near-poor 2309\n", + "3 Pink Cab Rich 3018\n", + "4 Pink Cab Upper-middle class 58670\n", + "5 Yellow Cab Lower-middle class 19545\n", + "6 Yellow Cab Middle class 47278\n", + "7 Yellow Cab Poor or near-poor 7258\n", + "8 Yellow Cab Rich 9702\n", + "9 Yellow Cab Upper-middle class 190898" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Number of Users in each Income Group')" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt0AAAHwCAYAAAB67dOHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABEr0lEQVR4nO3deZgcVbn48e+bsARZZAsxrAn7EjBAiLJvopFFBAWJiIAooiJ4veoFvSjoT0WviOsVAQVkB9kXl1wEAoKEAAmETbYAEQwRZCdAkvf3R51JmknPTCeZmkmG7+d55umqU3Wq3u6q6X779Kk6kZlIkiRJqk+/3g5AkiRJ6utMuiVJkqSamXRLkiRJNTPpliRJkmpm0i1JkiTVzKRbkiRJqplJt6RFTkScGRH/r5f2HRFxRkT8OyLG9UYM8yMi/hARB/d2HG0i4viIOKe345CknmLSLWmBRcTkiJgaEUs3lH06Im7oxbDqsh2wG7B6Zo5sv7CjZDIiMiLW7YkAm8nMD2bmWb21/wXV26/fgoqIJSLimxHxYES8EhH/KF+E3t/bsUnqGSbdkrrLYsDRvR3EvIqI/vNYZS1gcma+Ukc8rYqIxXpz/5pnvwf2Bj4JrAAMBX4K7NFsZY+v1PeYdEvqLv8DfCUilm+/ICKGlJbKxRrKboiIT5fpQyLirxFxckQ8HxGPRsQ2pfzJiHimSdeIlSNiTES8FBE3RsRaDdvesCx7rrQs7t+w7MyI+FVEXBsRrwA7N4l31Yi4stR/OCI+U8oPA04Hto6IlyPihPl5ocrzerTE/lhEHNiw7FMRcX/pvvKnds8rI+ILEfEQ8FDp6nJyeX1eiIi7I2JYB/ts/3rfHBE/Kvt5LCI+2Em8q0bEJRExrax7VMOykRFxazluT0fELyJiiYblmzQci6kR8fWGTS8REb8rr8O9ETGixdfv+Ii4qKO6EbFGRFxa4n02In5RyvtFxH9HxOPlNftdRLyzLGs7Rw8t59y/I+KIiNiqvK7Pt22nlWPVbr33Uf06sndm3paZb5S/P2bm0Q3rTY6I/4qIu4FXImKxiPhQeX7Pl2O4UcP6b2n9j4ZuVxGxU0RMiYivR8S/yrYPRFKvMemW1F3GAzcAX5nP+u8B7gZWAs4DLgC2AtYFPgH8IiKWaVj/QOA7wMrABOBcgKi6uIwp21gFGA38b0Rs0lD348B3gWWBm5vEcj4wBVgV+CjwvYjYNTN/AxwB3JqZy2Tmt+b1SZb4fgZ8MDOXBbYp8RMRHwa+DuwLDARuKrE0+jDVa7Ux8H5gB2B9YHngY8CzLYbyHuBBqtfvh8BvIiKaxNsPuAqYCKwG7Ap8KSI+UFaZCfxH2c7WZfnnS91lgf8D/kj1Wq4LXNew+Q9RHeflgSuBtyS1XWhaN6pfLq4GHgeGlJgvKHUOKX87A2sDyzTZ53uA9ahey58A3wDeB2wC7B8RO5b9fJiuj1Wb9wG3ZeaUFp7XaKrW7+VLjOcDXyr7uBa4qvFLTRfeRXVcVgMOBk6NiA1arCupm5l0S+pO3wS+GBED56PuY5l5RmbOBC4E1gC+nZmvZ+afgTeokrY212Tm2Mx8nSox2joi1gD2pOr+cUZmzsjMO4FLqJLnNldk5l8zc1ZmTm8MomxjO+C/MnN6Zk6gat0+aD6eU0dmAcMiYqnMfDoz7y3lnwW+n5n3Z+YM4HvA8HYtqN/PzOcy8zXgTaovDhsCUeo93WIMj2fmaeX1PgsYDAxqst5WwMDM/HZpnX0UOA04ACAz78jMv5XXejLwa2DHUndP4J+ZeVJ5LV/KzNsatn1zZl5bYjgbeHeLsXdWdyRVgv/VzHyl7Lfti9WBwI8z89HMfBk4Fjgg3tqV4zulzp+BV4DzM/OZzPwHVWK9eVmvlWPVZmXgn20zEbFiabl+ISKmt1v3Z5n5ZDm+H6M6z8dk5pvAj4ClqL6oteq48j90I3ANsH9XFSTVw6RbUrfJzElUrYzHzEf1qQ3Tr5XttS9rbOl+smG/LwPPUSVbawHvKUnN8xHxPFWy9a5mdZtYFXguM19qKHucqrWwFTOAxRsLIqJt/s3SF/xjVC3mT0fENRGxYVm+FvDThrifA6Ldvhuf91+oWmp/CUyNiFMjYrkW45ydBGbmq2VymSbrrQWs2u71/DolQY+I9SPi6oj4Z0S8SJV8rlzqrgE80koMwKvAgGi9L3NHddeg+kIxo0mdVamOZZvHqa5FaPyy0f6c6+gcbOVYtXmW6ksNAOVL0/LAlsCS7dZtPDffEm9mzirLWz0X/93u2oPHyzYl9QKTbknd7VvAZ3hrYtD2wf+OhrLGJHh+rNE2UbqdrAg8RZWU3JiZyzf8LZOZn2uom51s9ylgxdI1os2awD9ajOsJqm4NjYZSdcP4B0Bm/ikzd6NKxB6gajmmxP7ZdrEvlZm3dBR7Zv4sM7ek6v6wPvDVFuNs1ZNUv0I0xrRsZu5elv+qPIf1MnM5qoQ8Guqu083xtBLvmh0k709RJctt1qT6kjS1ybqt7KerY9XmOmCriFi9he02Ht+3xFu6/6zBnHPxVTr/n1ohGu4oRPV8n2ohBkk1MOmW1K0y82Gq7iFHNZRNo0oUPhER/SPiUyx4MrZ7RGxX+rd+h6rP7JNULe3rR8RBEbF4+duq8QK0LuJ/ErgF+H5EDIiIzYDDKH3GW/BHYIOG/a9I1fr7+8ycERGDysVxSwOvAy9TJeQApwDHtvU/j4h3RsR+He2oPK/3lJb0V4DpDdvqLuOAF8sFfkuV4zcsIrYqy5cFXgReLi32jV9urgbeFRFfioglI2LZiHhPN8fXLN6ngRMjYulyDLcty84H/iMihpYvat8DLuygVbwrLR+r0lXleuDycryWKMfsvV3s4yJgj4jYtaz/n1TnTFtiPwH4eDkmo5jTrafRCWV/21N197l43p6mpO5i0i2pDt8Glm5X9hmqVthnqVplm7UIzovzqFrVn6P6mf5AgNIt5P1UfY6fouqG8APm/hm/M6OpWqufAi4DvpWZY1qpmJnPALtT9fl9BpgEvMCcZLQfVfL0VIl9R8qFh5l5WYn1gtJVYxLQ4V1FgOWoWsn/TdV14Fmqfr/dpvSZ3gsYDjwG/Iuqj/s7yypfobow9aUSy4UNdV+iumvHXlTH4SGa3C2mpnjXpfrVYQpVdx6A31L1/x5bnst04IvzuZ95PVb7Un0JOQd4vuz/QGBUJ/t4kOoi4p9Tve57AXtl5htllaNL2fNlW5e328Q/qc6Np6i+NB6RmQ+0+BQldbPI7OxXVkmStKiJiJ2AczKzlS4tknqALd2SJElSzUy6JUmSpJrVlnRHNSLY9VGN1nVvRBxdyleManSyh8rjCg11jo1q9LcHGwZeaL/dDutLkiTIzBvsWiItXOps6Z4B/GdmbkR1hfYXImJjqvv3XpeZ61HdRukYgLLsAKoLrEZRjSDXv8l2m9aXJEmSFla1Jd1llLU7y/RLwP1U9+3dm2r0M8rjh8v03sAFZeSsx4CHqUYWa6+j+pIkSdJCqdWRvxZIRAyhGjr3NmBQ2zDFmfl0RKxSVlsN+FtDtSk0H3Wro/odWnnllXPIkCHz/wQkSZKkFtxxxx3/ysyB7ctrT7rLAASXAF/KzBerAbWar9qkbL7vZxgRhwOHA6y55pqMHz9+fjclSZIktSQiHm9WXuvdS8oIWpcA52bmpaV4akQMLssHUw0eAVXL9hoN1Ven+XC1HdV/i8w8NTNHZOaIgQPn+rIhSZIk9Zg6714SwG+A+zPzxw2LrgQOLtMHA1c0lB9QhgoeCqxHNZxvex3VlyRJkhZKdbZ0bwscBOwSERPK3+7AicBuEfEQ1fDAJwJk5r3ARcB9wB+BL5ThfImI0yNiRNlu0/qSJEnSwuptMQz8iBEj0j7dkiTp7eTNN99kypQpTJ8+vbdD6ZMGDBjA6quvzuKLL/6W8oi4IzNHtF+/R+5eIkmSpJ41ZcoUll12WYYMGUInN7LQfMhMnn32WaZMmcLQoUNbquMw8JIkSX3Q9OnTWWmllUy4axARrLTSSvP0K4JJtyRJUh9lwl2feX1tTbolSZLUsn/+858ccMABrLPOOmy88cbsvvvu/P3vf+/tsBZ6Jt2SJElqSWayzz77sNNOO/HII49w33338b3vfY+pU6f2dmgLPZNuSZIkteT6669n8cUX54gjjphdNnz4cLbbbju++tWvMmzYMDbddFMuvPBCAG644QZ23HFH9t9/f9Zff32OOeYYzj33XEaOHMmmm27KI488AsAhhxzCEUccwfbbb8/666/P1VdfDcDkyZPZfvvt2WKLLdhiiy245ZZbZm93p5124qMf/SgbbrghBx54IJnJddddxz777DM7tjFjxrDvvvv21MvTKe9eIkmSpJZMmjSJLbfccq7ySy+9lAkTJjBx4kT+9a9/sdVWW7HDDjsAMHHiRO6//35WXHFF1l57bT796U8zbtw4fvrTn/Lzn/+cn/zkJ0CVYN9444088sgj7Lzzzjz88MOsssoqjBkzhgEDBvDQQw8xevRo2m4Dfdddd3Hvvfey6qqrsu222/LXv/6VXXbZhS984QtMmzaNgQMHcsYZZ3DooYf22OvTGVu6JUmStEBuvvlmRo8eTf/+/Rk0aBA77rgjt99+OwBbbbUVgwcPZskll2Sdddbh/e9/PwCbbropkydPnr2N/fffn379+rHeeuux9tpr88ADD/Dmm2/ymc98hk033ZT99tuP++67b/b6I0eOZPXVV6dfv34MHz6cyZMnExEcdNBBnHPOOTz//PPceuutfPCDH+zR16IjtnRLkiSpJZtssgm///3v5yrvbLDFJZdccvZ0v379Zs/369ePGTNmzF7W/m4gEcHJJ5/MoEGDmDhxIrNmzWLAgAFNt9u/f//Z2zr00EPZa6+9GDBgAPvttx+LLbZwpLu2dEuSJKklu+yyC6+//jqnnXba7LLbb7+dFVZYgQsvvJCZM2cybdo0xo4dy8iRI+dp2xdffDGzZs3ikUce4dFHH2WDDTbghRdeYPDgwfTr14+zzz6bmTNndrmdVVddlVVXXZX/9//+H4cccsi8PsXaLBypvyRJkhZ6EcFll13Gl770JU488UQGDBjAkCFD+MlPfsLLL7/Mu9/9biKCH/7wh7zrXe/igQceaHnbG2ywATvuuCNTp07llFNOYcCAAXz+85/nIx/5CBdffDE777wzSy+9dEvbOvDAA5k2bRobb7zx/D7Vbhed/RzQV4wYMSLbOt1LkiS9Hdx///1stNFGvR1GSw455BD23HNPPvrRj3bL9o488kg233xzDjvssG7ZXkeavcYRcUdmjmi/ri3dkiRJ6jO23HJLll56aU466aTeDuUtTLolSZLUq84888xu29Ydd9zRbdvqTl5IKUmSJNXMlm5JktSyyZOH9nYI3W7IkMd6OwS9DdjSLUmSJNXMpFuSJEmqmUm3JEmSatG/f3+GDx/OsGHD2G+//Xj11VcZP348Rx11VKf1Jk+ezLBhw7rc/t///nd233131l13XTbaaCP2339/pk6d2uH6N9xwA3vuuec8P4/uYJ9uSZKkt4Hpt03s1u0NeM+7u1xnqaWWYsKECUA1YM0pp5zCl7/8ZUaMmOs21vNs+vTp7LHHHvz4xz9mr732AuD6669n2rRpDBo0aIG3391s6ZYkSVLttt9+ex5++OG3tDYff/zxfOpTn2KnnXZi7bXX5mc/+9lc9R599FE233xzbr/99reUn3feeWy99dazE26AnXfemWHDhjF58mS23357tthiC7bYYgtuueWW2eu8+OKL7LPPPmy88cYcccQRzJo1q6Zn/Fa2dEuSJKlWM2bM4A9/+AOjRo2aa9kDDzzA9ddfz0svvcQGG2zA5z73udnLHnzwQQ444ADOOOMMhg8f/pZ6kyZNYsstt2y6v1VWWYUxY8YwYMAAHnroIUaPHk3b6OTjxo3jvvvuY6211mLUqFFceuml3TYSZmds6ZYkSVItXnvtNYYPH86IESNYc801mw7Lvscee7Dkkkuy8sors8oqq8zukz1t2jT23ntvzjnnnLkS7q68+eabfOYzn2HTTTdlv/3247777pu9bOTIkay99tr079+f0aNHc/PNNy/Qc2yVLd2SJEmqRWOf7o4sueSSs6f79+/PjBkzAHjnO9/JGmuswV//+lc22WSTueptsskm3HjjjU23efLJJzNo0CAmTpzIrFmzGDBgwOxlEfGWddvP18WWbkmSJC10llhiCS6//HJ+97vfcd555821/OMf/zi33HIL11xzzeyyP/7xj9xzzz288MILDB48mH79+nH22Wczc+bM2euMGzeOxx57jFmzZnHhhRey3Xbb9cjzMemWJEnSQmnppZfm6quv5uSTT+aKK654y7KlllqKq6++mp///Oest956bLzxxpx55pmsssoqfP7zn+ess87ive99L3//+99ZeumlZ9fbeuutOeaYYxg2bBhDhw5ln3326ZHnEpnZIzvqTSNGjMi2zvOSJGn+OQz8ouP+++9no4026u0w+rRmr3FE3JGZc90T0ZZuSZIkqWYm3ZIkSVLNTLolSZKkmpl0S5IkSTUz6ZYkSZJqZtItSZIk1cykW5IkSd0qM9luu+34wx/+MLvsoosuYtSoUXOte8MNN7DnnnsCcOaZZ3LkkUd2ayzjxo1jhx12YIMNNmDDDTfk05/+NK+++mqH69cRAzgMvCRJ0ttCd99jvbP7m0cEp5xyCvvttx8777wzM2fO5Bvf+AZ//OMfuzWGrkydOpX99tuPCy64gK233prM5JJLLuGll17iHe94R4/GYku3JEmSut2wYcPYa6+9+MEPfsAJJ5zAJz7xCb773e+y1VZbsfnmm881wmR7jz/+OLvuuiubbbYZu+66K0888QQzZ85k7bXXJjN5/vnn6devH2PHjgVg++235+GHH37LNn75y19y8MEHs/XWWwPVl4GPfvSjDBo0iHHjxrHNNtuw+eabs8022/Dggw/Orvfkk08yatQoNthgA0444YRueT1MuiVJklSLb33rW5x33nn84Q9/YPr06eyyyy7cfvvtXH/99Xz1q1/llVde6bDukUceySc/+UnuvvtuDjzwQI466ij69+/P+uuvz3333cfNN9/MlltuyU033cTrr7/OlClTWHfddd+yjUmTJrHllls23f6GG27I2LFjueuuu/j2t7/N17/+9dnLxo0bx7nnnsuECRO4+OKL6Y6Rze1eIkmSpFosvfTSfOxjH2OZZZbhoosu4qqrruJHP/oRANOnT+eJJ57osO6tt97KpZdeCsBBBx3E1772NaBq0R47diyPPfYYxx57LKeddho77rgjW2211TzF9sILL3DwwQfz0EMPERG8+eabs5ftttturLTSSgDsu+++3HzzzYwYMdfI7vPElm5JkiTVpl+/fvTr1292f+oJEyYwYcIEnnjiCTbaaKOWtxMRQJV033TTTYwbN47dd9+d559/nhtuuIEddthhrjqbbLIJd9xxR9PtHXfccey8885MmjSJq666iunTp8+1r47m54dJtyRJkmr3gQ98gJ///OdkJgB33XVXp+tvs802XHDBBQCce+65bLfddgC85z3v4ZZbbqFfv34MGDCA4cOH8+tf/5rtt99+rm0ceeSRnHXWWdx2222zy8455xz++c9/8sILL7DaaqsB1R1LGo0ZM4bnnnuO1157jcsvv5xtt912vp93G5NuSZIk1e64447jzTffZLPNNmPYsGEcd9xxna7/s5/9jDPOOIPNNtuMs88+m5/+9KcALLnkkqyxxhq8973vBaqW75deeolNN910rm0MGjSICy64gK985StssMEGbLTRRtx0000st9xyfO1rX+PYY49l2223ZebMmW+pt91223HQQQcxfPhwPvKRjyxw1xKAaPu20ZeNGDEiu6MDvCRJb3fdfdu5hUFnt75blN1///3z1H1D867ZaxwRd2TmXFm6Ld2SJElSzUy6JUmSpJqZdEuSJEk1qy3pjojfRsQzETGpoezCiJhQ/iZHxIRSPiQiXmtYdkoH21wxIsZExEPlcYW64pckSVrUvR2u3est8/ra1tnSfSYwqrEgMz+WmcMzczhwCXBpw+JH2pZl5hEdbPMY4LrMXA+4rsxLkiSpnQEDBvDss8+aeNcgM3n22WcZMGBAy3VqG5EyM8dGxJBmy6K6w/j+wC7zuNm9gZ3K9FnADcB/zV+EkiRJfdfqq6/OlClTmDZtWm+H0icNGDCA1VdfveX1e2sY+O2BqZn5UEPZ0Ii4C3gR+O/MvKlJvUGZ+TRAZj4dEav0QKySJEmLnMUXX5yhQ/veLR4XVb2VdI8Gzm+YfxpYMzOfjYgtgcsjYpPMfHF+dxARhwOHA6y55poLFKwkSZK0IHr87iURsRiwL3BhW1lmvp6Zz5bpO4BHgPWbVJ8aEYPLdgYDz3S0n8w8NTNHZOaIgQMHdudTkCRJkuZJb9wy8H3AA5k5pa0gIgZGRP8yvTawHvBok7pXAgeX6YOBK2qOVZIkSVpgdd4y8HzgVmCDiJgSEYeVRQfw1q4lADsAd0fEROD3wBGZ+VzZzukR0TaU5onAbhHxELBbmZckSZIWanXevWR0B+WHNCm7hOoWgs3W/3TD9LPArt0UoiRJktQjHJFSkiRJqplJtyRJklQzk25JkiSpZibdkiRJUs1MuiVJkqSamXRLkiRJNTPpliRJkmpm0i1JkiTVzKRbkiRJqplJtyRJklQzk25JkiSpZibdkiRJUs1MuiVJkqSamXRLkiRJNTPpliRJkmpm0i1JkiTVzKRbkiRJqplJtyRJklQzk25JkiSpZibdkiRJUs1MuiVJkqSamXRLkiRJNTPpliRJkmpm0i1JkiTVzKRbkiRJqplJtyRJklQzk25JkiSpZibdkiRJUs1MuiVJkqSamXRLkiRJNTPpliRJkmpm0i1JkiTVzKRbkiRJqplJtyRJklQzk25JkiSpZibdkiRJUs1MuiVJkqSamXRLkiRJNTPpliRJkmpm0i1JkiTVzKRbkiRJqplJtyRJklQzk25JkiSpZibdkiRJUs1MuiVJkqSamXRLkiRJNast6Y6I30bEMxExqaHs+Ij4R0RMKH+7Nyw7NiIejogHI+IDHWxzxYgYExEPlccV6opfkiRJ6i51tnSfCYxqUn5yZg4vf9cCRMTGwAHAJqXO/0ZE/yZ1jwGuy8z1gOvKvCRJkrRQqy3pzsyxwHMtrr43cEFmvp6ZjwEPAyM7WO+sMn0W8OEFjVOSJEmqW2/06T4yIu4u3U/auoesBjzZsM6UUtbeoMx8GqA8rtLRTiLi8IgYHxHjp02b1l2xS5IkSfOsp5PuXwHrAMOBp4GTSnk0WTcXZEeZeWpmjsjMEQMHDlyQTUmSJEkLpEeT7sycmpkzM3MWcBpzupBMAdZoWHV14Kkmm5gaEYMByuMzdcYrSZIkdYceTbrbEuZiH6DtziZXAgdExJIRMRRYDxjXZBNXAgeX6YOBK+qKVZIkSeoui9W14Yg4H9gJWDkipgDfAnaKiOFUXUcmA58FyMx7I+Ii4D5gBvCFzJxZtnM6cEpmjgdOBC6KiMOAJ4D96opfkiRJ6i6RuUBdpxcJI0aMyPHjx/d2GJIkLfImTx7a2yF0uyFDHuvtENSHRMQdmTmifbkjUkqSJEk1M+mWJEmSambSLUmSJNXMpFuSJEmqmUm3JEmSVDOTbkmSJKlmJt2SJElSzUy6JUmSpJqZdEuSJEk1M+mWJEmSambSLUmSJNXMpFuSJEmqmUm3JEmSVDOTbkmSJKlmJt2SJElSzUy6JUmSpJqZdEuSJEk1M+mWJEmSambSLUmSJNXMpFuSJEmqmUm3JEmSVDOTbkmSJKlmJt2SJElSzUy6JUmSpJot1spKEbEKsC2wKvAaMAkYn5mzaoxNkiRJ6hM6TbojYmfgGGBF4C7gGWAA8GFgnYj4PXBSZr5Yc5ySJEnSIqurlu7dgc9k5hPtF0TEYsCewG7AJTXEJkmSJPUJnSbdmfnVTpbNAC7v7oAkSZKkvqalCykj4uiIWC4qv4mIOyPi/XUHJ0mSJPUFrd695FOl3/b7gYHAocCJtUUlSZIk9SGtJt1RHncHzsjMiQ1lkiRJkjrRatJ9R0T8mSrp/lNELAt4u0BJkiSpBS3dpxs4DBgOPJqZr0bESlRdTCRJkiR1oav7dG/RrmjtCHuVSJIkSfOiq5buk8rjAGBL4G6qvtybAbcB29UXmiRJktQ3dNqnOzN3zsydgceBLTNzRGZuCWwOPNwTAUqSJEmLulYvpNwwM+9pm8nMSVR9vCVJkiR1odULKe+PiNOBc4AEPgHcX1tUkiRJUh/SatJ9KPA54OgyPxb4VS0RSZIkSX1MS0l3Zk4HTi5/kiRJkuZBS0l3RGwLHA+s1VgnM9euJyxJkiSp72i1e8lvgP8A7gBm1heOJEmS1Pe0mnS/kJl/qDUSSZIkqY9qNem+PiL+B7gUeL2tMDPvrCUqSZIkqQ9pNel+T3kc0VCWwC7dG44kSZLU97R695Kd53XDEfFbYE/gmcwcVsr+B9gLeAN4BDg0M5+PiCFU9/1+sFT/W2Ye0WSbKwIXAkOAycD+mfnveY1NkiRJ6kmtjkhJROwREV+LiG+2/XVR5UxgVLuyMcCwzNwM+DtwbMOyRzJzePmbK+EujgGuy8z1gOvKvCRJkrRQaynpjohTgI8BXwQC2I/q9oEdysyxwHPtyv6cmTPK7N+A1ecx3r2Bs8r0WcCH57G+JEmS1ONabeneJjM/Cfw7M08AtgbWWMB9fwpovCPK0Ii4KyJujIjtO6gzKDOfBiiPqyxgDJIkSVLtWr2Q8rXy+GpErAo8Cwyd351GxDeAGcC5pehpYM3MfDYitgQuj4hNMvPFBdjH4cDhAGuuueb8bkaSJElaYK22dF8dEcsD/wPcSXUR4wXzs8OIOJjqAssDMzMBMvP1zHy2TN9BdZHl+k2qT42IwWU7g4FnOtpPZp6amSMyc8TAgQPnJ1RJkiSpW7SUdGfmdzLz+cy8hKov94aZedy87iwiRgH/BXwoM19tKB8YEf3L9NrAesCjTTZxJXBwmT4YuGJeY5AkSZJ6WqsXUu4XEcuW2a8CZ0TE5l3UOR+4FdggIqZExGHAL4BlgTERMaFcoAmwA3B3REwEfg8ckZnPle2cHhFt9wc/EdgtIh4CdivzkiRJ0kKt1T7dx2XmxRGxHfAB4EfAKcwZNGcumTm6SfFvOlj3EuCSDpZ9umH6WWDXFmOWJEmSFgqt9umeWR73AH6VmVcAS9QTkiRJktS3tJp0/yMifg3sD1wbEUvOQ11JkiTpba3VxHl/4E/AqMx8HliRqm+3JEmSpC602qd7ZWA8QES03fT6gVoikiRJkvqYVpPua4CkGgJ+ANXAOA8Cm9QUlyRJktRntJR0Z+amjfMRsQXw2VoikiRJkvqY+boYMjPvBLbq5lgkSZKkPqmllu6I+HLDbD9gC2BaLRFJkiRJfUyrfbqXbZieQdXHu+lgNpIkSZLeqtU+3ScAlKHgMzNfrjUqSZIkqQ9pqU93RAyLiLuAScC9EXFHRAyrNzRJkiSpb2j1QspTgS9n5lqZuRbwn6VMkiRJUhdaTbqXzszr22Yy8wZg6VoikiRJkvqYVi+kfDQijgPOLvOfAB6rJyRJkiSpb2m1pftTwEDgUuCyMn1oXUFJkiRJfUmrdy/5N3BUzbFIkiRJfVKrg+OsD3wFGNJYJzN3qScsSZIkqe9otU/3xcApwOnAzPrCkSRJkvqeVpPuGZn5q1ojkSRJkvqoTpPuiFixTF4VEZ+nuojy9bblmflcjbFJkiRJfUJXLd13AAlEmf9qw7IE1q4jKEmSJKkv6TTpzsyhABExIDOnNy6LiAF1BiZJkiT1Fa3ep/uWFsskSZIktdNVn+53AasBS0XE5szpZrIc8I6aY5MkSZL6hK76dH8AOARYHTiJOUn3i8DX6wtLkiRJ6ju66tN9FnBWRHwkMy/poZgkSZKkPqWlPt0m3JIkSdL8a/VCSkmSJEnzyaRbkiRJqlmrw8ATEdsAQxrrZObvaohJkiRJ6lNaSroj4mxgHWACMLMUJ2DSLUmSJHWh1ZbuEcDGmZl1BiNJkiT1Ra326Z4EvKvOQCRJkqS+qtWW7pWB+yJiHPB6W2FmfqiWqCRJkqQ+pNWk+/g6g5AkSZL6spaS7sy8se5AJEmSpL6q06Q7Im7OzO0i4iWqu5XMXgRkZi5Xa3SSJElSH9Bp0p2Z25XHZXsmHEmSJKnv6fTuJRGxTFcbaGUdSZIk6e2sq1sGXhERJ0XEDhGxdFthRKwdEYdFxJ+AUfWGKEmSJC3auupesmtE7A58Ftg2IlYAZgAPAtcAB2fmP+sPU5IkSVp0dXn3ksy8Fri2B2KRJEmS+qRWR6SUJEmSNJ9MuiVJkqSamXRLkiRJNWsp6Y6IdSJiyTK9U0QcFRHLd1HntxHxTERMaihbMSLGRMRD5XGFhmXHRsTDEfFgRHygg212WF+SJElaWLXa0n0JMDMi1gV+AwwFzuuizpnMfTvBY4DrMnM94LoyT0RsDBwAbFLq/G9E9G+yzab1JUmSpIVZq0n3rMycAewD/CQz/wMY3FmFzBwLPNeueG/grDJ9FvDhhvILMvP1zHwMeBgY2WSzHdWXJEmSFlqtJt1vRsRo4GDg6lK2+Hzsb1BmPg1QHlcp5asBTzasN6WUtVpfkiRJWmi1mnQfCmwNfDczH4uIocA53RhHNCnLBdpgxOERMT4ixk+bNm1BNiVJkiQtkC6T7tK3+uuZeVRmng+QmY9l5onzsb+pETG4bHcw8EwpnwKs0bDe6sBT81B/Lpl5amaOyMwRAwcOnI9QJUmSpO7RZdKdmTOBgRGxRDfs70qqLiqUxysayg+IiCVLK/p6wLh5qC9JkiQttLocBr6YDPw1Iq4EXmkrzMwfd1QhIs4HdgJWjogpwLeAE4GLIuIw4Algv7KdeyPiIuA+YAbwhZLsExGnA6dk5viO6kuSJEkLs1aT7qfKXz9g2VYqZOboDhbt2sH63wW+26T80w3Tz3ZUX5IkSVpYtZR0Z+YJABGxdGa+0tX6kiRJkuZodUTKrSPiPuD+Mv/uiPjfWiOTJEmS+ohWbxn4E+ADwLMAmTkR2KGmmCRJkqQ+pdWkm8x8sl3RzG6ORZIkSeqTWr2Q8smI2AbIcuvAoyhdTSRJkiR1rtWW7iOAL1ANzT4FGF7mJUmSJHWh1buX/As4sOZYJEmSpD6p1buX/DAilouIxSPiuoj4V0R8ou7gJEmSpL6g1e4l78/MF4E9qbqXrA98tbaoJEmSpD6k1aR78fK4O3B+Zj5XUzySJElSn9Pq3UuuiogHgNeAz0fEQGB6fWFJkiRJfUdLLd2ZeQywNTAiM98EXgX2rjMwSZIkqa/otKU7IvZtV5QR8S9gQmb+s76wJEmSpL6jq+4lezUpWxHYLCIOy8y/1BCTJEmS1Kd0mnRn5qHNyiNiLeAi4D11BCVJkiT1Ja3eveQtMvNx5tzRRJIkSVIn5ivpjogNgNe7ORZJkiSpT+rqQsqrgGxXvCIwGHBESkmSJKkFXV1I+aN28wk8CzyUmW/UE5IkSZLUt3R1IeWNPRWIJEmS1FfNV59uSZIkSa0z6ZYkSZJq1mnSHRHXlccf9Ew4kiRJUt/T1YWUgyNiR+BDEXEBEI0LM/PO2iKTJEmS+oiuku5vAscAqwM/brcsgV3qCEqSJEnqS7q6e8nvgd9HxHGZ+Z0eikmSJEnqU7pq6QYgM78TER8CdihFN2Tm1fWFJUmSJPUdLd29JCK+DxwN3Ff+ji5lkiRJkrrQUks3sAcwPDNnAUTEWcBdwLF1BSZJkiT1FfNyn+7lG6bf2c1xSJIkSX1Wqy3d3wfuiojrqW4buAO2ckuSJEktafVCyvMj4gZgK6qk+78y8591BiZJkiT1Fa22dJOZTwNX1hiLJEmS1CfNS59uSZIkSfPBpFuSJEmqWZdJd0T0i4hJPRGMJEmS1Bd1mXSXe3NPjIg1eyAeSZIkqc9p9ULKwcC9ETEOeKWtMDM/VEtUkiRJUh/SatJ9Qq1RSJIkSX1Yq/fpvjEi1gLWy8z/i4h3AP3rDU2SJEnqG1q6e0lEfAb4PfDrUrQacHlNMUmSJEl9Squ3DPwCsC3wIkBmPgSsUldQkiRJUl/SatL9ema+0TYTEYsBWU9IkiRJUt/SatJ9Y0R8HVgqInYDLgauqi8sSZIkqe9oNek+BpgG3AN8FrgW+O+6gpIkSZL6klbvXjIrIs4CbqPqVvJgZs5X95KI2AC4sKFobeCbwPLAZ6iSe4CvZ+a1TeqPAn5KdfeU0zPzxPmJQ5IkSeopLSXdEbEHcArwCBDA0Ij4bGb+YV53mJkPAsPLdvsD/wAuAw4FTs7MH3USR3/gl8BuwBTg9oi4MjPvm9c4JEmSpJ7S6uA4JwE7Z+bDABGxDnANMM9Jdzu7Ao9k5uMR0cr6I4GHM/PREscFwN6ASbckSZIWWq326X6mLeEuHgWe6Yb9HwCc3zB/ZETcHRG/jYgVmqy/GvBkw/yUUiZJkiQttDpNuiNi34jYF7g3Iq6NiEMi4mCqO5fcviA7joglgA9R3QkF4FfAOlRdT56mal2fq1qTsqZ9yyPi8IgYHxHjp02b1mwVSZIkqUd01b1kr4bpqcCOZXoa0Kwlel58ELgzM6cCtD0CRMRpwNVN6kwB1miYXx14qtnGM/NU4FSAESNGeE9xSZIk9ZpOk+7MPLTGfY+moWtJRAzOzKfL7D7ApCZ1bgfWi4ihVBdgHgB8vMYYJUmSpAXW6t1LhgJfBIY01snMD83PTiPiHVR3IPlsQ/EPI2I4VXeRyW3LImJVqlsD7p6ZMyLiSOBPVLcM/G1m3js/MUiSJEk9pdW7l1wO/IaqL/esBd1pZr4KrNSu7KAO1n0K2L1h/lqqwXkkSZKkRUKrSff0zPxZrZFIkiRJfVSrSfdPI+JbwJ+B19sKM/POWqKSJEmS+pBWk+5NgYOAXZjTvSTLvCRJkqROtJp07wOsnZlv1BmMJEmS1Be1OiLlRGD5GuOQJEmS+qxWW7oHAQ9ExO28tU/3fN0yUJIkSXo7aTXp/latUUiSJEl9WEtJd2beWHcgkiRJUl/V6oiUL1HdrQRgCWBx4JXMXK6uwCRJkqS+otWW7mUb5yPiw8DIOgKSJEmS+ppW717yFpl5Od6jW5IkSWpJq91L9m2Y7QeMYE53E0mSJEmdaPXuJXs1TM8AJgN7d3s0kiRJUh/Uap/uQ+sORJIkSeqrOk26I+KbnSzOzPxON8cjSZIk9TldtXS/0qRsaeAwYCXApFuSJEnqQqdJd2ae1DYdEcsCRwOHAhcAJ3VUT5IkSdIcXfbpjogVgS8DBwJnAVtk5r/rDkySJEnqK7rq0/0/wL7AqcCmmflyj0QlSZIk9SFdDY7zn8CqwH8DT0XEi+XvpYh4sf7wJEmSpEVfV32652vESkmSJElzmFRLkiRJNTPpliRJkmpm0i1JkiTVzKRbkiRJqplJtyRJklQzk25JkiSpZibdkiRJUs1MuiVJkqSamXRLkiRJNTPpliRJkmrW6TDwkiRp/ky/bWJvh1CPQb0dgLRosqVbkiRJqplJtyRJklQzk25JkiSpZibdkiRJUs1MuiVJkqSamXRLkiRJNTPpliRJkmpm0i1JkiTVzKRbkiRJqplJtyRJklQzk25JkiSpZibdkiRJUs1MuiVJkqSamXRLkiRJNeuVpDsiJkfEPRExISLGl7IVI2JMRDxUHlfooO6oiHgwIh6OiGN6NnJJkiRp3vVmS/fOmTk8M0eU+WOA6zJzPeC6Mv8WEdEf+CXwQWBjYHREbNxTAUuSJEnzY2HqXrI3cFaZPgv4cJN1RgIPZ+ajmfkGcEGpJ0mSJC20eivpTuDPEXFHRBxeygZl5tMA5XGVJvVWA55smJ9SyuYSEYdHxPiIGD9t2rRuDF2SJEmaN4v10n63zcynImIVYExEPNBivWhSls1WzMxTgVMBRowY0XQdSZIkqSf0Skt3Zj5VHp8BLqPqNjI1IgYDlMdnmlSdAqzRML868FS90UqSJEkLpseT7ohYOiKWbZsG3g9MAq4EDi6rHQxc0aT67cB6ETE0IpYADij1JEmSpIVWb3QvGQRcFhFt+z8vM/8YEbcDF0XEYcATwH4AEbEqcHpm7p6ZMyLiSOBPQH/gt5l5by88B0mSJKllPZ50Z+ajwLublD8L7Nqk/Clg94b5a4Fr64xRkiRJ6k69dSGlJGkhN3ny0N4OodsNGfJYb4cg6W1qYbpPtyRJktQnmXRLkiRJNTPpliRJkmpm0i1JkiTVzKRbkiRJqplJtyRJklQzk25JkiSpZibdkiRJUs1MuiVJkqSamXRLkiRJNTPpliRJkmpm0i1JkiTVzKRbkiRJqplJtyRJklQzk25JkiSpZibdkiRJUs1MuiVJkqSamXRLkiRJNTPpliRJkmpm0i1JkiTVzKRbkiRJqplJtyRJklQzk25JkiSpZibdkiRJUs1MuiVJkqSamXRLkiRJNTPpliRJkmpm0i1JkiTVzKRbkiRJqplJtyRJklQzk25JkiSpZibdkiRJUs1MuiVJkqSamXRLkiRJNTPpliRJkmpm0i1JkiTVzKRbkiRJqplJtyRJklQzk25JkiSpZibdkiRJUs1MuiVJkqSamXRLkiRJNTPpliRJkmpm0i1JkiTVrMeT7ohYIyKuj4j7I+LeiDi6lB8fEf+IiAnlb/cO6o+KiAcj4uGIOKZno5ckSZLm3WK9sM8ZwH9m5p0RsSxwR0SMKctOzswfdVQxIvoDvwR2A6YAt0fElZl5X+1RS5IkSfOpx1u6M/PpzLyzTL8E3A+s1mL1kcDDmfloZr4BXADsXU+kkiRJUvfo1T7dETEE2By4rRQdGRF3R8RvI2KFJlVWA55smJ9C6wm7JEmS1Ct6LemOiGWAS4AvZeaLwK+AdYDhwNPASc2qNSnLDrZ/eESMj4jx06ZN656gJUmSpPnQK0l3RCxOlXCfm5mXAmTm1MycmZmzgNOoupK0NwVYo2F+deCpZvvIzFMzc0Rmjhg4cGD3PgFJkiRpHvTG3UsC+A1wf2b+uKF8cMNq+wCTmlS/HVgvIoZGxBLAAcCVdcYrSZIkLajeuHvJtsBBwD0RMaGUfR0YHRHDqbqLTAY+CxARqwKnZ+bumTkjIo4E/gT0B36bmff2bPiSJEnSvOnxpDszb6Z53+xrO1j/KWD3hvlrO1pXkiRJWhg5IqUkSZJUM5NuSZIkqWYm3ZIkSVLNTLolSZKkmpl0S5IkSTUz6ZYkSZJq1hv36Za0kJk8eWhvh9Dthgx5rLdDkCRpNlu6JUmSpJqZdEuSJEk1M+mWJEmSambSLUmSJNXMpFuSJEmqmUm3JEmSVDOTbkmSJKlmJt2SJElSzUy6JUmSpJqZdEuSJEk1cxh4SVpA02+b2Nsh1GNQbwcgSX2HLd2SJElSzUy6JUmSpJqZdEuSJEk1M+mWJEmSambSLUmSJNXMpFuSJEmqmUm3JEmSVDOTbkmSJKlmJt2SJElSzUy6JUmSpJo5DLwkSZIWyOTJQ3s7hG43ZMhj3bo9W7olSZKkmpl0S5IkSTUz6ZYkSZJqZtItSZIk1cwLKd9mvNBBkiSp59nSLUmSJNXMpFuSJEmqmd1LpHkw/baJvR1CPQb1dgCSJPVttnRLkiRJNTPpliRJkmpm0i1JkiTVzKRbkiRJqplJtyRJklQz714iSZLUQ7wL1tuXLd2SJElSzWzp7oDfRCVJktRdFrqW7ogYFREPRsTDEXFMk+URET8ry++OiC16I05JkiSpVQtV0h0R/YFfAh8ENgZGR8TG7Vb7ILBe+Tsc+FWPBilJkiTNo4Uq6QZGAg9n5qOZ+QZwAbB3u3X2Bn6Xlb8By0fE4J4OVJIkSWrVwpZ0rwY82TA/pZTN6zqSJEnSQmNhu5AympTlfKxDRBxO1f0E4OWIeHABY+srVgb+1dtBdK9mp4TmkeeFmvG8UDOeF2rG82KOtZoVLmxJ9xRgjYb51YGn5mMdMvNU4NTuDnBRFxHjM3NEb8ehhYvnhZrxvFAznhdqxvOiawtb95LbgfUiYmhELAEcAFzZbp0rgU+Wu5i8F3ghM5/u6UAlSZKkVi1ULd2ZOSMijgT+BPQHfpuZ90bEEWX5KcC1wO7Aw8CrwKG9Fa8kSZLUioUq6QbIzGupEuvGslMaphP4Qk/H1YfY5UbNeF6oGc8LNeN5oWY8L7oQVQ4rSZIkqS4LW59uSZIkqc8x6e4mETEzIiZExKSIuDgi3tHbMalnRcTLvR1DKyLi2xHxviblO0XE1R3UmRwRK5fpBX6eEXFIRPxiQbfzdhERGRFnN8wvFhHT2o5XRHwoIo7poG7T4xURZ0bER8v0DRGxQHcdiIghETFpQbbxdtHstYqI4yPiK70VU0ciYkRE/KyDZbPfF9qVz34ujefZAsaxSLy/9kXt8purImL5Ur5qRPy+i7pNz5G3K5Pu7vNaZg7PzGHAG8ARC7KxiJjn/vYR0X9B9jkP++mRawF66vksqub3OGTmNzPz/7o7HtXqFWBYRCxV5ncD/tG2MDOvzMwTeyUyLRLKHb/m+TM/M8dn5lF1xKRFRmN+8xzlurrMfCozF/gL1duJSXc9bgLWjYgVI+LyiLg7Iv4WEZsBdFJ+fEScGhF/Bn7XuMHyhvk/5ZvmPRHxsVK+U0RcHxHnAfe0DyQiXo6I70bExLKvQaV8YERcEhG3l79tS/nIiLglIu4qjxuU8kNKC/5VwJ/b7WOniBgbEZdFxH0RcUrbm3tEjC7xToqIHzTU6aj85dISexuw9QIfiV4WEcPL6353eX1WiIhVIuKOsvzdpRVzzTL/SES8o5Pj09k5ckg5r66KiMci4siI+HI5ln+LiBXLeo0tnKMi4oGIuBnYt2FbK0XEn0vdX9PBCAER8dUS390RcUIH64yKiDvLOXhdk+V7RcRtZV//13CO7hhV68qEsmzZiBhczrW2Vpft5/mgLLr+AOxRpkcD57ctiIZfDqK65eqt5bh8p2GdiIhflP/Ra4BVmu0kIt5f6t9Z/ueXabLOuuVYTSzrrdNu+ZCIuKksuzMitinlcx2/iOhfzsm297b/WNAXalEX1S8PPynvwZMiYmQpPz4izo6Iv0TEQxHxmYY6c/0vluNwf0T8L3Anbx3jou399gcRcUc5niPLvh+NiA+VdWb/AtbZ+0JEfCMiHoyI/wM26OB5bRkRN5b9/SkiBjdZZ1BU75UTy9827ZYvExHXlfPqnojYu5QvHRHXlDqTYs5n5InlnL87In4070dD7dxKGQU8Gn6xKf/HPyrH5O6I+GJDnS82HK8NeyPohUZm+tcNf8DL5XEx4Argc8DPgW+V8l2ACWW6o/LjgTuApZps/yPAGKpbKQ4CngAGAztRtYIN7SCuBPYq0z8E/rtMnwdsV6bXBO4v08sBi5Xp9wGXlOlDqAYmWrHJPnYCpgNrl/jGAB8FVi1xDiyvy1+AD3dU3hDv/r19PBfkHGhXdjewY5n+NvCTMn1vea2PpLo//YFUI1jd2sXx6ewcOYTqVprLltf2BeCIsuxk4Etl+sxyfAYATwLrUX14XgRcXdb5GfDNMr1HOS4rtzvX3091tXpQfYG/GtihXUwDyz6GlvkVG2L9RZlegTkXdX8aOKlMXwVsW6aXKefKfwLfKGX9gWV7+7j31LkFbAb8vhy3CeX/ru14Nb6eVwKfLNNfaDhe+zLnPWRV4Hngo2XZDcAIqhHlxgJLl/L/ajsP2sVzG7BPmR4AvAMYAkwqZe8ABpTp9YDxZXqu4wdsCYxp2Pbyvf1698DxnP1aNZQdD3yl4XicVqZ3aHhdjwcmAkuVY/VkOZZN/xfLfmYB7+0gjgQ+WKYvo2pQWRx4N3M+lxrPs6bvC+UY3lOO+3JU70Ntz+VMqvebxYFbgIGl/GNUtwVuH9OFzHmv6g+8s+1/oDwuBixXplcu+wqqz8jTGrbzTmBF4EHmvL/0+XOrpvO17bXvD1wMjGp/HlPlPJcwJ39oe6+fDHyxTH8eOL23n09v/i10twxchC0VERPK9E3Ab6g+mD4CkJl/Ka0E7wS266Ac4MrMfK3J9rcDzs/MmcDUiLgR2Ap4ERiXmY91ENcbVG/AUCVru5Xp9wEbR8xuqFguIpaleqM6KyLWo3pDXbxhW2My87kO9jMuMx8FiIjzS7xvAjdk5rRSfi7VB0F2UH45MJPqH3eRV47p8pl5Yyk6i+oNC6oPn22pnvf3gFFUHxw3leUdHR/o+BwBuD4zXwJeiogXqBJXqD4QN2u37obAY5n5UIn3HODwsmwHSst3Zl4TEf9usq/3l7+7yvwyVAnW2IZ13guMbTs/Ozh/VgcuLK1eSwBt5/JfgR+X8+PSzJwSEbcDv42IxYHLM3NCB69Dn5OZd0fEEKpW7ms7WXVbyvsLcDbQ9kvSDsx5D3kqIv7SpO57gY2Bv5Zzbwmqlq3Zynm4WmZeVuKaXsobV1sc+EVEDKf6n16/lM91/CLiUWDtiPg5cA3tfknrozq6bVhj+fkAmTk2IpaL0o8WuKL8/78WEdcDI6neb5v9Lz4BPJ6Zf+tgf28AfyzT9wCvZ+abEXEPVULVXkfvC9sDl2XmqwAR0X5QO6hav4cBY8q50h9oNrDdLsAnyz5mUjUeNArgexGxA9UXitWoGqLuAX4U1S+nV2fmTVF1wZsOnB7VrztNr1lRl9rymyFUecSYJuu8DzglM2fAXO/1l5bHO2j4RfXtyO4l3aetz9PwzPxiZr5B85/ks5NyqFqtm2n6834XdQDezPIVk+rDr+2LVj9g64aYVyvJ2neoErdhwF5UrVhv2U9EvCfm/Oz/oXbxNz6fjmLu7LlML2+0fd1NVB9Ua1H9MvJuqg/OtoS1o+MDc47DPg3Hoe0iuNcb9jGrYX4Wze/L39k9Q7u6n2gA32+Icd3M/E2Tdbrazs+pWmk3BT5LOeey6qP8aapWvb9FxIaZOZbqg/8fwNkR8ckutt3XXAn8iIauJR1oJalrJqi+XLcd040z87Am63TlP4CpVOf1CKrknWbHLzP/Xda7gapl/vQWtr+oe5bqF55GKwL/aphv9p7aUXln/4tt7xf9G94vvl2WNX4+zH6/yMyO3i+a7b+r8jYB3NsQ46aZ+f4u6jRzINUvaFtm5nCq82xAZv6dOS3u34+Ib5YEcCRVQ86HmfMFQ/PmtfJar0X1v9xsrJTO3uvbPocac5C3JZPueo2leoMgInYC/pWZL3ZS3tW2PlbeOAdSfXCNW4DY/kzVtYESx/Ay+U7mXKB1SLOKmXlbwxtnW4vGyKj6kvaj+tnwZqqW/h0jYuWoLoocDdzYSXmfkpkvAP+OOf2OD2LO8xwLfAJ4qHzAPUc10upfy/KOjk/j9i9rOA7j5yPEB4ChMac/7uiGZY3n6AeZO0GAauTYT0Xp8xsRq0VE+37Ct1Id66FlnRWbbKfxnDu4rTAi1snMezLzB8B4YMOIWAt4JjNPo/o1aYuWn23f8Fvg25k51/UbDf4KHFCmD2woHwscUN5DBgM7N6n7N2DbiFgXIKrrC9ZvXKG8V02JiA+XdZaMue/W9E7g6XJuH0TVqkmz4xfVnQ36ZeYlwHG8DY5pZr4MPB0Ru8Ls/4tRVO+bbdr6JG8HvFDeTwD2jogBEbESVdeP22nhfzEzZza8X3xzPkPv6H1hLLBPRCxVfgnZq0ndB4GBEbF1qb94RGzSZL3rqLoqtH1RWK7d8ndSnUNvRsTOVIkgEbEq8GpmnkP1xXSL8nq8M6tB974EDJ+/py2Y/Zl2FPCV8mtVoz8DR5RfFzp6r3/be1t/4+gBxwNnRMTdVEPWH9xFeWcuo7qwcCLVt8mvZeY/F+CihKOAX5YYFqN60zyCqt/3WRHxZaq+1q26FTgR2LRs67LMnBURxwLXU30LvjYzrwDoqHwR946ImNIw/2OqY3tKSUoeBQ4FyMzJ5SfWtpbtm4HVS6sfdHx8uk1mTo+Iw4FrIuJfJYZhZfEJwPkRcSfVF4UnmtT/c0RsBNxansvLVF8knmlYZ1rZx6XlC9kzzOni1OZ44OKI+AdV0je0lH+pfKjOBO6jupDwAOCrEfFm2d/bqqU7M6cAP+1itaOB8yLiaN7aVesyqp/u7wH+TpMvuuV4HUJ17Jcsxf9d1m90EPDr0mL6JrAfVUtpm/8FLomI/aj+z9t+jduJuY/falTvh22NQMd28fz6ik9S/Y+fVOZPyMxHGpb/OyJuoeoj/amG8nFU3XDWBL6TmU9RdRdq9r/Y3b8aNn1fyMw7I+JCqmsNHmdON7nZMvONqC7g/llUXe8WA35CdX1Lo6OBUyPisBL/53hrF6dzgasiYnzZ3wOlfFPgfyJiFtU5+TmqawauiIgBVJ81b/uLdBdUZt4VEROp3osbj/PpVN3I7i7/36cB3ha2HUek1AIrrfVfycw9ezkUSVrkRcQNVO+p49uVH091UZt34ZAWQXYvkSRJkmpmS7ckSZJUM1u6JUmSpJqZdEuSJEk1M+mWJEmSambSLUkLmYh4ubdj6ExEjIqIcRHxQBls5cKIWLO345KkhZn36ZYktSwihlGNIvqhzLy/lH2IaojoJ9qtu1jbsNCS9HZnS7ckLaQiYqeIuCEifl9alc+NMvpJRGwVEbdExMTS6rxsGanwjIi4JyLuKoMLERGHRMTlEXFVRDwWEUdGxJfLOn9rGz0uItaJiD9GxB0RcVMHg2/9F/C9toQbIDOvLEO8U+L9XkTcCBwdEbuW/dwTEb9tG3QnIiaX0SiJiBHl3tRExPERcXZE/CUiHoqIz9T3CktSzzHplqSF2+ZUQ1hvDKxNNUz7EsCFwNGZ+W7gfcBrwBcAMnNTYDTV6LIDynaGAR8HRgLfpRoye3Oq0f7aRvY8FfhiZm4JfIVqZMn2NgHu7CLm5TNzR+CXwJnAx0pMi1GG+O7CZsAeVKPwfrMM8S1JizSTbklauI3LzCmZOYtq2OshwAbA05l5O0Bmvli6cWwHnF3KHqAaknv9sp3rM/OlzJwGvABcVcrvAYZExDLANsDFETEB+DUwuLPAImKl0qf77xHxlYZFF5bHDYDHMrNtGPmzgB1aeM5XZOZrmfkvqmHkR7ZQR5IWavbplqSF2+sN0zOp3rcDaDayWbS4nVkN87PKNvsBz2fm8C7iuRfYApiYmc8Cw0vCvUzDOq+0EM8M5jT8DGi3rP1zcxQ3SYs8W7oladHzALBqRGwFUPpzLwaMBQ4sZesDawIPtrLBzHwReCwi9iv1IyLe3WTVHwLfiIiNGsre0UmcQyJi3TJ/EHBjmZ4MbFmmP9Ku3t6lf/pKwE7A7a08B0lamJl0S9IiJjPfAD4G/DwiJgJjqFqL/xfoHxH3UHXxOCQzX+94S3M5EDisbPNeYO8m+74HOBr4Xbm486/ARsB5TdadDhxK1WXlHqpW9VPK4hOAn0bETVQt+I3GAdcAfwO+k5lPzcNzkKSFUmT6q50kaeEQEccDL2fmj3o7FknqTrZ0S5IkSTWzpVuSJEmqmS3dkiRJUs1MuiVJkqSamXRLkiRJNTPpliRJkmpm0i1JkiTVzKRbkiRJqtn/B+qBjk3a3JAPAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "income_group_df = data.groupby(['Company', 'Income Group'])['Users'].count().reset_index()\n", + "display(income_group_df)\n", + "\n", + "ax = sns.barplot(x = 'Income Group', y = 'Users', data = income_group_df, hue = 'Company', palette = ['pink','yellow'], order = ['Poor or near-poor','Lower-middle class','Middle class', 'Upper-middle class','Rich'])\n", + "\n", + "thousands_formatter = lambda x, pos: f'{x / 1000}'\n", + "\n", + "ax.yaxis.set_major_formatter(FuncFormatter(thousands_formatter))\n", + "ax.set_ylabel('Number of Users (in thousands)')\n", + "ax.set_title('Number of Users in each Income Group')" + ] + }, + { + "cell_type": "markdown", + "id": "ae207a83", + "metadata": {}, + "source": [ + "In each economic group Yellow Cab has more users than Pink Cab" + ] + }, + { + "cell_type": "markdown", + "id": "68ae828a", + "metadata": {}, + "source": [ + "## Which company has more users by city?" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "ee86b100", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Quantity of Users by City')" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxgAAAHwCAYAAAAl9cmiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABi8klEQVR4nO3deZzd493/8dc7qWTsJSoM6liDbCNCLAmCKkpFCcbem4a73Eprq+XXuFul9p1qay1i19BS7pLa0kTChEhiiYRGRRNqSSQqyef3x/ea9OvkzJozmSXv5+MxD+d7rZ/vyXm085nrur5HEYGZmZmZmVk5dGrtAMzMzMzMrONwgmFmZmZmZmXjBMPMzMzMzMrGCYaZmZmZmZWNEwwzMzMzMysbJxhmZmZmZlY2TjDMzGyZkTRH0sbLYJ4VJT0i6RNJ97X0fOUiabqkPZbRXK9J2nVZzGVmyxcnGGZmHZikYyS9KulzSTMlXS9p9WU09yhJx+XLImKViHg71d8q6RctNP1BQHegW0QMLRHbEnNLKkgKSV9roZiWKUmrSbpS0rspsXsrXa8FEBE9I2JUajtc0u9bNWAz6zCcYJiZdVCSfgL8CjgdWB3YHigAT0haoRVDWxY2BN6IiAWtGURrJSuSugB/AXoCewGrATsCHwLbtUZMZrb8cIJhZtYBSVoNOB/4n4h4PCK+jIjpwMHARsBhqd1X/pIvaVdJM3LXZ0maKukzSZMkHZCrO0bSc5IulfQvSdMk7Z3qLgAGAdemv55fm8pD0qaShgGHA2ek+kcknS7pgaL7uEbSlXXc45ZpleTjtN3nu6n8fOD/AYeksY9t5nt4pqT30r2/Lmn3VN4p9758KOleSWumutpVkGMlvQs8JalC0u9T248lvSipez1Tb5ve639JukVSRRp7oqT9cvGtIGm2pKoSYxwFfBM4ICImRcSiiPhnRPw8Iv6U+k+XtIekvYCzc+/XBElDJY0vej9+Iunh5ryXZrZ8cYJhZtYx7QhUAA/mCyNiDvAYsGcjx5lKliisTpaw/F7Surn6AcDrwFrAxcDvJCkizgGeBU5K26JOKorjJuBO4OJUvx/we2AvSV+HxX/9PwS4oziotALzCPAEsDbwP8CdknpExM+AXwL3pLF/18h7zY/fAzgJ2DYiVgW+DUxP1ScDQ4BdgErgX8B1RUPsAmyZ+h1N9v5tAHQDTgDm1TP94anfJsDmwLmp/HbgiFy7fYD3I6KmxBh7AI+nf+96RcTjfPX96guMBDaStGWu6RGU+LcwMyvmBMPMrGNaC5hdxxah94FvNGaQiLgvIv6R/gJ+D/AmX91i805E/CYiFgK3AeuSnX1osoh4H3gGqD0zsVe6h/Elmm8PrAJcFBH/joingEeB6ubMXcJCoCuwlaQVImJ6RExNdccD50TEjIj4AhgOHFS0HWp4RMyNiHnAl2SJxaYRsTAixkfEp/XMfW1E/D0iPgIuyN3T74F90uoUwJHU/Qt/N7J/52ZJ93UPKaGR1JNse92jzR3TzJYfTjDMzDqm2cBadZwBWBeY1ZhBJB0lqSZt7fkY6EWWvNSaWfsiIj5PL1dpXshAlqTU/pW+vr+YVwJ/j4hFubJ3gPUaOc8CoPgcygrAImBRRLwFnEKWPPxT0ghJlandhsBDufdkMllCkk+s/p57fQfwZ2CEpH9IuriBMzD5vu+Q3SsR8Q/geeDAtMqzN9kqUCkfkv07L43bgMMkiSyZuTclHmZm9XKCYWbWMY0GvgC+ly+UtDLZL6Z/TUVzgZVyTdbJtd0Q+A3ZVqFuEfF1YCKgRsYQzah/GOgjqRewL3X/Av0PYANJ+f8f+ybwXiNje5fsL/J5G5FLWiLirogYSJZQBNmBecgSgL0j4uu5n4qIyM+9+N7S+ZfzI2Irsq1r+5KdkajLBkX39I/cdW0CNhQYXTRn3v8B307/3o2xxL9FRPwN+DfZFrnD8PYoM2skJxhmZh1QRHxCdmbiGkl7pQPBBeA+stWN2l/ca8i23awpaR2yv9rXWpnsF89ZAJK+T7aC0VgfAPV958US9RExH7gfuAsYGxHv1tF3DFlydEa6t12B/YARjYztAeA7kvaU1DmtTpxb219SD0m7SeoKzCc7M7Ew9b0RuCAlYEj6hqT965pI0mBJvSV1Bj4l2zK1sK72wImS1k8Hx88m26pU62GgH/AjsjMZdbmDLBF6QNIW6WB6N0lnS9qnRPsPgEJRwkaa41pgQUQ8V898ZmaLOcEwM+ugIuJisl9QLwU+A6aRrVbsERFzU7M7gAlkB5ifIPfLbERMAi4jWw35AOhNtkWnsa4iO5vwL0lXl6j/HdkZh4+Lnk50W5qrzr+YR8S/ge+SrcbMBq4HjoqIKY0JLCJeIzvbcCHwEdk9jiFLyiA7f3FRGnsm2UHys3P3NZLscb+fAX8jO+xel3XIkqZPybZT/ZXsPEVd7iL7t3g7/Sx+ylc60/EA2WrLgyV7s/gMxR7AFODJNPdYsu1tY0p0qf0ywg8lvZQrv4MsqfTqhZk1miIaWsE2M7OOQNJ/kf0CvVM9KwOtTtI3yX4xXqeBw9DLJUn/D9g8Io5osPHSz7Ui8E+gX0S82dLzmVnH0CG+rdTMzBoWETdL+pLsHECbTDDSFp0fAyOcXCwpbZs6luzQ9bLw38CLTi7MrCmcYJiZLUcios1udUkHkj8ge3LSXq0cTpsj6QfAlcAdEfHMMphvOtmB/iEtPZeZdSzeImVmZmZmZmXjQ95mZmZmZlY2TjDMzMzMzKxsfAajA1lrrbWiUCi0dhhmZmZm1sGNHz9+dkR8o1SdE4wOpFAoMG7cuNYOw8zMzMw6OEnv1FXnBKMDibnzmD9mQmuHYXWoGNC3tUMwMzMza3E+g2FmZmZmZmXjBMPMzMzMzMrGCYaZmZmZmZWNEwwzMzMzMysbJxhmZmZmZlY2bTrBkBSSLstdnyZpeHo9XNJ7kmpyP1+X9LKkqtTma5LmSjoiN8Z4Sf1y12tLmiZpnVzZ9ZLOktRF0pWSpkp6U9IfJK2fa7cwzTtR0iOSvp7KC5Im5tr9QNJLktYour/hkj6XtHaubI4yz0naO1d+sKTHl/ItNTMzMzNrUW06wQC+AL4naa066q+IiKrcz8fAC8COqb4v8HrttaSVgY2Bxc9yjYh/Ar8CLk1t+gEDgcuAXwKrAptHxGbAw8CDkpS6z0vz9gI+Ak4sDlDSkcD/AHtGxL9K3MNs4Cf5gogI4ATgckkVKe4LSo1vZmZmZtaWtPUEYwFwE3BqE/o8z38SjB2BG4GqdL0d8FJELCzqcxOwiaTBwLXAScAKwPeBU2vbR8QtZEnPbiXmHQ2sly+QdDBwFllyMbuOeG8GDpG0Zr4wIiYCjwBnAj8Dbo+IqXXftpmZmZlZ62sPX7R3HfCKpItL1J2a2/70r4gYTLaC8YtUtiNwPlAtadV0/XzxIBGxSNJ/A08BIyPiGUl9gHcj4tOi5uOAnsBfagskdQZ2B36Xa7chWbKydUTMrOf+5pAlGT8iSyTyzgdeAv4N9C/VWdIwYBhAZWVnZnYfUs9U1qqmt3YAZmZm1lEUCtNaO4Q6tfUVDNIv+LcDJ5eozm+RGpzaTwe6pDMVW5BtkXoRGECWYLxQxzw1wETg+lQkIEo0zZevKKkG+BBYE3gy124W8C5wcCNu82rgaEmrFcU0F7gHuCMivqgj7psion9E9O/WrXMjpjIzMzMzazltPsFIrgSOBVZuZPvRwEHA++k8w9+Anci2SP2tnn6L0g/AW8CGaeUjrx8wKb2eFxFVZKsVXfjqGYnPgb2BEyQdXl+w6ezIXcAPG4jJzMzMzKxNaxcJRkR8BNxLlmQ0xvNk5zZGp+vRwFHAzPTLfGPmnAvcRnbQujOApKOAlci2UuXbfkK2wnKapBVy5bOAvYBfSvp2A1NeDhxP+9i2ZmZmZmZWUrtIMJLLgOKnSZ1a9JjaQip/nuxpUaMBIuJ9oDN1bI+qx0+B+cAbkt4EhgIHpFWRr4iIl8meTnVoUfk04LvAzZIG1DVROgT+ENC1iTGamZmZmbUZKvG7srVTffp0jZEjK1s7DDMzMzNrYa19yFvS+Igo+RCi9rSCYWZmZmZmbZwTDDMzMzMzKxsnGGZmZmZmVjZOMMzMzMzMrGz8SNQOpEuX3hQK41o7DDMzMzNbjnkFw8zMzMzMysYJhpmZmZmZlY0TDDMzMzMzKxufwehAYu485o+Z0NphtDkVA/q2dghmZmZmyw2vYJiZmZmZWdk4wTAzMzMzs7JxgmFmZmZmZmXjBMPMzMzMzMrGCYaZmZmZmZVNh0swJK0jaYSkqZImSfqTpM0lFSRNLGo7XNJp6fWtkg5Kr1eQdJGkNyVNlDRW0t65fltLCknfLhpvM0mPprnHS3pa0s65+iGSXpE0RdKrkobUcQ8l4zIzMzMza+s61GNqJQl4CLgtIg5NZVVAd+DvTRjq58C6QK+I+EJSd2CXXH018Fz675/TPBXAH4HTImJkKusF9AeekdQXuBT4VkRMk7QR8KSktyPilebes5mZmZlZW9KhEgxgMPBlRNxYWxARNQCSCo0ZQNJKwA+AjSLiizTGB8C9qV7AQcC3gGclVUTEfOBwYHRtcpH6TQRqV01OA34ZEdNS3TRJFwKnA0c294bNzMzMzNqSjpZg9ALG11O/iaSa3PU6ZKsKeZsC70bEp3WMsRMwLSKmShoF7AM8CPQEXqpn7p4l5hoHnFhPnwZJGgYMA6is7MzM7kOWZriOaXprB2BmHVmhMK21QzAza1M63BmMBkyNiKraH+DGhjqUUA2MSK9HpOslSHoond94sLYIiOJmJcqaJCJuioj+EdG/W7fOSzOUmZmZmdlS62gJxmvANks5xlvANyWtWlwhqTNwIPD/JE0HrgH2Tm1fA/rVto2IA4BjgDVzsfUvGrIfMGkp4zUzMzMzazM6WoLxFNBV0g9qCyRtK2mXevp8RUR8DvwOuFpSlzTGupKOAPYAJkTEBhFRiIgNgQeAIcBdwE6SvpsbbqXc60uBn9aeBUn/PRu4rMl3aWZmZmbWRnWoBCMiAjgA+FZ6VOxrwHDgH00c6lxgFjApPdr24XRdTfaUqrwHgMMiYh6wL3CCpLcljU7j/CLFVgOcCTwiaQrwCHBG7SH0Bvxa0oz0M7qJ92JmZmZmtswo+53cOoI+fbrGyJGVrR2GmdlyxYe8zWx5JGl8RBRv/wc62AqGmZmZmZm1LicYZmZmZmZWNk4wzMzMzMysbDraF+0t17p06U2hMK61wzAzMzOz5ZhXMMzMzMzMrGycYJiZmZmZWdk4wTAzMzMzs7JxgmFmZmZmZmXjQ94dSMydx/wxE1o7DOsgKgb0be0QzMzMrB3yCoaZmZmZmZWNEwwzMzMzMysbJxhmZmZmZlY2TjDMzMzMzKxsWjzBkDSnRNnqkm6XNDX93C5p9VTXSdLVkiZKelXSi5I2qmPsb0j6UtLxReXTJT2Quz5I0q25670kjZU0RVKNpHskfTPV3SppWiqvkfRCKj9G0rUlYpie4qxtf3Uq317SmFQ2WdLwOu5hO0nPSHo9xfNbSSvl6v8gaXR977GZmZmZWVvRWk+R+h0wMSKOApB0PvBbYChwCFAJ9ImIRZLWB+bWMc5Q4G9ANfDrorr+knpGxGv5Qkm9gGuA70bE5FT2XaAAvJuanR4R9zfhfgZHxOyistuAgyNigqTOQI/iTpK6A/cBh0bEaEkCDgRWBT6X9HWgHzBH0kYRMa0JMZmZmZmZLXPLfIuUpE2BbYCf54r/lywh2ARYF3g/IhYBRMSMiPhXHcNVAz8B1pe0XlHdpcDZJfqcCfyyNrlIc4yMiGeadUN1Wxt4P42/MCImlWhzInBbRIxO7SIi7o+ID1L9gcAjwAjg0DLHZ2ZmZmZWdq1xBmMroCYiFtYWpNc1QE/gXmC/tLXoMklblxpE0gbAOhExNvU5pKjJvUC/lNDk9QReaiDGS3Jbnu5sxD09nWt/aiq7Anhd0kOSjpdUUaJfL2B8PeNWA3enn+pGxGFmZmZm1qpaY4uUgKirPCJmSOoB7JZ+/iJpaET8paj9oWRJBGR/4f8dcHmufiFwCfBT4LGSgUjdgL8AKwE3RcSlqWqpt0hFxP+m5GRP4DCyBGHXxg6Ytk9tCjwXESFpgaReETGxqN0wYBhAZWVnZnYf0oSwzeoxvbUDaB2FgncimpmZLY3WWMF4Ddha0uK50+u+wGSAiPgiIh6LiNOBXwJDSoxTDRwjaTowEugrabOiNncAOwPfLJq/X5rnw4ioAm4CVlnqOysSEVMj4gZg9xRft6Imr5FtFyvlEGANYFq6xwIltklFxE0R0T8i+nfr1rlssZuZmZmZNccyTzAi4i3gZeDcXPG5wEsR8ZakfpIqYXHi0Qd4Jz9GWuFYOSLWi4hCRBSACyn6BTwiviTbqnRKrvhi4BxJW+bKVqLMJH0nHdoG2IxsReXjombXAkdLGpDrd4SkdcgSqL1y97cNPodhZmZmZm3cskgwVpI0I/fzY+BYYHNJb0maCmyeyiA7HP2IpInAK8ACsl/E86qBh4rKHqD0OYXfkdsKFhGvAj8Cbk+PhX0e2BK4K9cnfwajRlKXVH5M0b2sn8rzZzBuT2VHkp3BqCFbSTk8f+4kxfIBWdJwaXpM7WRgELAm2arL33JtpwGf5pMRMzMzM7O2RhGljkNYe9SnT9cYObKytcMwa9d8BsPMzKxhksZHRP9Sdf4mbzMzMzMzKxsnGGZmZmZmVjZOMMzMzMzMrGycYJiZmZmZWdm0xhftWQvp0qU3hcK41g7DzMzMzJZjXsEwMzMzM7OycYJhZmZmZmZl4wTDzMzMzMzKxgmGmZmZmZmVjQ95dyAxdx7zx0xYZvNVDOi7zOYyMzMzs/bBKxhmZmZmZlY2TjDMzMzMzKxsnGCYmZmZmVnZOMEwMzMzM7OyabEEQ9IVkk7JXf9Z0m9z15dJ+nF6/TVJsyVdWDTGvpJeljRB0iRJx6fy4ZJOK2o7XdJa6fWc9N+CpJD0P7l210o6Jnf9Y0lTJL2a5rlc0rcl1aSfOZJeT69vT30GShqb+k2RNCw33nBJn0taO1c2p473aHqa99V0f7+Q1DVXv7mkP0l6S9JkSfdK6t64fwEzMzMzs2WvJVcwXgB2BJDUCVgL6Jmr3xF4Pr3eE3gdOFiSUp8VgJuA/SKiL7A1MKoZcfwT+JGkLsUVkk5Ic28fEb2BbVP70RFRFRFVwDjg8HR9lKR1gLuAEyJiC2AgcLyk7+SGng38pJHxDU5zbwdsTHbPSKoA/gjcEBGbRsSWwA3AN5p4/2ZmZmZmy0xLJhjPkxIMssRiIvCZpDXSX+m3BF5O9dXAVcC7wPapbFWyx+h+CBARX0TE682IYxbwF+DoEnXnAP8dER+nOf4dERdFxKf1jHcicGtEvJT6zAbOAM7KtbkZOETSmo0NMiLmACcAQ1K/w8gSnUdybZ6OiImNHdPMzMzMbFlrsQQjIv4BLJD0TbJEYzQwBtgB6A+8EhH/lrQisDvwKHA3WbJBRHwEjATekXS3pMPTSkitU3PbmGqAynrCuQj4iaTOtQWSVgVWiYhpTby1nsD4orJxfHV1Zg5ZkvGjpgycEptpwGZArxLzmJmZmZm1aS39RXu1qxg7ApcD66XXn5BtoQLYF3g6Ij6X9ABwnqRTI2JhRBwnqTewB3Aa8C3gmNTvioi4tHYiSdPrCiIipkkaS7YqsLgLELn+3wZ+BXwdOCwiXqC0r/TLT1N0fTVQI+myuuKqZ/zGN87OfwwDqKzszMzuQ5o43VKYvuymMrOOoVBo6t90zMysvWnpp0jVnsPoTbZF6m9kKxj58xfVwB4pQRgPdAMG1w4QEa9GxBVkycWBSxHLL4EzSfecVgvmStooXf85nbmYCCxxXiPnNbIVmLxtgEn5grTt6i7gh40NMK2qFIA30jzbNNQnIm6KiP4R0b9bt84NNTczMzMza1EtnWA8T7ZC8VFakfiIbIVgB2C0pNXIDkl/MyIKEVEgO+NQLWkVSbvmxqoC3mluIBExhSwJ2DdXfCFwg6SvA6QD5hUNDHUdcIykqtSnG9nKx8Ul2l4OHE8jVookrQJcDzwcEf8iS052zB8el7RXWtExMzMzM2uTWjrBeJXs6VF/Kyr7JB2O/h7wVER8kav/A/BdoDNwRu0jYoHz+c/2qOa6AFg/d30D8H/AGEmvkCVEL/Ofw+dLiIj3gSOA30iaQrZKc3P+MHau7WzgIaBrcV3O05ImAmPJDrkfn/rOI0uG/kfSm5Imkd3/Pxt3q2ZmZmZmy54iSh0nsPaoT5+uMXJkfWfdzcxal89gmJl1DJLGR0TxsQHA3+RtZmZmZmZl5ATDzMzMzMzKxgmGmZmZmZmVjRMMMzMzMzMrm5b+oj1bhrp06U2hMK61wzAzMzOz5ZhXMMzMzMzMrGycYJiZmZmZWdk4wTAzMzMzs7JxgmFmZmZmZmXjQ94dSMydx/wxE1o7jJIqBvRt7RDMzMzMbBnwCoaZmZmZmZWNEwwzMzMzMysbJxhmZmZmZlY2TjDMzMzMzKxsOkSCIWmhpBpJEyS9JGnHXN1ASWMlTUk/w3J1PSSNSn0nS7pJ0rfTdY2kOZJeT69vb8R4wyV9LmntXNmcOmKeLunZorIaSROLyq6S9J6kDvFvZWZmZmYdW0d5itS8iKgCkPRt4EJgF0nrAHcBQyLiJUlrAX+W9F5E/BG4GrgiIv6Q+vaOiFeBP6frUcBpETEuXTc0HsBs4CfAmY2Ie1VJG0TE3yVtWVyZkooDgL8DOwOjmvzOmJmZmZktQx3xr+KrAf9Kr08Ebo2IlwAiYjZwBnBWql8XmFHbMSUX9WloPICbgUMkrdmIWO8FDkmvq4G7i+oHAxOBG1K9mZmZmVmb1lESjBXT9qIpwG+Bn6fynsD4orbjUjnAFcBTkh6TdKqkrzcwT0PjAcwhSzJ+1Ii47we+l17vBzxSVF+bdDwE7CtphUaMaWZmZmbWajriFqkdgNsl9QIERIn2ARARt0j6M7AXsD9wvKS+EfFFHfPUO17O1UCNpMsaiPsj4F+SDgUmA58vnkjqAuwDnBoRn0kaA+wJ/DE/QDoDMgygsrIzM7sPaWDKVjK9tQOw9qpQmNbaIZiZmVkTdJQVjMUiYjSwFvAN4DWgf1GTbYBJufb/iIibI2J/YAHQq57hGxwvjfkx2VmNHzYi5HuA61hye9RewOrAq5KmAwMpsU0qIm6KiP4R0b9bt86NmM7MzMzMrOV0uARD0hZAZ+BDsl/cj5FUleq6Ab8CLk7Xe9VuO0oHuLsB79UzfL3jFbkcOJ6GV4keSv3/XFReDRwXEYWIKAAbAXtKWqmB8czMzMzMWk1H2SK1oqSa9FrA0RGxEHhf0hHAbyStmuqujIjasw57AldJmp+uT4+ImXVNEhENjZdvO1vSQ8Cp9QUeEZ+RJSlIIv13JeDbZAlKbbu5kp4jO6txT31jmpmZmZm1FkWUOlJg7VGfPl1j5MjK1g7DrKx8BsPMzKztkTQ+IoqPDgAdcIuUmZmZmZm1HicYZmZmZmZWNk4wzMzMzMysbJxgmJmZmZlZ2XSUp0gZ0KVLbwqFca0dhpmZmZktx7yCYWZmZmZmZeMEw8zMzMzMysYJhpmZmZmZlY0TDDMzMzMzKxsf8u5AYu485o+Z0NphtFsVA/q2dghmZmZm7Z5XMMzMzMzMrGycYJiZmZmZWdk4wTAzMzMzs7JxgmFmZmZmZmXT5hIMSedIek3SK5JqJA3I1X1N0mxJFxb1GSVpXO66v6RRJcYuSJon6WVJkyWNlXR0rv4YSdem18MlvZdiqP35eqrbLs35pqSXJP1RUu/cOMMkTUk/YyUNrOd+T0vtJkqaIOmoXN03JH0p6fimvo9mZmZmZq2hTT1FStIOwL5Av4j4QtJaQJdckz2B14GDJZ0dEZGrW1vS3hHxWAPTTI2IrdN8GwMPSuoUEbeUaHtFRFxaFGN34F7gsIh4IZUNBDYBXpW0L3A8MDAiZkvqBzwsabuImFk01gnAt4DtIuJTSasDQ3JNhgJ/A6qBXzdwX2ZmZmZmra6trWCsC8yOiC8AImJ2RPwjV18NXAW8C2xf1PcS4NymTBYRbwM/Bk5uQreTgNtqk4s0znMR8XC6PBM4PSJmp7qXgNuAE0uMdTbww4j4NLX9JCJuy9VXAz8B1pe0XhNiNDMzMzNrFW0twXgC2EDSG5Kul7RLbYWkFYHdgUeBu8l++c4bDXwhaXAT53wJ2KKOulNz26OeTmU9U5+69ATGF5WNS+WLSVoVWDUippYaRNIGwDoRMZZsxeSQ+m/DzMzMzKz1taktUhExR9I2wCBgMHCPpLMi4layrVNPR8Tnkh4AzpN0akQszA3xC7JVjDObMK3qqVtii9QSnaUxwGrAExHxo3rmiEaU5R1KllgAjAB+B1xeYv5hwDCAysrOzOw+pL5wl3uFwrTWDsHMzMysQ2trKxhExMKIGBURPyPbjnRgqqoG9pA0nWyFoBtZEpLv+xRQwZLbp+qzNTC5Ce1fA/rl5hwAnAesnoomAdsU9emXyvOxfgrMTedASqkGjkn3OxLoK2mz4kYRcVNE9I+I/t26dW7CbZiZmZmZlV+bSjAk9Sj6JboKeEfSasBA4JsRUYiIAtmZhuJtUgAXAGc0cr4CcClwTRPCvI7sF/8dc2Ur5V5fDPxKUrc0RxVwDHB9ibEuBK5L94ek1dITqHoAK0fEern7vZBsVcPMzMzMrM1qU1ukgFWAa9LjYBcAb5Ft//ke8FTt4e/kD8DFkrrmB4iIP0maVc8cm0h6mWyl4zPgmjqeIAXZGYwjctdDImK6pEPIkoj1gH8Cs4H/TfOPTOUvSIo0xxER8X6J8W9I9/yipC+BL4HLyBKnh4raPkC2Vern9dybmZmZmVmr0lef9GrtWZ8+XWPkyMrWDqNN8xkMMzMzs6UnaXxE9C9V16a2SJmZmZmZWfvmBMPMzMzMzMrGCYaZmZmZmZWNEwwzMzMzMyubtvYUKVsKXbr0plAY19phmJmZmdlyzCsYZmZmZmZWNk4wzMzMzMysbJxgmJmZmZlZ2TjBMDMzMzOzsvEh7w4k5s5j/pgJy3TOigF9l+l8ZmZmZta2eQXDzMzMzMzKxgmGmZmZmZmVjRMMMzMzMzMrGycYZmZmZmZWNq2WYEg6R9Jrkl6RVCNpQCofJal/ej1d0lpF/Y6RdG3u+ihJE9NYkySdlsol6VxJb0p6Q9LTknrm+k2X9EDu+iBJtxbNtbKkDyWtXlT+sKSD0+sDJIWkLXL1BUkTS9zzrZIOKiorSJqX3oPan6Mk3SXpv3PtBqT3ygfzzczMzKzNapVfViXtAOwL9IuIL1IS0aUZ4+wNnALsGRH/kFQBHJmqTwR2BPpGxOeS9gRGSuoZEfNTm/7p+rVS40fEXElPAEOA29KcqwMDgcNSs2rgOeBQYHhT7yGZGhFVRff2Z2C0pPuBD4FrgR9GxIJmzmFmZmZm1uJaawVjXWB2RHwBEBGzI+IfzRjnp8BptX0jYn5E/CbVnQn8T0R8nuqeAF4ADs/1vxQ4u4E57iZLHmodADyekpZVgJ2AY4vaLLWI+CDFdzFwAvBKRDxXzjnMzMzMzMqttRKMJ4AN0tal6yXt0sxxegHjiwslrQasHBFTi6rGAT1z1/cC/SRtWs8cjwPbSOqWrg8lSzogW9l4PCLeAD6S1K/ptwDAJkVbpAal8huBrYDTgTOaObaZmZmZ2TLTKlukImKOpG2AQcBg4B5JZ0XErS08tYDIXS8ELiFbCXmsjlj/LWkkcFA6s1FFliBBtj3qyvR6RLp+qRlxLbFFKs29SNKvgf4R8WGpjpKGAcMAKis7M7P7kGZMvxSmly4uFKYt0zDMzMzMrG1otUPeEbEwIkZFxM+Ak4ADmzHMa8A2Jcb+FJgraeOiqn7ApKKyO4CdgW/WM0/tNqmDgD9ExJdpRWM34LeSppOtMhwiSc24j/osSj8lRcRNEdE/Ivp369a5zFObmZmZmTVNqyQYknpI2ixXVAW804yhLgQulrROGrerpJNT3SXA1ZJWTHV7kB3Ovis/QER8CVxBdli8Lk8Dm5EdHK/dHnUQcHtEbBgRhYjYAJiW5jAzMzMzWy611grGKsBt6bGyr5CdMxheR9tXJM1IP5fnKyLiT8B1wP9Jeo3sPEbttq9rgBeBVyW9DpwH7B8R80rM8Tvq2S4WEYuAB4BuwDOpuBp4qKjpA/zn6VI9cnHPkDQ0lf86VzY6lRWfwTgZMzMzM7N2SBHRcCtrF/r06RojR1a2dhiAz2CYmZmZdWSSxkdE/1J1/iZvMzMzMzMrGycYZmZmZmZWNk4wzMzMzMysbJxgmJmZmZlZ2bTKF+1Zy+jSpTeFwrjWDsPMzMzMlmNewTAzMzMzs7JxgmFmZmZmZmXjBMPMzMzMzMrGZzA6kJg7j/ljJpR1zIoBfcs6npmZmZl1bF7BMDMzMzOzsnGCYWZmZmZmZeMEw8zMzMzMysYJhpmZmZmZlY0TDDMzMzMzK5t2n2BIOkfSa5JekVQjaUAqHyXp9VRWI+n+on4TJN2dXn8/1+7fkl5Nr7/MlS/MvT5Z0nBJp5WIJ9+uRtJZRfV9JdXkrqslfS5phXTdW9IrufqrJL0nqd3/W5mZmZlZx9euH1MraQdgX6BfRHwhaS2gS67J4RExrkS/LcmSq50lrRwRtwC3pLrpwOCImF3UZ05EVOWuh9cR1rx8uxJeBTaUtGpEfAbsCEwBtgbGpuvn0xydgAOAvwM7A6PqGdfMzMzMrNW197+KrwvMjogvACJidkT8oxH9DgPuAJ4AvtuC8S0hIhYBLwIDUtE2wHVkiQXpvy+k14OBicANQPUyDNPMzMzMrFnae4LxBLCBpDckXS9pl6L6O3NblS7JlR8C3APcTfl/cV+xaIvUISXavADsKGllYBHZykQ+wXg+va5OMT4E7Fu7jcrMzMzMrK1q11ukImKOpG2AQWR/7b9H0lkRcWtqssQWKUnbArMi4h1JM4CbJa0REf8qU1gNbZGCLIH4CfAs8GJETJW0qaRvAKtExNuSugD7AKdGxGeSxgB7An8sup9hwDCAysrOzOw+pEy3kUwv31CFwrTyDWZmZmZmbVJ7X8EgIhZGxKiI+BlwEnBgA12qgS3SWYupwGqN6FNufwO2BQYCo1PZDOBQ/rM9ai9gdeDVFOtASqy2RMRNEdE/Ivp369a5peM2MzMzM6tXu04wJPWQtFmuqAp4p572nYChQJ+IKEREAdifZXy+IR3u/jtwDP9JMEYDp/CfBKMaOC4X50bAnpJWWpaxmpmZmZk1RbtOMIBVgNskTUqPdt0KGJ6rz5/B+D+yJzG9FxHv5do8A2wlad1mzH+upBm1P6ms+AzGRXX0fR7oGhF/T9ejgY2BF1IS8W1y26EiYi7wHLBfM+I0MzMzM1smFBGtHYOVSZ8+XWPkyMrWDqNOPoNhZmZm1jFIGh8R/UvVtfcVDDMzMzMza0OcYJiZmZmZWdk4wTAzMzMzs7JxgmFmZmZmZmXTrr9oz76qS5feFArjGm5oZmZmZtZCvIJhZmZmZmZl4wTDzMzMzMzKxgmGmZmZmZmVjc9gdCAxdx7zx0xocr+KAX1bIBozMzMzWx55BcPMzMzMzMrGCYaZmZmZmZWNEwwzMzMzMysbJxhmZmZmZlY2TjDMzMzMzKxs2n2CIekASSFpi3Q9RlKNpHclzUqvayQVJE2XtFYd45wqab6k1XNlu6ax98uVPZrKH0rjviXpk9w8O6Z2EyTd3UDsR0h6RdJrqf1vJX09V/8NSV9KOn4p3yYzMzMzs2Wi3ScYQDXwHHAoQEQMiIgq4P8B90REVfqZ3ohxXgQOKCqfAZxT3DgiDkjzHAc8m5vnBUlbkr23O0taudRkkvYCTgX2joieQD/gBaB7rtlQ4G8pNjMzMzOzNq9dJxiSVgF2Ao4lJRjNHGcTYBXgXJb8ZX4C8ImkbzVhyMOAO4AngO/W0eYc4LSIeA8gIhZGxM0R8XquTTXwE2B9Ses1YX4zMzMzs1bR3r9obwjweES8IekjSf0i4qVmjFMN3A08C/SQtHZE/DNX/4v082QjxzsE+BbQAzgpjV2sJ1BnrJI2ANaJiLGS7k1jXl6i3TBgGEBlZWdmdh/SyBBzpje9y9IqFKYt+0nNzMzMrMW16xUMssRgRHo9guZvJToUGBERi4AHybYmLRYRzwJIGtTQQJK2BWZFxDvAX4B+ktZooE/vdH5jqqRDcjHdm17XeW8RcVNE9I+I/t26dW4oPDMzMzOzFtVuVzAkdQN2A3pJCqAzEJLOiIhowjh9gM2AJyUBdAHeBq4ranoB2bamBQ0MWQ1sIWl6ul4NOBD4bVG718jOXTwdEa8CVZKuBVbMjdNd0uHpulLSZhHxZmPvzczMzMxsWWvPKxgHAbdHxIYRUYiIDYBpwMAmjlMNDE9jFCKiElhP0ob5RhHxBLAG0LeugSR1Ilv96FM7HrA/pVcfLgQulbR+rmzFNE4PYOWIWC83zoUsxTkTMzMzM7NloT0nGNXAQ0VlD5AdsK7PK5JmpJ/LyX5pLx7nIUr/Mn8BsH6J8lo7A+/VHtxOngG2krRuvmFE/Am4GnhM0iRJLwALgT9T9735aVJmZmZm1qapCbuJrI3r06drjBxZ2dphNIoPeZuZmZm1X5LGR0T/UnXteQXDzMzMzMzaGCcYZmZmZmZWNk4wzMzMzMysbJxgmJmZmZlZ2bTb78GwJXXp0ptCYVxrh2FmZmZmyzGvYJiZmZmZWdk4wTAzMzMzs7JxgmFmZmZmZmXjMxgdSMydx/wxExrVtmJA3xaOxszMzMyWR41awZC0ZksHYmZmZmZm7V9jt0iNkXSfpH0kqUUjMjMzMzOzdquxCcbmwE3AkcBbkn4pafOWC8vMzMzMzNqjRiUYkXkyIqqB44CjgbGS/ipphxaN0MzMzMzM2o1GHfKW1A04gmwF4wPgf4CRQBVwH7BRC8VnZmZmZmbtSGO3SI0GVgOGRMR3IuLBiFgQEeOAG1suvKUjaaGkGkmvSZog6ceSOhW1+YOk0UVlwyWdVmK8OfXMdZWk9/LjS+ou6dE09yRJfyrq0y3FVyNpZupfe72hpGm1B+wlrZGuN2zu+2FmZmZm1tIa+5jacyPi3nyBpKERcV9E/KoF4iqXeRFRBSBpbeAuYHXgZ6ns60A/YI6kjSJiWnMmSUnFAcDfgZ2BUanqf4EnI+Kq1K5Pvl9EfEi2CoSk4cCciLg0N+4NwEXAsPTfmyLinebEaGZmZma2LDR2BeOsEmU/LWcgLS0i/kn2i/pJuSdhHQg8AowADl2K4QcDE4EbgOpc+brAjFwMrzRx3CuA7SWdAgwELluKGM3MzMzMWly9KxiS9gb2AdaTdHWuajVgQUsG1hIi4u202rA22VmSauD89Pp+4MJmDl0N3A38AfilpBUi4kvgOuAeSScB/wfcEhH/aEK8X0o6HXgc2DMi/l3cRtIwssSJysrOzOw+pHGDT29sFOVXKDRrocjMzMzM2oGGVjD+AYwD5gPjcz8jgW+3bGgtRpCdjwA2BZ6LiDeABZJ6NXkwqQtZEvZwRHwKjAH2BIiIPwMbA78BtgBelvSNJk6xN/A+UDK2iLgpIvpHRP9u3To3NXwzMzMzs7KqdwUjIiYAEyTdGRHtbsWimKSNgYXAP8mehLUGMC3tmFqNbJvUuU0cdi+ycx2vpnFWAj4H/ggQER+Rnf24S9KjZGc0HmhkvFXAt4DtgeckjYiI95sYn5mZmZnZMlPvCoak2oPdL0t6pfhnGcRXNmnl4Ebg2ogIsm1Ne0VEISIKwDY07xxGNXBcbpyNgD0lrSRpN0krpflXBTYB3m1kvCI703FKRLwLXAJcWn8vMzMzM7PW1dBTpK6RtBOwb1H5hmTbp9q6FSXVACuQnRm5A7hcUgH4JvC32oYRMU3Sp5IGpKJz0+Hq2vr1gZUkLT60DVxPtlXs+Fy7uZKeA/ZLc1wraQFZMvfbiHixkbH/AHg3Ip7MzXWMpF0i4q+NHMPMzMzMbJlS9sf8OiqzLT1nFz/9SFJ/4GcRsV8Lx2dN0KdP1xg5srK1w2iQD3mbmZmZtW+SxkdE/1J1DR3yLpR6tGr6gr1CGWIzMzMzM7MOpKEEo6KeuhXLGYiZmZmZmbV/DSUYL0r6QXGhpGPJHldrZmZmZma2WEOHvE8BHpJ0OP9JKPoDXYADWjAuMzMzMzNrhxr6HowPgB0lDeY/X/T2x4h4qsUjsybr0qU3hcK41g7DzMzMzJZjDa1gABARTwNPt3AsZmZmZmbWzjV0BsPMzMzMzKzRnGCYmZmZmVnZNGqLlLUPMXce88dMaFbfigF9yxyNmZmZmS2PvIJhZmZmZmZl4wTDzMzMzMzKxgmGmZmZmZmVjRMMMzMzMzMrGycYZmZmZmZWNk4wAEkh6Y7c9dckzZL0aLo+RtK1RX0mSLq7qOxWSZ9LWjVXdlUaf610PaeOGBZKqsn9FCTtWhuDmZmZmVl74AQjMxfoJWnFdP0t4L26Gkvakuy921nSykXVbwH7p3adgMH1jZUzLyKqcj/Tm3gPZmZmZmatzgnGfzwGfCe9rgburqftYcAdwBPAd4vq7gYOSa93BZ4HFpQtSjMzMzOzNsxftPcfI4D/l7Yk9QFuBgbV0fYQslWOHsBJfDUZeRPYX9IaZInK74G9GzH/ipJq0utpEXFAY4KWNAwYBlBZ2ZmZ3Yc0ptuSpjevW7FCYVp5BjIzMzOzdskJRhIRr0gqkCUFf6qrnaRtgVkR8Y6kGcDNktaIiH/lmj0IHAoMAI5vZAjzIqKqGXHfBNwE0KdP12hqfzMzMzOzcvIWqa8aCVxK/dujqoEtJE0HpgKrAQcWtRkB/Bx4MiIWtUCcZmZmZmZtkhOMr7oZ+N+IeLVUZTq0PRToExGFiCiQHeiuzreLiHeBc4DrWzZcMzMzM7O2xVukciJiBnBVPU12Bt6LiPxToZ4BtpK0btFYvy5TWLunrVi1hkbE6DKNbWZmZmZWVorwtv2Ook+frjFyZGWrxuBD3mZmZmYdn6TxEdG/VJ23SJmZmZmZWdk4wTAzMzMzs7JxgmFmZmZmZmXjQ94dSJcuvSkUxrV2GGZmZma2HPMKhpmZmZmZlY0TDDMzMzMzKxsnGGZmZmZmVjZOMMzMzMzMrGx8yLsDibnzmD9mQpP7VQzo2wLRmJmZmdnyyCsYZmZmZmZWNk4wzMzMzMysbJxgmJmZmZlZ2TjBMDMzMzOzslluEgxJB0gKSVvkynaV9GhRu1slHZRe7yvpZUkTJE2SdLykcyTVpJ+FudcnSxou6bTcOO9J6pqu15I0vWiubrn+M1P72usNJU2TtGZqu0a63rCF3yozMzMzs2Zbnp4iVQ08BxwKDG+osaQVgJuA7SJiRkoUChHxOnBBajMnIqpyfYrHXQj8F3BDqTki4kOgKtd3TkRcmhvvBuAiYFj6700R8U6Dd2pmZmZm1kqWixUMSasAOwHHkiUYjbEqWQL2IUBEfJGSi6a4EjhVUnMTuSuA7SWdAgwELmvmOGZmZmZmy8RykWAAQ4DHI+IN4CNJ/RrqEBEfASOBdyTdLelwSU19v94lWzU5sqkBpxi+BE4nSzROiYh/N2ccMzMzM7NlZXnZIlVNtpoAMCJdvwREHe0DICKOk9Qb2AM4DfgWcEwT5/4lWaLyxyb2q7U38D7QC3iyuFLSMLItVFRWdmZm9yFNn2F6w00KhWlNH9fMzMzMljsdPsGQ1A3YDeglKYDOQEg6g2z70xpFXdYEZtdeRMSrwKuS7gCm0cQEIyLeklQDHNyM2KvIkprtgeckjYiI94vGv4nsrAh9+nStK2EyMzMzM1smloctUgcBt0fEhhFRiIgNyBKFgcCbQKWkLQHSE5r6AjWSVpG0a26cKqC5B6wvIFsBaTRJIjscfkpEvAtcAlxafy8zMzMzs9a1PCQY1cBDRWUPAIdFxBfAEcAtaZXhfuC4iPgEEHCGpNdT3fk0fXsUABHxGtmWrKb4AfBuRNRui7oe2ELSLs2JwczMzMxsWVCEd9V0FH36dI2RIytbZGyfwTAzMzOzWpLGR0T/UnXLwwqGmZmZmZktI04wzMzMzMysbJxgmJmZmZlZ2TjBMDMzMzOzsunw34OxPOnSpTeFwrjWDsPMzMzMlmNewTAzMzMzs7JxgmFmZmZmZmXjBMPMzMzMzMrGCYaZmZmZmZWND3l3IDF3HvPHTGh0+4oBfVswGjMzMzNbHnkFw8zMzMzMysYJhpmZmZmZlY0TDDMzMzMzKxsnGGZmZmZmVjYtlmBIWl/SHyS9KWmqpKskdUl1u0r6RNLLkqZIurSo7zckfSnp+KLy6ZIeyF0fJOnW3PVeksamMWsk3SPpm6nuVknTUnmNpBfqiHs7Sc9Iej2N81tJK6W6IZJeSeWvShqS6zdKUv/cdUHSxNz9hqT9cvWPpvKHUjxvpfekNr6nJP0q135DSW9L+nqT/iHMzMzMzJahFkkwJAl4EHg4IjYDNgdWAS7INXs2IrYGtgb2lbRTrm4o8DegusTw/SX1LDFnL+Aa4OiI2CIiqoA7gUKu2ekRUZV+diwxRnfgPuDMiOgBbAk8DqwqqS9wKbB/RGwBfBe4VFKfht8RAGYA5xQXRsQBKdbjyN6TqnT9HWB/SVumplcB50XEx42cz8zMzMxsmWupFYzdgPkRcQtARCwETgX+q3Y1oFZEzANqgPVyxdXAT4D1JeXLIfsl/+wSc54J/DIiJufGHhkRzzQh7hOB2yJidOofEXF/RHwAnJbGn5bqpgEXAqc3cuwJwCeSvtWYxul9+TFwvaS9gVUj4s4m3IuZmZmZ2TLXUglGT2B8viAiPgXeBTbNl0taA9gMeCZdbwCsExFjgXuBQ4rGvhfoJ2nTovKewEsNxHVJbgtSqV/WexXHXd89AeNSeWP9Aji3sY0j4k/AR8DtwA+bMI+ZmZmZWatoqS/aExANlA+S9ArQA7goImam8kPJkgiAEcDvgMtzYywELgF+CjxWcnKpG/AXYCXgpoioPeNxekTc36w7Kn1P+bJS9/uVsoh4VhKSBjVh3uuAFSPi9ZJBScOAYQCVlZ2Z2X1I40eeXndVoTCt8eOYmZmZmSUttYLxGtA/XyBpNWADYGoqejYi+gC9gf+WVJXKq4FjJE0HRgJ9JW1WNP4dwM7AN4vm7AcQER+mcww3kZ39aErc2zT2ntJ8k9LrD4E1cnVrArNLjHMBJc5i1GNR+ikpIm6KiP4R0b9bt85NGNbMzMzMrPxaKsH4C7CSpKMAJHUGLgNujYjP8w0j4g2yswxnSuoBrBwR60VEISIKqe7Qoj5fAlcAp+SKLwbOyR2KhmwFoymuBY6WNKC2QNIRktYhO/vxU0mFVF4gOwtyWWo6CjgiHXAHOBp4uniCiHiCLBHp28TYzMzMzMzavBZJMCIigAOAoZLeBN4A5lP6cDbAjWQrEmcDDxXVPUDpp0n9jtwWr4h4FfgRcHt6jOzzZE+BuivXJ38Go6b2sbm5MT4gS2YuTY+pnQwMAj6NiBqyg+SPSJoCPAKckcohWy35DJggaQLZyslXHr+bcwGwfh11ZmZmZmbtlrJcwDqCPn26xsiRlWUZy2cwzMzMzKwuksZHRPHxAcDf5G1mZmZmZmXkBMPMzMzMzMrGCYaZmZmZmZWNEwwzMzMzMyublvqiPWsFXbr0plAY19phmJmZmdlyzCsYZmZmZmZWNk4wzMzMzMysbJxgmJmZmZlZ2TjBMDMzMzOzsvEh7w4k5s5j/pgJjWpbMaBvC0djZmZmZssjr2CYmZmZmVnZOMEwMzMzM7OycYJhZmZmZmZl4wTDzMzMzMzKpsMkGJIWSqqR9JqkCZJ+LKlTqttV0iepvvZnj1QXki7LjXOapOGpz+iiOb4m6QNJ60q6VdK03HgvpDbHSJqVyqZIOrWemPeWNE7S5NT20lzdsFQ2RdJYSQPL/Z6ZmZmZmZVbR3qK1LyIqAKQtDZwF7A68LNU/2xE7Fui3xfA9yRdGBGzc+XPAOtLKkTE9FS2BzAxIt6XBHB6RNxfYsx7IuIkSd2A1yXdHxF/zzeQ1Au4FvhOREyR9DVgWKrbFzgeGBgRsyX1Ax6WtF1EzGza22JmZmZmtux0mBWMvIj4J9kv6ycpZQL1WADcBHxlpSEiFgH3AYfkig8F7m5CHB8CbwHrlqg+A7ggIqaktgsi4vpUdyZZ8jI71b0E3Aac2Ni5zczMzMxaQ4dMMAAi4m2y+1s7FQ0q2iK1Sa75dcDhklYvGuZusqQCSV2BfYAHcvWX5Ma7szgGSd8EKoBXSoTYCxhfR/g9S9SNS+VmZmZmZm1WR9oiVUp+9aKuLVJExKeSbgdOBublyl+UtIqkHsCWwN8i4l+5rnVtkTpE0mCgB/CDiJi/1HeS3UssUSgNI22tqqzszMzuQxo32vS6qwqFaU2PzszMzMyMDryCIWljYCHwz0Z2uRI4Fli5qHwE2SpGU7ZH3RMRPYFBwGWS1inR5jVgmzr6TypR1y+Vf0VE3BQR/SOif7dunRsZnpmZmZlZy+iQCYakbwA3AtdGxBJ/9S8lIj4C7iVLMvLuBo4AdgNGNiWOiBgN3AH8qET1JcDZkjZPMXeS9ONUdzHwq3RIHElVwDHA9SXGMTMzMzNrMzrSFqkVJdUAK5Ad3L4DuDxXPyjV1/pFie1NlwEn5QsiYpKkz4HxETG3qP0lks7NXW9XIq5fAS9J+mVEfJYb9xVJpwB3S1qJbPvTH1PdSEnrAS9ICuAz4IiIeL/u2zczMzMza31q5B/4rR3o06drjBxZudTj+AyGmZmZmdVH0viI6F+qrkNukTIzMzMzs9bhBMPMzMzMzMrGCYaZmZmZmZWNEwwzMzMzMyubjvQUqeVely69KRTGtXYYZmZmZrYc8wqGmZmZmZmVjRMMMzMzMzMrGycYZmZmZmZWNk4wzMzMzMysbHzIuwOJufOYP2ZCk/tVDOjbAtGYmZmZ2fLIKxhmZmZmZlY2TjDMzMzMzKxsnGCYmZmZmVnZOMEwMzMzM7OyabMJhqSQdFnu+jRJw4vaTJB0d1HZ9pLGSKqRNLm2j6RjJF1b1HaUpP6SbpV0fFHdEEl/Sq/npP8WJE0sEeutkg4qKitImpfiqP05qqjNQ6n8LUmf5NrtmGIbl2vbX9KoRrx1ZmZmZmatpi0/ReoL4HuSLoyI2cWVkrYkS5B2lrRyRMxNVbcBB0fEBEmdgR6NmOtu4Czg17myQ1P50pgaEVV1VUbEAQCSdgVOi4h9a+skAawtae+IeGwp4zAzMzMzWyba7AoGsAC4CTi1jvrDgDuAJ4Dv5srXBt4HiIiFETGpEXP9H7CFpHUBJK0E7AE83KzIy+cS4NxWjsHMzMzMrNHacoIBcB1wuKTVS9QdAtxDtspQnSu/Ang9bT86XlJFvk9+yxLQH7JEBHgQODi1+y7wdER8tpTxb1K0RWpQE/uPBr6QNHgp4zAzMzMzWyba8hYpIuJTSbcDJwPzasslbQvMioh3JM0Abpa0RkT8KyL+V9KdwJ5kqxzVwK6p6z0RcVJunFG56e4mWzG4imx71O1luIV6t0g10i/IVjHOLFUpaRgwDKCysjMzuw+pd7BCYdpShmNmZmZmVre2voIBcCVwLLByrqyabEvTdGAqsBpwYG1lREyNiBuA3YG+kro1Yp7ngXUl9QV2BP5UluiXUkQ8BVQA29dRf1NE9I+I/t26dV62wZmZmZmZFWnzCUZEfATcS5ZkIKkTMBToExGFiCgA+5O2SUn6jtIJaWAzYCHwcSPmiTTPbcCfImJ+ee9kqVwAnNHaQZiZmZmZNaTNJxjJZcBa6fXOwHsR8V6u/hlgq3RI+0iyMxg1ZIfAD09nLBrjbqAvMKKeNj0kzcj9DE3lv86VjU5lxWcwTm5kHF8REX8CZjWnr5mZmZnZsqTsD/fWEfTp0zVGjqyst43PYJiZmZnZ0pI0PiL6l6prLysYZmZmZmbWDjjBMDMzMzOzsnGCYWZmZmZmZeMEw8zMzMzMyqZNf9GeNU2XLr0pFMa1dhhmZmZmthzzCoaZmZmZmZWNEwwzMzMzMysbJxhmZmZmZlY2TjDMzMzMzKxsfMi7A4m585g/ZkKD7SoG9F0G0ZiZmZnZ8sgrGGZmZmZmVjZOMMzMzMzMrGycYJiZmZmZWdk4wTAzMzMzs7Jp0QRD0jmSXpP0iqQaSQNydV+TNFvShUV9VpH0a0lTU99navtJWpjGmSjpEUlfL+o7QdLdRWW3Svpc0qq5sqskhaS1isat/TkrlY+SNC7Xr38q+3au7RxJr6fXt6d2AyWNlTQl/Qyr5z3aW9I4SZNT20sbuiczMzMzs7aqxZ4iJWkHYF+gX0R8kX6Z75JrsifwOnCwpLMjIlL5b4FpwGYRsUjSxsCWqW5eRFSl8W8DTgQuSNdbkiVMO0taOSLm5uZ6C9gf+L2kTsBg4L1c/eJxS1hb0t4R8VhtQUT8GfhzmncUcFpEjEvX6wB3AUMi4qV033+W9F5E/LHoPeoFXAt8JyKmSPoaMCxXX989mZmZmZm1OS25grEuMDsivgCIiNkR8Y9cfTVwFfAusD2ApE2AAcC5EbEo9Xu7+BfzZDSwXu76MOAO4Angu0Vt7wYOSa93BZ4HFjTyPi4Bzm1kW8iSnlsj4iXI7hs4AzirRNszgAsiYkpquyAirs/V13dPZmZmZmZtTksmGE8AG0h6Q9L1knaprZC0IrA78CjZL//VqaonUBMRC+sbWFLn1H9krvgQ4J6i8Wq9CXxD0hqpbkRR/YpFW6QOydWNBr6QNLjhW158D+OLysal8mK9SrTNq++ezMzMzMzanBbbIhURcyRtAwwi25J0j6SzIuJWsq1TT0fE55IeAM6TdGojhl1RUg1QIPvF/EkASdsCsyLiHUkzgJslrRER/8r1fRA4lGyF5PiicevbIgXwC7JVjDMbEaOAKFFeqqzuQRp3T6TzHcMAKis7M7P7kDrHLBSmNSUEMzMzM7Mma9FD3hGxMCJGRcTPgJOAA1NVNbCHpOlkiUI3siTkNaBvOidRSm0isCHZeY4Tc+NtkcabCqyWm6vWCODnwJO126+acB9PARWkrVwNeA3oX1S2DTCpjrbb1DFOY+6JiLgpIvpHRP9u3To3IjwzMzMzs5bTYgmGpB6SNssVVQHvSFoNGAh8MyIKEVEgSxSqI2Iq2Xai8yUpjbOZpP3zY0fEJ8DJwGmSugJDgT658fanaEtRRLwLnAPkzzg0xQVkZyYach1wjKSqFH834FfAxSXaXgKcLWnz1LaTpB+nBKvBezIzMzMza2tabIsUsApwTXqU7AKyJzkNA74HPFV7+Dv5A3BxShaOAy4D3pL0OfAhcHrx4BHxsqQJwMHAexGRfyrUM8BWktYt6vPrOmKt3XpV6/GI+Mqh7Ij4k6RZDdwzEfG+pCOA36RH4wq4MiIeKdH2FUmnAHdLWolsG9UfgZ3ru6eIeL+hOMzMzMzMWoP+83RYa+/69OkaI0dW1lnvMxhmZmZmVg6SxkdE8bEAwN/kbWZmZmZmZeQEw8zMzMzMysYJhpmZmZmZlY0TDDMzMzMzK5uWfIqULWNduvSmUBjX2mGYmZmZ2XLMKxhmZmZmZlY2TjDMzMzMzKxsnGCYmZmZmVnZ+AxGBxJz5zF/zISSdRUD+i7jaMzMzMxseeQVDDMzMzMzKxsnGGZmZmZmVjZOMMzMzMzMrGycYJiZmZmZWdk4wTAzMzMzs7Jp9wmGpIWSaiRNlHSfpJVS+ZyidsdIujZ3PUzSlPQzVtLAXN0oSa+ncWsk3Z/Kh0v6XNLaubZzil9L6p/i6ZKuN5H0tqTV6riHUyXNl7R6ruyC3Pw1kt5I97rK0r5nZmZmZmYtpd0nGMC8iKiKiF7Av4ETGuogaV/geGBgRGyR+twlaZ1cs8PTuFURcVCufDbwk/rGj4hxwDPAaanoOuCciPi0ji7VwIvAAbkxzsnNX5XqL4yIOXWMYWZmZmbW6jpCgpH3LLBpI9qdCZweEbMBIuIl4DbgxEb0vRk4RNKaDbQ7GzhO0hnAChFxd6lGkjYBVgHOJUs0SrU5guy+hjciPjMzMzOzVtNhvmhP0teAvYHHU9GKkmpyTdYERqbXPYHxRUOMA47OXd8paV56/WREnJ5ezyFLMn4E/KyueCLiY0m/Aq4Htqon9GrgbrLkqIektSPin7n7KgAXAbtGxIJ6xjEzMzMza3UdIcHIJxLPAr9Lr+elrUVAdgYD6F/POAIid3142upUytVAjaTLGohtb+ADsgTj9TraHAocEBGLJD0IDCXbUoWkzsDvgfMi4q2SQUvDgGEAlZWdmdl9SOlZpmf/KRSmNRCymZmZmVnzdYQE4yuJRCNNArYBnsqV9UvlDUqrE3cBP6yrTTrnsTrwbeAhSX+OiM+L2vQBNgOelATQBXiblGCQbZt6PyJuqSeWm4CbAPr06Rp1tTMzMzMzWxY62hmMxroY+JWkbgCSqoBjyLYzNdblZAfFl0jSJK0IXAacGBGvAn8AzikxRjUwPCIK6acSWE/ShpK2TzENa0JMZmZmZmatqiOsYDRZRIyUtB7wgqQAPgOOiIj3c83yZzBmR8QeRWPMlvQQcGqJKc4DHo6I2hWR4WRbqm6NiDdz7Q4l20aV91Aq3w1YCXg6rW7UOjAipjb2Xs3MzMzMliVFeFdNR9GnT9cYObKy3jY+g2FmZmYdyZdffsmMGTOYP39+a4fSIVVUVLD++uuzwgorfKVc0viIKHm+eblcwTAzMzOzjmHGjBmsuuqqFAoFinZ92FKKCD788ENmzJjBRhtt1Oh+y+sZDDMzMzPrAObPn0+3bt2cXLQASXTr1q3Jq0NOMMzMzMysXXNy0XKa8946wTAzMzMzKzJz5kwOPfRQNtlkE7baaiv22Wcf3njjjdYOq13wGYwOpEuX3hQKdX03oJmZmZk1RkRwwAEHcPTRRzNixAgAampq+OCDD9h8881bObq2zysYZmZmZmY5Tz/9NCussAInnHDC4rKqqioGDhzI6aefTq9evejduzf33HMPAKNGjWKXXXbh4IMPZvPNN+ess87izjvvZLvttqN3795MnZp9w8AxxxzDCSecwKBBg9h888159NFHAZg+fTqDBg2iX79+9OvXjxdeeGHxuLvuuisHHXQQW2yxBYcffjgRwV/+8hcOOOCAxbE9+eSTfO9731tWb0+DvIJhZmZmZpYzceJEttlmmyXKH3zwQWpqapgwYQKzZ89m2223ZeeddwZgwoQJTJ48mTXXXJONN96Y4447jrFjx3LVVVdxzTXXcOWVVwJZMvHXv/6VqVOnMnjwYN566y3WXnttnnzySSoqKnjzzTeprq5m3LhsV8rLL7/Ma6+9RmVlJTvttBPPP/88u+22GyeeeCKzZs3iG9/4Brfccgvf//73l9n70xCvYJiZmZmZNcJzzz1HdXU1nTt3pnv37uyyyy68+OKLAGy77basu+66dO3alU022YQ999wTgN69ezN9+vTFYxx88MF06tSJzTbbjI033pgpU6bw5Zdf8oMf/IDevXszdOhQJk2atLj9dtttx/rrr0+nTp2oqqpi+vTpSOLII4/k97//PR9//DGjR49m772Lv7u59XgFowOJufOYP2bCEuUVA/q2QjRmZmZm7VPPnj25//77lyiv7wuqu3btuvh1p06dFl936tSJBQsWLK4rfiqTJK644gq6d+/OhAkTWLRoERUVFSXH7dy58+Kxvv/977PffvtRUVHB0KFD+drX2s6v9V7BMDMzMzPL2W233fjiiy/4zW9+s7jsxRdfZI011uCee+5h4cKFzJo1i2eeeYbtttuuSWPfd999LFq0iKlTp/L222/To0cPPvnkE9Zdd106derEHXfcwcKFCxscp7KyksrKSn7xi19wzDHHNPUWW1TbSXXMzMzMzNoASTz00EOccsopXHTRRVRUVFAoFLjyyiuZM2cOffv2RRIXX3wx66yzDlOmTGn02D169GCXXXbhgw8+4MYbb6SiooIf/vCHHHjggdx3330MHjyYlVdeuVFjHX744cyaNYutttqqubfaIlTfUo+1L9ts2TOev/WuJcq9RcrMzMw6qsmTJ7Plllu2dhiNcswxx7Dvvvty0EEHlWW8k046ia233ppjjz22LOPVpdR7LGl8RPQv1d4rGGZmZmZm7cw222zDyiuvzGWXXdbaoSzBCYaZmZmZ2TJw6623lm2s8ePHl22scuswh7wldZNUk35mSnovvf5Y0qSitsMlnZa7Pk3SFEkTJU2QdFQq31fSy6lskqTjc32GpT5TJI2VNDBXN0rSuNx1f0mj6on9VEnzJa2eK7sgdz81kt6QtFDSKkv9ZpmZmZmZtZAOk2BExIcRURURVcCNwBXpdRWwqK5+kk4AvgVsFxG9gJ2zYq0A3ATsFxF9ga2BUanPvsDxwMCI2AI4AbhL0jq5odeW1NgHElcDLwKLv5IxIs6pvZ90Hy8CF0bEnEaOaWZmZma2zHWYBGMpnA38MCI+BYiITyLiNmBVsi1kH6byLyLi9dTnTOD0iJid6l4CbgNOzI17CXBuQ5NL2gRYJbWtrqPNEcCmwPCm3pyZmZmZ2bK0XJ/BkLQqsGpETC2ui4iPJI0E3pH0F+BR4O6IWAT0BIo3vo0Djs5djwYOkDQY+KyeMKqBu4FngR6S1o6If+ZiLAAXAbtGxILizpKGAcMAKis7M7P7kCVnmP6fl4XCtHpCMTMzMzNbOsvDCkZdz+ENQPXUExHHAbsDY4HTgJvrmafUWL+g4VWMQ4ERKXF5EBi6eECpM/B74LyIeKuOGG+KiP4R0b9bt84NTGVmZmZm5da5c2eqqqro1asXQ4cO5fPPP2fcuHGcfPLJ9fabPn06vXr1anD8N954g3322YdNN92ULbfckoMPPpgPPvigzvajRo1i3333bfJ9lMvysILxIbBGUdmawLSI+FTSXEkbR8TbpTpHxKvAq5LuAKYBxwCTgG2Ap3JN+6XyfN+nJP0c2L7U2JL6AJsBT6avje8CvA1cl5qcC7wfEbc08l7NzMzMlmvzx0wo63iN+T6xFVdckZqaGiD78rsbb7yRH//4x/TvX/JrIppk/vz5fOc73+Hyyy9nv/32A+Dpp59m1qxZdO/efanHbwkdfgUjHYp+X9LuAJLWBPYCnktNLgSuk7Raql8tPSFqFUm75oaqAt5Jry8GfiWpW+pTRZZ4XF8ihAuAM+oIrxoYHhGF9FMJrCdpQ0nbpzGHNfWezczMzKx1DBo0iLfeeusrqwjDhw/nv/7rv9h1113ZeOONufrqq5fo9/bbb7P11lvz4osvfqX8rrvuYocddlicXAAMHjyYXr16MX36dAYNGkS/fv3o168fL7zwwuI2n376KQcccABbbbUVJ5xwAosW1fnMo7JbHlYwAI4iSyJqv4nk/Ny5ixvIDlm/KOlL4EvgMrItT2dI+jUwD5hL9gs/ETFS0nrAC5KC7IzFERHxfvHEEfEnSbPqiOtQoPhJUw+l8t2AlYCn0+pGrQNLnRkxMzMzs9a1YMECHnvsMfbaa68l6qZMmcLTTz/NZ599Ro8ePfjv//7vxXWvv/46hx56KLfccgtVVVVf6Tdx4kS22WabkvOtvfbaPPnkk1RUVPDmm29SXV3NuHHZNyWMHTuWSZMmseGGG7LXXnvx4IMPlu0bxBvSIROMiBhedD0JGFxH2yBbkbi4RPU+9cxxA1lyUqpu16Lrkp+KiNioRNmP08tf1TW3mZmZmbUd8+bNW5wYDBo0iGOPPfYrqwkA3/nOd+jatStdu3Zl7bXXXnyGYtasWey///488MAD9OzZs0nzfvnll5x00knU1NTQuXNn3njjjcV12223HRtvvDEA1dXVPPfcc04wzMzMzMzag/wZjLp07dp18evOnTuzYEH2cNDVV1+dDTbYgOeff75kgtGzZ0/++te/lhzziiuuoHv37kyYMIFFixZRUVGxuK5oB8wS1y2pw5/BMDMzMzNrq7p06cLDDz/M7bffzl133bVE/WGHHcYLL7zAH//4x8Vljz/+OK+++iqffPIJ6667Lp06deKOO+5g4cKFi9uMHTuWadOmsWjRIu655x4GDhy4TO4HnGCYmZmZmbWqlVdemUcffZQrrriCP/zhD1+pW3HFFXn00Ue55ppr2Gyzzdhqq6249dZbWXvttfnhD3/Ibbfdxvbbb88bb7zByiuvvLjfDjvswFlnnUWvXr3YaKONOOCAA5bZ/Sg7gmAdQZ8+XWPkyMp62/iL9szMzKwjmTx5MltuuWVrh9GhlXqPJY2PiJLP4fUZjA6kS5feFArjWjsMMzMzM1uOeYuUmZmZmZmVjRMMMzMzMzMrGycYZmZmZmZWNj6D0YHE3HnMHzNhifKKAX1bIRozMzMzWx55BcPMzMzMzMrGCYaZmZmZWTNFBAMHDuSxxx5bXHbvvfey1157LdF21KhR7LvvvgDceuutnHTSSWWNZezYsey888706NGDLbbYguOOO47PP/+8zvYtEQN4i5SZmZmZdSDTp29U1vEa+g4xSdx4440MHTqUwYMHs3DhQs455xwef/zxssbRkA8++IChQ4cyYsQIdthhByKCBx54gM8++4yVVlppmcbiFQwzMzMzs6XQq1cv9ttvP371q19x/vnnc8QRR3DBBRew7bbbsvXWWy/x7dzF3nnnHXbffXf69OnD7rvvzrvvvsvChQvZeOONiQg+/vhjOnXqxDPPPAPAoEGDeOutt74yxnXXXcfRRx/NDjvsAGSJz0EHHUT37t0ZO3YsO+64I1tvvTU77rgjr7/++uJ+f//739lrr73o0aMH559/flneDycYZmZmZmZL6Wc/+xl33XUXjz32GPPnz2e33XbjxRdf5Omnn+b0009n7ty5dfY96aSTOOqoo3jllVc4/PDDOfnkk+ncuTObb745kyZN4rnnnmObbbbh2Wef5YsvvmDGjBlsuummXxlj4sSJbLPNNiXH32KLLXjmmWd4+eWX+d///V/OPvvsxXVjx47lzjvvpKamhvvuu49x45b+S5tbNcGQtFBSjaSJku6TtFIqnyOpd6qrkfSRpGnpdeTK50h6Pb2+XdJKku6U9Goa8zlJqxTNNUHSS5J2TOW7Snq0KK5bJR2UXo9Kc0yQ9KKkqly7VSTdIGmqpJcljZf0g1RXkDSxaNzhkk4r8T4Ml/Re7r34bq7uVEnzJa1etjfezMzMzMpq5ZVX5pBDDuHII4/kySef5KKLLqKqqopdd92V+fPn8+6779bZd/To0Rx22GEAHHnkkTz33HNAtlLxzDPP8Mwzz/DTn/6U5557jhdffJFtt922SbF98sknDB06lF69enHqqafy2muvLa771re+Rbdu3VhxxRX53ve+t3jupdHaKxjzIqIqInoB/wZOqK2IiFdTXRUwEjg9XStXPg44PF0fBfwI+CAieqcxjwW+LJqrL/BT4MImxHl46nc9cEmu/LfAv4DNImJrYC9gzSa/C5kr0j0NBW6WVPtvUw28CBzQzHHNzMzMbBno1KkTnTp1Wnz+oaamhpqaGt5991223HLLRo8jCcgSjGeffZaxY8eyzz778PHHHzNq1Ch23nnnJfr07NmT8ePHlxzvvPPOY/DgwUycOJFHHnmE+fPnLzFXXdfN0doJRt6zwKYNtqrfusB7tRcR8XpEfFGi3WpkiUFTjQbWA5C0CbAdcG5ELErzzYqIXzVj3MUiYjKwAFgrzbEKcC5ZomFmZmZmbdy3v/1trrnmGiICgJdffrne9jvuuCMjRowA4M4772TgwIEADBgwgBdeeIFOnTpRUVFBVVUVv/71rxk0aNASY5x00kncdtttjBkzZnHZ73//e2bOnMknn3zCeuutB2RPjsp78skn+eijj5g3bx4PP/wwO+20U7Pvu1abSDAkfQ3YG3h1KYe6GThT0mhJv5C0Wa5uxbQFaQrZysPPmzH+XsDD6XVPYEJtclGHTXLbuWrIrdDURdIAYBEwiyypuJss+eohae0S7YdJGidp3MxPX2dm9yFf+fGX7JmZmZktW+eddx5ffvklffr0oVevXpx33nn1tr/66qu55ZZb6NOnD3fccQdXXXUVAF27dmWDDTZg++23B7IVjc8++4zevXsvMUb37t0ZMWIEp512Gj169GDLLbfk2WefZbXVVuOMM87gpz/9KTvttBMLFy78Sr+BAwdy5JFHUlVVxYEHHkj//v2X+v5Vm1m1BkkL+U9S8Szwk4j4t6Q5EbFKrt2twKMRcX9R/1HAaRExLle2CrAnsAdwGLBDREzOjylpB7IkoxewM9n2q32L5nskIh5Ic6wLrAx0BvpFxPvpnMT3I+KA1Occsu1Na0dEpaRCirlXbtzhwJyIuLToPoYDPyBLKj4Dzo6IZ9MZjgMi4k1JlwNTI+K6ut7PPn26xsiRlV8pa+jRamZmZmbt2eTJk5u0/ciartR7LGl8RJTMRlr7ezDmpXMHZRMRc4AHgQclLQL2ASYXtRktaS3gG8CHwBpFw6wJzM5dHw5MAC4CrgO+B0wC+krqFBGLIuIC4AJJc5oZ+hX5xENSH2Az4Mm0F64L8Haa38zMzMysTWoTW6TKRdJOktZIr7sAWwHvlGi3BdlqxIfAm0ClpC1T3YZAX6Am3yciviQ7C7G9pC0j4i2yQ+a/kNQ59a0Alv5kTKYaGB4RhfRTCayX4jMzMzMza5NaewWj3DYBblD2J/9OwB+BB1LdiukcBGRJwNERsRBYKOkI4JaUIHwJHBcRnxQPHhHzJF0GnEb2hKrjyJ4q9Zakj4B5wJllupdDyc6l5D2UypfqILmZmZmZWUtp1TMYVl4+g2FmZmbLm8mTJ7PFFluU5fGqtqSIYMqUKU06g9GhtkiZmZmZ2fKloqKCDz/8EP/RvPwigg8//JCKioom9etoW6TMzMzMbDmy/vrrM2PGDGbNmtXaoXRIFRUVrL/++k3q4wTDzMzMzNqtFVZYgY022qi1w7Acb5EyMzMzM7Oy8QpGB9KlS28KhXENNzQzMzMzayFewTAzMzMzs7LxY2o7EEmfAa+3dhzWoazFV7/V3mxp+PNk5ebPlJWTP09Ns2FEfKNUhbdIdSyv1/U8YrPmkDTOnykrF3+erNz8mbJy8uepfLxFyszMzMzMysYJhpmZmZmZlY0TjI7lptYOwDocf6asnPx5snLzZ8rKyZ+nMvEhbzMzMzMzKxuvYJiZmZmZWdk4wWiHJO0l6XVJb0k6q0S9JF2d6l+R1K814rS2SdIGkp6WNFnSa5J+lMrXlPSkpDfTf9eoo3+9nz9bfknqLOllSY+ma3+mrFkkfV3S/ZKmpP+t2sGfJ1sakk5N/583UdLdkir8mWo5TjDaGUmdgeuAvYGtgGpJWxU12xvYLP0MA25YpkFaW7cA+ElEbAlsD5yYPkNnAX+JiM2Av6Trr2jk58+WXz8CJueu/Zmy5roKeDwitgD6kn2u/HmyZpG0HnAy0D8iegGdgUPxZ6rFOMFof7YD3oqItyPi38AIYP+iNvsDt0fmb8DXJa27rAO1tiki3o+Il9Lrz8j+j3s9ss/NbanZbcCQEt0b8/mz5ZCk9YHvAL/NFfszZU0maTVgZ+B3ABHx74j4GH+ebOl8DVhR0teAlYB/4M9Ui3GC0f6sB/w9dz0jlTW1jRmSCsDWwBige0S8D1kSAqxdoos/W1aXK4EzgEW5Mn+mrDk2BmYBt6Qtd7+VtDL+PFkzRcR7wKXAu8D7wCcR8QT+TLUYJxjtj0qUFT8KrDFtbDknaRXgAeCUiPi0sd1KlPmztZyTtC/wz4gY35zuJcr8mVq+fQ3oB9wQEVsDcymxdaUO/jzZEtLZiv2BjYBKYGVJRzS2e4kyf6Ya4ASj/ZkBbJC7Xp9sma+pbWw5JmkFsuTizoh4MBV/ULuVLv33nyW6+rNlpewEfFfSdLLtA7tJ+j3+TFnzzABmRMSYdH0/WcLhz5M11x7AtIiYFRFfAg8CO+LPVItxgtH+vAhsJmkjSV3IDimNLGozEjgqPU1qe7KlwPeXdaDWNkkS2d7myRFxea5qJHB0en008IcS3Rvz+bPlTET8NCLWj4gC2WfiqYg4An+mrBkiYibwd0k9UtHuwCT8ebLmexfYXtJK6f8Ddyc7f+jPVAv5WmsHYE0TEQsknQT8mewpCDdHxGuSTkj1NwJ/AvYB3gI+B77fWvFam7QTcCTwqqSaVHY2cBFwr6Rjyf7HeCiApErgtxGxT12fv2V9A9Zu+DNlzfU/wJ3pF7q3yf5/rBP+PFkzRMQYSfcDL5E9SfFlsm/tXgV/plqEv8nbzMzMzMzKxlukzMzMzMysbJxgmJmZmZlZ2TjBMDMzMzOzsnGCYWZmZmZmZeMEw8zMzMzMysYJhpmZmZmZlY0TDDMzazJJBUkTi8qGSzptGcZwv6SN0+s/Sfp6E/oOkbRV7nqUpP4tEGZZSLpV0kH11J8kyd95ZGZtghMMMzNrMyQ16gtgJfUEOkfE2wDpC7E+bsJUQ4CtGmrUjtwMnNzaQZiZgRMMMzNrAZJOljRJ0iuSRqSylSXdLOlFSS9L2j+VHyPpPkmPAE9IWlfSM5JqJE2UNKjEFIcDf8jNN13SWmllZbKk30h6TdITklYsim1H4LvAJWmOTVLVUEljJb1RO6ekCkm3SHo1xTw4F/O1uTEflbSrpM5ptWFi6nNqqv9Buu8Jkh6QtFIqv1XS1ZJekPR27SqFMtem9/CPwNq5uS7KvbeXAkTE58B0Sds1/1/NzKw8GvWXIjMzsyY6C9goIr7IbV06B3gqIv4rlY2V9H+pbgegT0R8JOknwJ8j4gJJnYGVSoy/E3B3HXNvBlRHxA8k3QscCPy+tjIiXpA0Eng0Iu4HkATwtYjYTtI+wM+APYATU5/ekrYgS4A2r+e+q4D1IqJXGrf23h+MiN+ksl8AxwLXpLp1gYHAFsBI4H7gAKAH0BvoDkwCbpa0ZqrbIiKiaFvYOGAQMLae+MzMWpxXMMzMrDmigfJXgDslHQEsSGV7AmdJqgFGARXAN1PdkxHxUXr9IvB9ScOB3hHxWYl51gVm1RHDtIioSa/HA4UG7qXWgyX6DATuAIiIKcA7QH0JxtvAxpKukbQX8Gkq7yXpWUmvkq2+9Mz1eTgiFkXEJLJkAmBn4O6IWBgR/wCeSuWfAvOB30r6HvB5bpx/ApWNvFczsxbjBMPMzJrjQ2CNorI1gdnp9XeA64BtgPHpbIWAAyOiKv18MyImp/ZzaweJiGfIfsF+D7hD0lEl5p9HlqCU8kXu9UIav1pf2y/fR3W0XcBX/z+0AiAi/gX0JUugTgR+m+pvBU6KiN7A+UWx5+PNz7dEEhcRC4DtgAfIzpE8XhTDvDriNTNbZpxgmJlZk0XEHOB9SbsDpK07ewHPSeoEbBARTwNnAF8HVgH+DPyP0n4kSVuXGlvShsA/05ai3wH9SjSbDGy6FLfwGbBqI9o9Q7biQNoa9U3gdWA6UCWpk6QNyH7pR9JaQKeIeAA4Lxf7qmTv1wq14zVi3kPTmY51gdqzH6sAq0fEn4BTyLZk1docmIiZWSvzGQwzM2uuo4DrJF2Wrs+PiKnpl+jfS1qd7C/yV0TEx5J+DlwJvJKSjOnAviXG3RU4XdKXwJw0T7E/pnb/V6KuMUYAv5F0MlDn41+B64Eb09amBcAx6VzJ88A04FWyX+pfSu3XA25JSRbAT9N/zwPGkG2xepWGk5uHgN1S2zeAv6byVYE/SKoge29PzfXZiWx1xMysVSmirm20ZmZmbVN6MtTTwE4RsbC142ltaTXoxxFxZGvHYmbmBMPMzNolSd8GJkfEu60dS2uT9C3gzYiY3tqxmJk5wTAzMzMzs7LxIW8zMzMzMysbJxhmZmZmZlY2TjDMzMzMzKxsnGCYmZmZmVnZOMEwMzMzM7Oy+f9H9qDHjrulvAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "city_group_df = data.groupby(['Company', 'City'])['Users'].count().reset_index()\n", + "ax = sns.barplot(y = 'City', x = 'Users', data = city_group_df, hue = 'Company', palette = ['pink','yellow'], order = data.groupby(['City'])['Users'].count().reset_index().sort_values('Users', ascending=False).City)\n", + "ax.xaxis.set_major_formatter(FuncFormatter(thousands_formatter))\n", + "ax.set_xlabel('Users (in thousands)')\n", + "ax.set_title('Quantity of Users by City')" + ] + }, + { + "cell_type": "markdown", + "id": "f3697f15", + "metadata": {}, + "source": [ + "In the Top 5 cities with the largest number of users, it can be seen that Yellow Cab has more presence than Pink Cab." + ] + }, + { + "cell_type": "markdown", + "id": "19332807", + "metadata": {}, + "source": [ + "## Which company has more ride throughout the years?" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "c28d3bb9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CompanyDate of TravelCustomer ID
0Pink Cab201625080
1Pink Cab201730321
2Pink Cab201829310
3Yellow Cab201682239
4Yellow Cab201798189
5Yellow Cab201894253
\n", + "
" + ], + "text/plain": [ + " Company Date of Travel Customer ID\n", + "0 Pink Cab 2016 25080\n", + "1 Pink Cab 2017 30321\n", + "2 Pink Cab 2018 29310\n", + "3 Yellow Cab 2016 82239\n", + "4 Yellow Cab 2017 98189\n", + "5 Yellow Cab 2018 94253" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[,\n", + " ,\n", + " ]" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt0AAAHwCAYAAAB67dOHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABGCElEQVR4nO3deZhcZZn38e/dWSFhC5IYCLsB2REaFCFsyi4ygDCAIiLKuCAyMy44juOu6Dgz7q+iAhk3FllEFBCRsI+QCAiEfY9ACChhhyz3+8c5TVc61d3VnT5d3dXfz3XVVXWeqnPqru7Q/Prp+zwnMhNJkiRJ1WlrdgGSJElSqzN0S5IkSRUzdEuSJEkVM3RLkiRJFTN0S5IkSRUzdEuSJEkVM3RL0gCIiOciYqNBeJ+VIuI3EbEwIs7px/4zIuKuHp4/IyK+tGJVSpK6MnRLGpYi4j0RcWtEvBARj0fE9yNitUF671kR8b7ascycmJn3l89XGVzfAUwB1szMw+rU9rmIWFT+EvB0RFwXETvV1Hl1Zm5aUW11RcTHI+K2iHg2Ih6IiI93eX6DiLii/F7eGRFvrXluakRcGBGPRkRGxAZ1jv/WiPhzRDwfEY9ExOH9rHNyRPyyfK+FEXFtRLyxy2uOioiHyve6ICIm1Tx3ePn1fiEiZtU5/p5lnc9ExP0RcXx/6pQ0PBm6JQ07EfGvwNeAjwOrAW8CNgB+HxFjmljaYFgfuDszF/fwmrMycyLwGuAKoM8z4gMsgHcDawD7AidExBE1z/8SuAlYE/g08KuIWKt8bilwCXBo3QNHbA78otxvNWBbYE4/65wI3AhsD0wCZgK/jYiJ5XttAfwQOJriF58XgO/X7P834JvAKXXqHAOcX+6/GvCPwH9HxDb9rFXScJOZ3rx58zZsbsCqwHPA4V3GJwJPAMeU22cAX6p5fndgXs32ycB9wLPAXODgmufeA1wDfAP4O/AAsF/53JeBJcBLZR3fLccTeB1wPLAIeKV8/jcUvxyc26Xe7wDf7OYzbgbMAp4GbgfeXo5/vjzuovLYx9XZ93PAz2q2Ny9rW6ubr8MbgD+XX4ezgDO7fN3eBtxc1nIdsHXNc58E/lruexfwlga/h98GvlM+3gR4GVil5vmrgQ902Wd0+Tk26DL+C+CLFf57ewbYvnz8FeAXNc9tXH4/Vumyz/uAWV3GppT1r1wzdiNwZLP/m/Lmzdvg3JzpljTcvBkYD5xXO5iZzwEXA3s3eJz7gBkUs46fB34WEVNrnn8jRZB8DfB14CcREZn5aYpQeEIWLSUndKnjVODnwNfL5w8EfgbsGxGrA0TEaIqZzp92LaqcEf0N8HtgMvAR4OcRsWlmfpYi+J1VHvsnPX3AiBhLMcP8FMUvD/Wev6CsYxLFjPihNc9vB5wG/BPFLPQPgQsjYlxEbAqcAOyQmasA+wAP9lRPecyg+LrfXg5tAdyfmc/WvOyWcrwRbyqPe2tEPBYRP6tt+VgREbEtMBa4t6bWWzqez8z7KEL3Jr0dKzPnU8zoHxsRo8qWn/UpfrmTNAIYuiUNN68Bnsz67RWPAWvVGV9OZp6TmY9m5tLMPAu4B9ix5iUPZeaPMnMJRZvBVIrZyj7LzMeAq4COHux9y89Qrw3iTRSz9qdk5iuZ+UfgIuDIPrzl4RHxNPAi8H7gHd18vd4EjKGYcV+Umb+imH3t8H7gh5n5p8xckpkzKWal30Qx2z8O2DwixmTmg2UI7c3nKP7fc3q5PRFY2OU1C4FVGjgWwDSKdo9DgenAShR/RVghEbEqxS8jn8/MjvpWtNZfAv9B8TW8Gvh0Zj6yorVKGh4M3ZKGmyeB15SzxV1NBRY0cpCIeHdE3FyebPg0sCVFoO/weMeDzHyhfDixfyUDRXB/V/n4XdSZ5S6tDTySmUtrxh4C1unDe52dmatT/JJwG0WPcnfv9dfMzC7v1WF94F87vkbl12ldYO3MvBc4iSJEPxERZ0bE2j0VFREnUMy8H5CZL5fDz1G0DNValaJlpREvAqdn5t3lXzu+AuzfzftfXJ5g+lxEvLOHOlei+GvD/2XmV2ue6netEfF6ivadd1PMnm8BfCIiDuhtX0mtwdAtabi5nmKm8JDawYiYAOwHXFkOPQ+sXPOS19a8dn3gRxTtEWuWAfU2ihP+GpH9eP4CYOuI2JKiT/rn3ez7KLBuRNT+fF6Pone6TzLzSYrWkM91aZ3p8BiwTtnyUfteHR4BvpyZq9fcVs7MX5bH/0Vm7kIRzpPi5Na6IuK9FH30b8nMeTVP3Q5sFBG1s8Xb0Nl+0pu/0Pv3g7Le/cq2nImZWffrHxHjKL5Xf6X42tW6vayt47UbUcz2393A228J3JWZl5Z/XbkL+C3Fv1lJI4ChW9KwUv6p//PAdyJi34gYUy4jdw7FLHhHmLoZ2D8iJkXEaylmZTtMoAhqCwAi4liKUNSo+UBPa3Iv93xmvgT8iuLEvxsy8+Fu9v0TxS8Mnyg/2+7AgRQnOPZZZt4JXAp8os7T1wOLgRMjYnREHMKyLTY/Aj4QEW+MwoSIOCAiVomITcsl8MZRnFT6IkXLyXLKWeWvAHtluaxiTX13U3yvPhsR4yPiYGBr4Nya/cdThFuAceV2h9Mp+qQ3ioiVKU7uvKiRr02dOsdQfI9eBN7d5a8NUPzbOjCKtc4nAF8AzuvoRy97tcdTnPTZVn6ejtV0bgKml1+ziIiNKX75ugVJI4KhW9Kwk5lfB/6NYnWRZylWF1kZeGtmPl++7KcUgeZBipMSz6rZfy7wXxShcz6wFXBtH0r4FvCOiPh7RHy7zvM/oeh1fjoiLqgZn1m+V3etJWTmK8DbKWZAn6RYku7dZXjur/8Ejo+IyXXe6xCK1Vr+TnFy53k1z8+m6Ov+bvn8veVroQjBp5Q1Pk5x0ue/dfP+X6I4EfPGmvaOH9Q8fwTQXr7HKRQ96LVtQi9StHYA3Flud9R4GvC/FL+sPETxV5ATe/pi9ODNFEF4b+DpmlpnlO91O/ABivD9BEUv94dq9j+6rO3/UZws+iLFLy4dJ12+l2Lllmco/iJzLsW/FUkjQCzbyidJw0/ZuvB5YOceZpCbLiLWowiNr83MZ5pdjyRp8NQ7EUmShpXMPC0iFlHMVA7J0F32aP8LcKaBW5JGHme6JaliZf/vfIr2h31dJk6SRh5DtyRJklQxT6SUJEmSKmboliRJkio2Ik6kfM1rXpMbbLBBs8uQJElSi5szZ86TmblW1/EREbo32GADZs+e3ewyJEmS1OIi4qF647aXSJIkSRUzdEuSJEkVM3RLkiRJFRsRPd31LFq0iHnz5vHSSy81u5SWNH78eKZNm8aYMWOaXYokSVLTVRa6I+I04G3AE5m5ZTk2CTgL2AB4EDg8M/9ePvcp4DhgCXBiZl5a55jd7t9X8+bNY5VVVmGDDTYgIvpzCHUjM3nqqaeYN28eG264YbPLkSRJaroq20vOAPbtMnYycHlmTgcuL7eJiM2BI4Atyn2+HxGj6hyz7v798dJLL7HmmmsauCsQEay55pr+FUGSJKlUWejOzKuAv3UZPgiYWT6eCfxDzfiZmflyZj4A3AvsWOew3e3fLwbu6vi1lSRJ6jTYJ1JOyczHAMr7yeX4OsAjNa+bV441uv+Q8fjjj3PEEUew8cYbs/nmm7P//vtz9913N7ssSZIkNdFQWb2k3rRortABI46PiNkRMXvBggUrcqiGZSYHH3wwu+++O/fddx9z587lK1/5CvPnzx+U95ckSdLQNNihe35ETAUo758ox+cB69a8bhrwaB/2X05mnpqZ7ZnZvtZay12JsxJXXHEFY8aM4QMf+MCrY9tuuy277LILH//4x9lyyy3ZaqutOOusswCYNWsWu+22G4cffjibbLIJJ598Mj//+c/Zcccd2WqrrbjvvvsAeM973sMHPvABZsyYwSabbMJFF10EwIMPPsiMGTPYbrvt2G677bjuuutePe7uu+/OO97xDl7/+tfzzne+k8zk8ssv5+CDD361tssuu4xDDjlkUL42kiRJI9lgLxl4IXAMcEp5/+ua8V9ExH8DawPTgRv6sP+QcNttt7H99tsvN37eeedx8803c8stt/Dkk0+yww47sOuuuwJwyy23cMcddzBp0iQ22mgj3ve+93HDDTfwrW99i+985zt885vfBIqAfeWVV3Lfffexxx57cO+99zJ58mQuu+wyxo8fzz333MORRx756uXub7rpJm6//XbWXnttdt55Z6699lr23HNPPvzhD7NgwQLWWmstTj/9dI499thB+/pIkiSNVJXNdEfEL4HrgU0jYl5EHEcRlveKiHuAvcptMvN24GxgLnAJ8OHMXFIe58cR0V4etu7+Q90111zDkUceyahRo5gyZQq77bYbN954IwA77LADU6dOZdy4cWy88cbsvffeAGy11VY8+OCDrx7j8MMPp62tjenTp7PRRhtx5513smjRIt7//vez1VZbcdhhhzF37txXX7/jjjsybdo02tra2HbbbXnwwQeJCI4++mh+9rOf8fTTT3P99dez3377DerXQpIkaSSqbKY7M4/s5qm3dPP6LwNfrjP+vprHT3W3/1CwxRZb8Ktf/Wq58czu29PHjRv36uO2trZXt9va2li8ePGrz3VdDSQi+J//+R+mTJnCLbfcwtKlSxk/fnzd444aNerVYx177LEceOCBjB8/nsMOO4zRo0fs9ZEkSZIGzVA5kbIl7Lnnnrz88sv86Ec/enXsxhtvZI011uCss85iyZIlLFiwgKuuuoodd6y3ImL3zjnnHJYuXcp9993H/fffz6abbsrChQuZOnUqbW1t/PSnP2XJkiW9Hmfttddm7bXX5ktf+hLvec97+voRJUmS1A9Ocw6giOD888/npJNO4pRTTmH8+PFssMEGfPOb3+S5555jm222ISL4+te/zmtf+1ruvPPOho+96aabsttuuzF//nx+8IMfMH78eD70oQ9x6KGHcs4557DHHnswYcKEho71zne+kwULFrD55pv396NKkiSpD6Kn1odW0d7enh0nGHa444472GyzzZpUUd+85z3v4W1vexvveMc7BuR4J5xwAm94wxs47rjjBuR43RlOX2NJkqSBEBFzMrO967gz3SPM9ttvz4QJE/iv//qvZpciaUh7maIDcUyzC5GklmDoHgbOOOOMATvWnDlzBuxYklpJArdRLCB1MXANsAhYBZjU5bZGnbGut5UGt3xJGuIM3ZI0Yi0E/kARsi8B/lqObwV8lCJw/x34W83t1prHi+neeBoL512D/KrUv0ixJA1vhm5JGjESuJnOkH0dsIQi6O4F7AfsC6zT4LGeY9lA3jWg197uB2aXj1/s4bij6Dmsd/fc6vi/NElDmT+hJKml/Q24jCJoXwo8Xo6/AfgkRch+E33v3Q6KmfBVgPX7uO9L9BzQa2/zgTvKxwt7Oe5q9L0NZg2KWXlJqpahW5JaylJgDp2z2X8qxyYBe1OE7H2A1zarQIqQO7W89cVi4Gnqh/N6If6hmsdLezjuyjTeClP7uonYCiOpUYbuJho1ahRbbbUVixcvZrPNNmPmzJnMnTuX//3f/+Xb3/52t/s9+OCDvO1tb+O2227r8fh33303J510EnfffTdjxoxhq6224jvf+Q5Tpkyp+/pZs2bxjW98g4suumiFPpekwbaAYhb7kvL+SYow2A78O0XbyA4UrRvD2WjgNeWtL5YCz9J7C0zH7e7ydU9RrOLSUz19bYOZRDEjP9y/F5L6ytDdRCuttBI333wzUFyw5gc/+AH/8i//Qnv7cks79tlLL73EAQccwH//939z4IEHAnDFFVewYMGCbkO3pOFiCXADnbPZsyl6rNeimMnel2JWe61mFTjEtFEE3dWADfu474v0HtI7gvxf6TzR9NkejhkUPeh9aYPpeN3YPtYvaagwdA8RM2bM4C9/+csys82f+9znePjhh7n//vt5+OGHOemkkzjxxBOX2e/+++/n0EMP5dRTT2WHHXZ4dfwXv/gFO+2006uBG2CPPfYAipnyo48+mueffx6A7373u7z5zW8G4JlnnuHggw/mrrvuYtddd+X73/8+bW1tVX98Sb16nCJgXwL8niLotVH0Y3+eYjZ7u3JMA2clihNLGzm5tNYilp9V7+1E047X9HTRugn0vQ1mEkULja0wUjMZugHufRiee2FgjzlxZXjdeg29dPHixVx88cXsu+++yz135513csUVV/Dss8+y6aab8sEPfvDV5+666y6OOOIITj/9dLbddttl9rvtttvYfvvt677f5MmTueyyyxg/fjz33HMPRx55JB1X7LzhhhuYO3cu66+/Pvvuuy/nnXfegF0JU1JfLAKup3Pd7JvL8dcCB1HMZu9FEag09IwBJpe3vlgKPENjJ5n+nc6TTJ+i+DfTnbH0rxVmVfxFThoYhu4mevHFF18NyzNmzOC4447juuuuW+Y1BxxwAOPGjWPcuHFMnjyZ+fPnA7BgwQIOOuggzj33XLbYYos+ve+iRYs44YQTuPnmmxk1ahR33333q8/tuOOObLTRRgAceeSRXHPNNYZuadDMozNk/4EifI0Cdga+QjGbvTWGoFbWRtF6sjqwUR/2S+AFem+BqT3J9Kby8fO91NMRyvvSBrMGXs1UWpahGxqekR5otT3d3Rk3btyrj0eNGsXixcXFKFZbbTXWXXddrr322rqhe4sttuDKK6+se8z/+Z//YcqUKdxyyy0sXbqU8eM7l8uKWPbPj123JQ2kVyiu/NgRtDtOjl4HOJwiZL+FohdZ6klQtJ5MANbt474v0xnKezvR9Ek6TzR9mp5bYepdzbSRWXavZqrWZOgepsaOHcsFF1zAPvvsw8SJEznqqKOWef6oo47iq1/9Kr/97W854IADALjkkktYZ511WLhwIdOmTaOtrY2ZM2eyZMmSV/e74YYbeOCBB1h//fU566yzOP744wf1c0mt70E6Q/YfKS4wMwaYAXydImhvgf23GjzjKNqW+rqM5BKKtdMbOcm0r1cz7UsLTMdtFfzvRkOZoXsYmzBhAhdddBF77bUXEyZM4KCDDnr1uZVWWomLLrqIk046iZNOOokxY8aw9dZb861vfYsPfehDHHrooZxzzjnsscceTJgw4dX9dtppJ04++WRuvfVWdt11Vw4++OBmfDSphbwEXEXnSiN3luPrA++iCNl7UAQGaTgZRWfg7Yt6VzPtaZb9vprHvV3NtC9tMB2vXR3jkAZDZPb0p6HW0N7enh0nCna444472GyzzZpU0cjg11gj1710zmZfQREUxgG70Xmp9U1xVk7qq75czbQ2yPf1aqaNzrSPq3cwjXARMSczl1v/2V/tJGmFvQDMonM2+95y/HXA+yhC9u4Uy7ZJ6r8qrmba3YmmjV7NtK9tMJMoeu/9pXukMXRLUp8lcBeds9lXUpyMthJFq8hHKYL265pVoKRlDMTVTBs50fTumsc9Xc10DH1vg5mEVzMd3gzdktSQ5yhOfOyYzX6wHH898CGKkL0rxUycpNbQRrVXM+0I8v29mmmjbTBezXQoMHRLUl0J3E5nyL6a4uIjEymW8fskRdDeoEn1SRraBvJqpo2caNrb1Uwn0r9WmJWwFWZgGLol6VULgcvpDNrzyvEtgZMoQvYuOGMkqTorcjXThTR+ounc8rUrcjXTnkK8VzPtytAtaQRL4BY6Q/Z1FCdcrUpxifXPUgTtac0qUJIa1HH10DUY2KuZdp1l78/VTPuy7voatGo8bc1PNQxkJjNmzODTn/40++23HwBnn302p512Gpdccskyr501axbf+MY3uOiiizjjjDOYPXs23/3udweslhtuuIGPfexjzJ8/n4hgl1124dvf/jYrr1x/pYUqapAGz9+AyyhC9iXA4+X4G4CPUyzp9ya8hLWkkWGgrmba24mmCyhOQO9YwrGnVphV6XsbzBoM9auZGrqbJCL4wQ9+wGGHHcYee+zBkiVL+PSnP71c4K7a/PnzOeywwzjzzDPZaaedyEzOPfdcnn322W5DtzS8LAX+TDGbfTHwp3JsDWBvipnsfej7EmSSNNJVeTXT2iDfn6uZbgr8qo91VcvQ3URbbrklBx54IF/72td4/vnnede73sWXv/xlbr31VhYvXsznPve5Za4y2dVDDz3Ee9/7XhYsWMBaa63F6aefzjrrrMP06dO57777WLhwIZMmTWLWrFnsuuuuzJgxg9NPP53Xva5zGbPvfe97HHPMMey0005A8cvAO97xDqCYAT/ppJN48cUXWWmllTj99NPZdNNNAXjkkUfYd999eeCBBzjqqKP47Gc/W+FXSuqrBcDvKWayLy23A2gHPk0xm70D/giUpGYY6KuZ1ptlnzhQxQ4Y/48DFCdI3TzAx9wW+Gavr/rsZz/Ldtttx9ixY3nb297GnnvuyWmnncbTTz/NjjvuyFvf+tZu9z3hhBN497vfzTHHHMNpp53GiSeeyAUXXMAmm2zC3LlzeeCBB9h+++25+uqreeMb38i8efOWCdwAt912G8ccc0zd47/+9a/nqquuYvTo0fzhD3/g3/7t3zj33HOBIpDfdtttrLzyyuywww4ccMABtLcvd/ElaZAsAW6gc93s2RQ/nF9DMYu9H8Ws9lrNKlCStMICWKW8rd/kWvrO0N1kEyZM4B//8R+ZOHEiZ599Nr/5zW/4xje+AcBLL73Eww8/3O2+119/Peeddx4ARx99NJ/4xCcAmDFjBldddRUPPPAAn/rUp/jRj37Ebrvtxg477NCn2hYuXMgxxxzDPffcQ0SwaFHn2c177bUXa665JgCHHHII11xzjaFbg+xxilnsSyhmtf9GceLOG4HPU7SNbI9nz0uShgJDN9DIjHSV2traaGtre7WfuqOFo8P8+fMbOk5EsY7mjBkz+MEPfsCjjz7KF77wBf7zP//z1RaTrrbYYgvmzJlTt43lM5/5DHvssQfnn38+Dz74ILvvvvty79XdtjTwFgPX0zmbfVM5PgU4kGI2ey/6/udKSZKq5xTQELLPPvvwne98h8zijN6bbrqpx9e/+c1v5swzzwTg5z//ObvssgsAb3zjG7nuuutoa2tj/PjxbLvttvzwhz9kxowZyx3jhBNOYObMmfzpT396dexnP/sZjz/+OAsXLmSddYpF/c8444xl9rvsssv429/+xosvvsgFF1zAzjvv3O/PLXXvr8BPgHdQtIrsCnyNolfvKxQnSD4KnAH8IwZuSdJQZegeQj7zmc+waNEitt56a7bccks+85nP9Pj6b3/725x++ulsvfXW/PSnP+Vb3/oWAOPGjWPdddflTW96E1DMfD/77LNstdVWyx1jypQpnHnmmXzsYx9j0003ZbPNNuPqq69m1VVX5ROf+ASf+tSn2HnnnVmyZMky++2yyy4cffTRbLvtthx66KG2lmiAvAJcQXG1x60p1sd+H/B/FMH7V8CTwFXApyiW+fPHmCRp6IuOWdVW1t7enrNnz15m7I477mCzzTZrUkUjg19jNeYhOltGLqc4M30MxZUf96Pozd4SL0MsSRoOImJOZi43G2lPt6RB9hJwNZ1XgbyjHF8feBdFyN6T4ux0SZJag6Fb0iC4j87Z7CsoLjk8FtgNeD9F0H49zmZLklqVoVtSBV4ArqRzNvuecnxj4L0UIXt3issOS5LU+kZ06M5Ml7qryEg4V0C1EribzpB9JUUbyUrAHsBHKPqzX9fdASRJamkjNnSPHz+ep556ijXXXNPgPcAyk6eeeorx48c3uxRV6jmKVpGOoP1AOb4p8AGKkD2DInhLkjSyjdjQPW3aNObNm8eCBQuaXUpLGj9+PNOmTWt2GRpQCcylM2RfTbHE3wTgLcDHKdpGNmxWgZIkDVkjNnSPGTOGDTc0HEg9ewb4A0XIvgR4pBzfEjiRYjZ7Z2BcU6qTJGm4GLGhW1I9CfyFztnsaykuv74q8FbgP4B9gHWbVaAkScOSoVsa8f4OXEbnbPZj5fi2wMcoZrN3orhgjSRJ6g9DtzTiLAX+TOe62f9Xjq0O7E0RsvcBpjapPkmSWo+hWxoRngR+TxG0LwWeKMfbgU9TnAC5I/5IkCSpGv4fVmpJS4Ab6ZzNvpGiX3tNilns/ShmtSc3q0BJkkaUtma8aUR8NCJui4jbI+KkcmxSRFwWEfeU92t0s+++EXFXRNwbEScPauHSkDYf+F/gSIowvRPwBYr/zD8H/Kl8zc+Bd2HgliRp8Az6THdEbAm8n+Jv2a8Al0TEb8uxyzPzlDJMnwx8ssu+o4DvAXsB84AbI+LCzJw7mJ9BGhoWU/Rjd8xm/7kcnwIcSNEyshfF7LYkSWqmZrSXbAb8X2a+ABARVwIHAwcBu5evmQnMokvopgjq92bm/eW+Z5b7Gbo1QvyVoif7YooVRxYCoyhmtb9M0TayDU36I5YkSepGM0L3bcCXI2JN4EVgf2A2MCUzHwPIzMciot7fvteh8+ocUMx2v7HieqUmegW4js51s/9Sjq8NvINiNvutFCuPSJKkoWrQQ3dm3hERX6OYpnsOuIXi7+SNiHqHrPvCiOOB4wHWW2+9flQqNcvDdIbsy4FnKdbI3gX4GsVs9pbU/89BkiQNRU1ZvSQzfwL8BCAivkIxYz0/IqaWs9xT6VzTrNY8lr0U3jTg0W7e41TgVID29va6wVwaGl4GrqYzaHd0S60HHEURsvcEVmlKdZIkacU1JXRHxOTMfCIi1gMOoWhI3RA4BjilvP91nV1vBKZHxIYUza1HUKQSaZi5n86Q/UfgBWAssBtwHEXQfj3OZkuS1BqatU73uWVP9yLgw5n594g4BTg7Io6j+Pv6YQARsTbw48zcPzMXR8QJFGeSjQJOy8zbm/QZpD54keLc4I6VRu4pxzcCjqUI2bsDE5pQmyRJqlpktn7nRXt7e86ePbvZZWhESYpg3TGbPQt4CRgP7EFxAuR+wPQm1SdJkqoQEXMys73ruFeklAbM8xStIh2z2Q+U45sC/0QRsncFVmpKdZIkqXkM3VK/JXAHRcC+mOJkyFcoWkT2BD5OMaO9YbMKlCRJQ4ShW+qTZyiW8bukvD1cjm8BfIRiNnsXYFxTqpMkSUOToVvqUVJckKajZeRaimXlV6G4KM2/A/tQLO8nSZJUn6FbWs7TFNdu6jgJ8rFyfBvgYxQtI2+muGCNJElS7wzdEkuBm+iczf4/YAnFpdX3pgjZ+1Bcel2SJKnvDN0aoZ6kczb7UjovgLo98CmK3uwd8T8RSZI0EEwUGiGWALPpbBm5gaJfe02KWeyO2ezJzSpQkiS1MEO3Wth84PcUQfv3wFMUl1V/I/BZitns7SkubipJklQdQ7dayGLgT3TOZs8pxycDB1DMZu9NMbstSZI0eAzdGuYepejJvpiiR/tpipnrnYAvUcxmbwu0Nac8SZIkDN0adhYB19E5m31LOb42cAhFyH4rxcojkiRJQ4OhW8PAI3SG7D8Az1L8090FOIUiaG9F0a8tSZI09Bi6NQS9DFxDEbQvBuaW4+sCR1KE7D2BVZtSnSRJUl8ZujVEPEDnbPYfgeeBscCuwHEUJ0FuhrPZkiRpODJ0q0leBK6k8yqQd5fjGwLHUMxm7wFMaEp1kiRJA8nQrUGSwD10huxZwEvAeGB34MMUs9nTcTZbkiS1GkO3KvQ8cAWdQfv+cnwT4J8oQvZuwEpNqU6SJGmwGLo1gBK4g86QfRXwCrAy8BbgXymC9kbNKlCSJKkpDN1aQc9QnPjYcRLkw+X45sBHKEL2DGBcU6qTJEkaCgzd6qMEbqVzNvsaisuvr0JxUZpPUwTt9ZpVoCRJ0pBj6FYDnqa4KE3HbPaj5fg2FC0j+1Fcdn1sM4qTJEka8gzdqmMpcDOdIft6YAmwGrA3xUz2vhSXXpckSVJvDN0qPQVcRhG0LwXml+PbAydTzGa/Ef/JSJIk9Z0JasRaAsyhczb7BooZ7knAPhQhe29gSrMKlCRJahmG7hHlCeD3FEH798CTFBei2RH4DEXQbgdGNatASZKklmTobmmLKWawO2azZ5fjkykC9n7AXsBrmlKdJEnSSGHobjmPUQTsSyh6tP8OtFGsLvIlihMg31COSZIkaTAYuoe9RRSri3TMZt9cjk8FDqYI2W8F1mhGcZIkScLQPUw9Quds9h8orgo5GtgZOIUiaG9N0a8tSZKkZjN0DwsvU1z5seMqkLeX4+sCR1CE7LcAqzalOkmSJPXM0D1kPUBnyP4j8DzFFR9nAMdSBO3NcTZbkiRp6DN0DxkvAVfSGbTvKsc3BI6hCNl7ABObUp0kSZL6z9DdVPfQGbJnAS8C44HdgQ9SLOk3HWezJUmShjdD96B6AbiCzpVG7ivHpwPvp5jN3g1YuSnVSZIkqRqG7kolcCeds9lXUZwUuTKwJ/DPFEF742YVKEmSpEFg6K7Mr4GPAg+V25sDH6ZoGdmFoo1EkiRJI4GhuzJTKK78+CmK2ez1m1uOJEmSmsbQXZk3Aec3uwhJkiQNAW3NLkCSJElqdYZuSZIkqWKGbkmSJKlihm5JkiSpYoZuSZIkqWKGbkmSJKliTQndEfHPEXF7RNwWEb+MiPERMSkiLouIe8r7NbrZd9+IuCsi7o2Ikwe7dkmSJKmvBj10R8Q6wIlAe2ZuCYwCjgBOBi7PzOnA5eV2131HAd+juKzj5sCREbH5YNUuSZIk9Uez2ktGAytFxGhgZeBR4CBgZvn8TOAf6uy3I3BvZt6fma8AZ5b7SZIkSUPWoIfuzPwr8A3gYeAxYGFm/h6YkpmPla95DJhcZ/d1gEdqtueVY5IkSdKQ1Yz2kjUoZqc3BNYGJkTEuxrdvc5YdvM+x0fE7IiYvWDBgv4VK0mSJA2AZrSXvBV4IDMXZOYi4DzgzcD8iJgKUN4/UWffecC6NdvTKFpTlpOZp2Zme2a2r7XWWgP6ASRJkqS+aEbofhh4U0SsHBEBvAW4A7gQOKZ8zTHAr+vseyMwPSI2jIixFCdgXjgINUuSJEn9Nnqw3zAz/xQRvwL+DCwGbgJOBSYCZ0fEcRTB/DCAiFgb+HFm7p+ZiyPiBOBSilVPTsvM2wf7M0iSJEl9EZl1W6JbSnt7e86ePbvZZUiSJKnFRcSczGzvOu4VKSVJkqSKGbolSZKkihm6JUmSpIoZuiVJkqSKGbolSZKkihm6JUmSpIoZuiVJkqSKGbolSZKkihm6JUmSpIoZuiVJkqSKGbolSZKkihm6JUmSpIoZuiVJkqSKGbolSZKkihm6JUmSpIoZuiVJkqSKGbolSZKkihm6JUmSpIr1KXRHxISIGFVVMZIkSVIr6jF0R0RbRBwVEb+NiCeAO4HHIuL2iPjPiJg+OGVKkiRJw1dvM91XABsDnwJem5nrZuZkYAbwf8ApEfGuimuUJEmShrXRvTz/1sxc1HUwM/8GnAucGxFjKqlMkiRJahE9znR3BO6I2DgixpWPd4+IEyNi9drXSJIkSaqv0RMpzwWWRMTrgJ8AGwK/qKwqSZIkqYU0GrqXZuZi4GDgm5n5z8DU6sqSJEmSWkejoXtRRBwJHANcVI7Zyy1JkiQ1oNHQfSywE/DlzHwgIjYEflZdWZIkSVLr6G31EgAycy5wYs32A8ApVRUlSZIktZIeQ3dE3Apkd89n5tYDXpEkSZLUYnqb6X5bef/h8v6n5f07gRcqqUiSJElqMT2G7sx8CCAids7MnWueOjkirgW+UGVxkiRJUito9ETKCRGxS8dGRLwZmFBNSZIkSVJraehESuA44LSIWK3cfhp4byUVSZIkSS2m0dVL5gDbRMSqQGTmwmrLkiRJklpHQ6E7IsYBhwIbAKMjAoDMtKdbkiRJ6kWj7SW/BhYCc4CXqytHkiRJaj2Nhu5pmblvpZVIkiRJLarR1Uuui4itKq1EkiRJalGNznTvArwnIh6gaC8JIL0ipSRJktS7RkP3fpVWIUmSJLWwRpcM7Lgy5WRgfKUVSZIkSS2moZ7uiHh7RNwDPABcCTwIXFxhXZIkSVLLaPREyi8CbwLuzswNgbcA11ZWlSRJktRCGg3dizLzKaAtItoy8wpg2+rKkiRJklpHoydSPh0RE4GrgJ9HxBPA4urKkiRJklpHozPdBwEvAP8MXALcBxzYnzeMiE0j4uaa2zMRcVJETIqIyyLinvJ+jW723zci7oqIeyPi5P7UIEmSJA2mRkM3AJm5GLie4kTKZ/rzhpl5V2Zum5nbAttThPnzgZOByzNzOnB5ub2MiBgFfI9iCcPNgSMjYvP+1CFJkiQNlkZD91XA+IhYhyIQHwucMQDv/xbgvnJJwoOAmeX4TOAf6rx+R+DezLw/M18Bziz3kyRJkoasRkN3ZOYLwCHAdzLzYIqZ5hV1BPDL8vGUzHwMoLyfXOf16wCP1GzPK8ckSZKkIavh0B0ROwHvBH5bjjV6EmZ3BxwLvB04py+71RnLbo5/fETMjojZCxYs6E+JkiRJ0oBoNHSfBHwKOD8zb4+IjYArVvC99wP+nJnzy+35ETEVoLx/os4+84B1a7anAY/WO3hmnpqZ7ZnZvtZaa61gqZIkSVL/NRS6M/PKzHx7Zn6t3L4/M09cwfc+ks7WEoALgWPKx8cAv66zz43A9IjYsJwpP6LcT5IkSRqyGmoRiYgrqNPGkZl79udNI2JlYC/gn2qGTwHOjojjgIeBw8rXrg38ODP3z8zFEXECcCkwCjgtM2/vTw2SJEnSYGm0L/tjNY/HA4eyAhfHKU/KXLPL2FMUq5l0fe2jwP41278Dftff95YkSZIGW0OhOzPndBm6NiKurKAeSZIkqeU02l4yqWazjeKiNq+tpCJJkiSpxTTaXjKHoqc7KNpKHgCOq6ooSZIkqZU02l6yYdWFSJIkSa2q0faSMcAHgV3LoVnADzNzUUV1SZIkSS2j0faS/weMAb5fbh9djr2viqIkSZKkVtJo6N4hM7ep2f5jRNxSRUGSJElSq2n0MvBLImLjjo3yMvBLqilJkiRJai2NznR/HLgiIu6nWMFkfeDYyqqSJEmSWkijq5dcHhHTgU0pQvedmflypZVJkiRJLaLRmW4oLoizQbnPNhFBZv5vJVVJkiRJLaTRJQN/CmwM3ExnL3cChm5JkiSpF43OdLcDm2dmVlmMJEmS1IoaXb3kNuC1VRYiSZIktaoeZ7oj4jcUbSSrAHMj4gbg1RMoM/Pt1ZYnSZIkDX+9tZd8Y1CqkCRJklpYj6E7M68EiIivZeYna5+LiK8BV1ZYmyRJktQSGu3p3qvO2H4DWYgkSZLUqnrr6f4g8CFgo4j4S81TqwDXVlmYJEmS1Cp66+n+BXAx8FXg5JrxZzPzb5VVJUmSJLWQ3nq6FwILgSMHpxxJkiSp9TTa0y1JkiSpnwzdkiRJUsUM3ZIkSVLFGgrdEXFIRNwTEQsj4pmIeDYinqm6OEmSJKkV9LZ6SYevAwdm5h1VFiNJkiS1okbbS+YbuCVJkqT+aXSme3ZEnAVcALzcMZiZ51VRlCRJktRKGg3dqwIvAHvXjCVg6JYkSZJ60VDozsxjqy5EkiRJalU9hu6I+ERmfj0ivkMxs72MzDyxssokSZKkFtHbTHfHyZOzqy5EkiRJalU9hu7M/E15P3NwypEkSZJaT49LBkbEqRGxVTfPTYiI90bEO6spTZIkSWoNvbWXfB/4TBm8bwMWAOOB6RQrmpwG/LzSCiVJkqRhrrf2kpuBwyNiItAOTAVeBO7IzLuqL0+SJEka/hpdMvA5YFa1pUiSJEmtqdHLwEuSJEnqJ0O3JEmSVLE+h+6IaIuIVasoRpIkSWpFDYXuiPhFRKwaEROAucBdEfHxakuTJEmSWkOjM92bZ+YzwD8AvwPWA46uqihJkiSplTQausdExBiK0P3rzFwEZGVVSZIkSS2k0dD9Q+BBYAJwVUSsDzxTVVGSJElSK2l0ne5vA9+uGXooIvaopiRJkiSptTR6IuWUiPhJRFxcbm8OHNPfN42I1SPiVxFxZ0TcERE7RcSkiLgsIu4p79foZt99I+KuiLg3Ik7ubw2SJEnSYGm0veQM4FJg7XL7buCkFXjfbwGXZObrgW2AO4CTgcszczpwebm9jIgYBXwP2A/YHDiy/AVAkiRJGrIaDd2vycyzgaUAmbkYWNKfNyzX+N4V+El5rFcy82ngIGBm+bKZFCdtdrUjcG9m3p+ZrwBnlvtJkiRJQ1ajofv5iFiTcsWSiHgTsLCf77kRsAA4PSJuiogfl+t/T8nMxwDK+8l19l0HeKRme145JkmSJA1ZjYbufwEuBDaOiGuB/wU+0s/3HA1sB/y/zHwD8Dx1Wkm6EXXG6i5dGBHHR8TsiJi9YMGC/lUqSZIkDYCGQndm/hnYDXgz8E/AFpn5l36+5zxgXmb+qdz+FUUInx8RUwHK+ye62Xfdmu1pwKPd1HxqZrZnZvtaa63Vz1IlSZKkFdfjkoERcUg3T20SEWTmeX19w8x8PCIeiYhNM/Mu4C0Ul5afS7Eiyinl/a/r7H4jMD0iNgT+ChwBHNXXGiRJkqTB1Ns63QeW95MpZrn/WG7vAcwC+hy6Sx8Bfh4RY4H7gWMpZt3PjojjgIeBwwAiYm3gx5m5f2YujogTKFZSGQWclpm397MGSZIkaVD0GLoz81iAiLgI2LzjRMey/eN7/X3TzLwZaK/z1FvqvPZRYP+a7d8Bv+vve0uSJEmDrdETKTfoCNyl+cAmFdQjSZIktZyGLgMPzIqIS4FfUqwWcgRwRWVVSZIkSS2kodCdmSeUJ1XOKIdOzczzqytLkiRJah2NznR3rFTS3xMnJUmSpBGrtyUDr8nMXSLiWZa9CE0AmZmrVlqdJEmS1AJ6W71kl/J+lcEpR5IkSWo9va5eEhFtEXHbYBQjSZIktaJeQ3dmLgVuiYj1BqEeSZIkqeU0eiLlVOD2iLgBeL5jMDPfXklVkiRJUgtpNHR/vtIqJEmSpBbW6DrdV1ZdiCRJktSqGr0MvCRJkqR+MnRLkiRJFesxdEfE5eX91wanHEmSJKn19NbTPTUidgPeHhFnUlyJ8lWZ+efKKpMkSZJaRG+h+z+Ak4FpwH93eS6BPasoSpIkSWolvV0G/lfAryLiM5n5xUGqSZIkSWopjS4Z+MWIeDuwazk0KzMvqq4sSZIkqXU0tHpJRHwV+Cgwt7x9tByTJEmS1ItGr0h5ALBtZi4FiIiZwE3Ap6oqTJIkSWoVfVmne/Wax6sNcB2SJElSy2p0pvurwE0RcQXFsoG74iy3JEmS1JBGT6T8ZUTMAnagCN2fzMzHqyxMkiRJahWNznSTmY8BF1ZYiyRJktSS+tLTLUmSJKkfDN2SJElSxXoN3RHRFhG3DUYxkiRJUivqNXSXa3PfEhHrDUI9kiRJUstp9ETKqcDtEXED8HzHYGa+vZKqJEmSpBbSaOj+fKVVSJIkSS2s0XW6r4yI9YHpmfmHiFgZGFVtaZIkSVJraGj1koh4P/Ar4Ifl0DrABRXVJEmSJLWURpcM/DCwM/AMQGbeA0yuqihJkiSplTQaul/OzFc6NiJiNJDVlCRJkiS1lkZD95UR8W/AShGxF3AO8JvqypIkSZJaR6Oh+2RgAXAr8E/A74B/r6ooSZIkqZU0unrJ0oiYCfyJoq3krsy0vUSSJElqQEOhOyIOAH4A3AcEsGFE/FNmXlxlcZIkSVIraPTiOP8F7JGZ9wJExMbAbwFDtyRJktSLRnu6n+gI3KX7gScqqEeSJElqOT3OdEfEIeXD2yPid8DZFD3dhwE3VlybJEmS1BJ6ay85sObxfGC38vECYI1KKpIkSZJaTI+hOzOPHaxCJEmSpFbV6OolGwIfATao3Scz315NWZIkSVLraHT1kguAn1BchXJpZdVIkiRJLajR0P1SZn670kokSZKkFtXokoHfiojPRsROEbFdx62/bxoRD0bErRFxc0TMLscmRcRlEXFPeV/3RM2I2Dci7oqIeyPi5P7WIEmSJA2WRme6twKOBvaks70ky+3+2iMzn6zZPhm4PDNPKcP0ycAna3eIiFHA94C9gHnAjRFxYWbOXYE6JEmSpEo1GroPBjbKzFcqrOUgYPfy8UxgFl1CN7AjcG9m3g8QEWeW+xm6JUmSNGQ12l5yC7D6AL5vAr+PiDkRcXw5NiUzHwMo7yfX2W8d4JGa7Xnl2HIi4viImB0RsxcsWDCApUuSJEl90+hM9xTgzoi4EXi5Y3AFlgzcOTMfjYjJwGURcWeD+0Wdsaz3wsw8FTgVoL29ve5rJEmSpMHQaOj+7EC+aWY+Wt4/ERHnU7SNzI+IqZn5WERMBZ6os+s8YN2a7WnAowNZmyRJkjTQGgrdmXnlQL1hREwA2jLz2fLx3sAXgAuBY4BTyvtf19n9RmB6ebGevwJHAEcNVG2SJElSFRq9IuWzdLZxjAXGAM9n5qr9eM8pwPkR0fH+v8jMS8rWlbMj4jjgYeCw8r3XBn6cmftn5uKIOAG4FBgFnJaZt/ejBkmSJGnQNDrTvUrtdkT8A0VLSJ+VK49sU2f8KeAtdcYfBfav2f4d8Lv+vLckSZLUDI2uXrKMzLyAFVujW5IkSRoxGm0vOaRmsw1op5tVQyRJkiQtq9HVSw6sebwYeJDiojSSJEmSetFoT/exVRciSZIktaoeQ3dE/EcPT2dmfnGA65EkSZJaTm8z3c/XGZsAHAesCRi6JUmSpF70GLoz8786HkfEKsBHgWOBM4H/6m4/SZIkSZ167emOiEnAvwDvBGYC22Xm36suTJIkSWoVvfV0/ydwCHAqsFVmPjcoVUmSJEktpLeL4/wrsDbw78CjEfFMeXs2Ip6pvjxJkiRp+Outp7tfV6yUJEmS1MlQLUmSJFXM0C1JkiRVzNAtSZIkVczQLUmSJFXM0C1JkiRVzNAtSZIkVczQLUmSJFXM0C1JkiRVzNAtSZIkVczQLUmSJFXM0C1JkiRVzNAtSZIkVczQLUmSJFXM0C1JkiRVzNAtSZIkVczQLUmSJFXM0C1JkiRVzNAtSZIkVczQLUmSJFXM0C1JkiRVzNAtSZIkVczQLUmSJFXM0C1JkiRVzNAtSZIkVczQLUmSJFXM0C1JkiRVzNAtSZIkVczQLUmSJFXM0C1JkiRVzNAtSZIkVczQLUmSJFXM0C1JkiRVzNAtSZIkVczQLUmSJFWsaaE7IkZFxE0RcVG5PSkiLouIe8r7NbrZb9+IuCsi7o2Ikwe3akmSJKnvmjnT/VHgjprtk4HLM3M6cHm5vYyIGAV8D9gP2Bw4MiI2H4RaJUmSpH5rSuiOiGnAAcCPa4YPAmaWj2cC/1Bn1x2BezPz/sx8BTiz3E+SJEkaspo10/1N4BPA0pqxKZn5GEB5P7nOfusAj9RszyvHlhMRx0fE7IiYvWDBggEpWpIkSeqPQQ/dEfE24InMnNOf3euMZb0XZuapmdmeme1rrbVWP95KkiRJGhijm/CeOwNvj4j9gfHAqhHxM2B+REzNzMciYirwRJ195wHr1mxPAx6tvGJJkiRpBQz6THdmfiozp2XmBsARwB8z813AhcAx5cuOAX5dZ/cbgekRsWFEjC33v3AQypYkSZL6bSit030KsFdE3APsVW4TEWtHxO8AMnMxcAJwKcXKJ2dn5u1NqleSJElqSGTWbYluKe3t7Tl79uxmlyFJkqQWFxFzMrO96/hQmumWJEmSWpKhW5IkSaqYoVuSJEmqmKFbkiRJqpihW5IkSaqYoVuSJEmqmKFbkiRJqpihW5IkSaqYoVuSJEmqmKFbkiRJqpihW5IkSaqYoVuSJEmqmKFbkiRJqpihW5IkSaqYoVuSJEmqmKFbkiRJqpihW5IkSaqYoVuSJEmqmKFbkiRJqpihW5IkSaqYoVuSJEmqmKFbkiRJqpihW5IkSaqYoVuSJEmqmKFbkiRJqpihW5IkSaqYoVuSJEmqmKFbkiRJqpihW5IkSaqYoVuSJEmqmKFbkiRJqpihW5IkSaqYoVuSJEmqmKFbkiRJqpihW5IkSaqYoVuSJEmqmKFbkiRJqpihW5IkSaqYoVuSJEmqmKFbkiRJqpihW5IkSaqYoVuSJEmqmKFbkiRJqpihW5IkSaqYoVuSJEmq2KCH7ogYHxE3RMQtEXF7RHy+HJ8UEZdFxD3l/Rrd7L9vRNwVEfdGxMmDW70kjRBLlsKSJbB0KWQWN0lSv41uwnu+DOyZmc9FxBjgmoi4GDgEuDwzTynD9MnAJ2t3jIhRwPeAvYB5wI0RcWFmzh3cjyBJw9DSpbBoMbyyqMutZmxReb9k6fL7R3S5AW1dx7rcun1+CO4rSRUa9NCdmQk8V26OKW8JHATsXo7PBGbRJXQDOwL3Zub9ABFxZrmfoVvSyJS5bJCuG6rLYL14cf1jjB4FY8fAmDEwcQKMHV1sR3TOci/NzsfL3ej5+SVLu9+vu2M3Q9Vhv7fXVL2vpKZqxkx3x4z1HOB1wPcy808RMSUzHwPIzMciYnKdXdcBHqnZnge8sZv3OB44HmC99dYbyPIlqVqZRWvHK90E6EVdZqfraWsrgvPY0bDyeFh9TGew7hgfWz5uG4Kn93QN4csFcxr4ZaCnfZeW43Xeqy/7Ls1iu+F9m/hLRbPCfk/7Uu95INp6/iWndhz8pULDQlNCd2YuAbaNiNWB8yNiywZ3rfdfVd2fXpl5KnAqQHt7u82IkpqvNkgv6qa9o+NWL5hFLBuWJ67c+bh2fOwYGDVq8D/fQGrl2dmO721PvzB091y/flFYgX1re/p7+4tGx3PNMBzal1ZkX7WEpoTuDpn5dETMAvYF5kfE1HKWeyrwRJ1d5gHr1mxPAx6tvlJJ6sZyfdL1QnU5vmRJ/WOMqQnMK49fdrv2NnqU/wNuBR3fw1Et+r3sTwvSirQvVdL61MO+zVB12K/6Lxq97TtCDHrojoi1gEVl4F4JeCvwNeBC4BjglPL+13V2vxGYHhEbAn8FjgCOGpTCJY0cmZ1Burse6drn6xk9qmzlGN1lRrq2zaOmd1pqFa0epBoK/Nj61Bc9/cJQt/2ogVA/dgxsuE5zPk83mjHTPRWYWfZ1twFnZ+ZFEXE9cHZEHAc8DBwGEBFrAz/OzP0zc3FEnABcCowCTsvM25vwGSQNN5nd90l37ZHusU+6DMorjYPVJtbvkR6qfdKSVlztLxXDvItrOR2huxVan8YNvdAd2azfagZRe3t7zp49u9llSKrCkqV1Wjm6WQZvaZ2fdxF12jlGd5mR7uiTbmvtGTxJ0gqLiDmZ2d51vKk93ZJUV2b9Vo56wbqRPumVxtXvkR47GkaPNkhLkipn6JY0ODKLdaK7WwavkT7pUaM6w3LXPunaHukxo23vkCQNKYZuSf3XcfZ/1zaOesvgLVpc/ySdtugMzePHwaoT6/dIjynbOyRJGoYM3ZKWt3Rp/f7oesvgLa1zuXBYNjBPXLn7ZfDsk5YkjQCGbmmkeLVPursAXT63aBEs7qVPeszomhnprkvhjS5uBmlJkl5l6JaGs8wiIPfUH127Xc+oUZ2tHBNXgrGr1l8Gzz5pSZL6zdAtDUVLugbprgG6Zrxen3THhQHG1vZJ11sGb/Twv1y4JEnDgKFbGizL9EnXWUO6drzXPunRMGGlZdeQHtslSNveIUnSkGHollZE7eXCu7s4S0eo7q5PevTozlnoVScs3x9d+9ggLUnSsGTolrrq2ie9qJsWjx77pNs62zhWXglWX3X5JfDsk5YkacQwdGvkWKZPuoce6VcWNdgnPWH5y4TbJy1JkuowdGt4W7q09/7ojluPfdKjO2eluwboV9eTtk9akiT1j6FbQ0+3fdKLl19buts+6VGdYXnVCcteIrxre4dBWpIkVczQrcFR2ye9qLv+6Jrxeka1dbZyrLwSrL5KnSXwynBtn7QkSRpCDN1aMUuW9B6gO2499kmPhnFjYZUJywfo2vYOSZKkYcjQreUtXdp9e0fX3ukl3fRJ1y51t/L4ZQN0bagebZ+0JElqfYbukaJrn3RPa0sv7mYZvNo+6YkT6vdI2yctSZK0HEP3cJZZswxeNyG6NlzX09bWOQu98nhYfUyXPumaYG2ftCRJUr8Yuoei2j7prqt1NNwnXROWJ65cv0faPmlJkqRBYegeLHX7pOssgdeXPukx3bR32CctSZI0pBi6q/K3hfDI450tHt1dLryjT3rM6C4z0l16pMeOMUhLkiQNU4buKi1d2rlyx5hu2jvsk5YkSWp5hu6qTFqtuEmSJGnEc5pVkiRJqpihW5IkSaqYoVuSJEmqmKFbkiRJqpihW5IkSaqYoVuSJEmqmKFbkiRJqpihW5IkSaqYoVuSJEmqmKFbkiRJqpihW5IkSaqYoVuSJEmqmKFbkiRJqpihW5IkSaqYoVuSJEmqmKFbkiRJqpihW5IkSaqYoVuSJEmqWGRms2uoXEQsAB5qwlu/BniyCe8rSQPBn2GShqtm/vxaPzPX6jo4IkJ3s0TE7Mxsb3YdktQf/gyTNFwNxZ9ftpdIkiRJFTN0S5IkSRUzdFfr1GYXIEkrwJ9hkoarIffzy55uSZIkqWLOdEuSJEkVM3T3QUSsGxFXRMQdEXF7RHy0HJ8UEZdFxD3l/Rrl+Jrl65+LiO92OdbYiDg1Iu6OiDsj4tBmfCZJI8dA/QyLiFUi4uaa25MR8c0mfSxJI8AAZ7AjI+LWiPhLRFwSEa8ZlM9ge0njImIqMDUz/xwRqwBzgH8A3gP8LTNPiYiTgTUy85MRMQF4A7AlsGVmnlBzrM8DozLz3yOiDZiUma6HK6kyA/kzrMtx5wD/nJlXDcbnkDTyDNTPr4gYDTwKbJ6ZT0bE14EXMvNzVX8GZ7r7IDMfy8w/l4+fBe4A1gEOAmaWL5tJ8Y+AzHw+M68BXqpzuPcCXy1ft9TALalqA/wzDICImA5MBq6urnJJI90A/vyK8jYhIgJYlSKEV87Q3U8RsQHFb1B/AqZk5mNQ/KOg+B9QT/uuXj78YkT8OSLOiYgpFZYrSctYkZ9hXRwJnJX+2VTSIFmRn1+ZuQj4IHAr5Yw38JMq6+1g6O6HiJgInAuclJnP9OMQo4FpwLWZuR1wPfCNASxRkro1AD/Dah0B/HLFq5Kk3q3oz6+IGEMRut8ArA38BfjUgBbZDUN3H5XfrHOBn2fmeeXw/LLXqKPn6IleDvMU8AJwfrl9DrBdBeVK0jIG6GdYx7G2AUZn5pxKipWkGgP082tbgMy8r/wL3dnAm6upeFmG7j4oe39+AtyRmf9d89SFwDHl42OAX/d0nPKb/Btg93LoLcDcAS1WkroYqJ9hNY7EWW5Jg2AAf379Fdg8ItYqt/ei6A+vnKuX9EFE7EJxstCtwNJy+N8oeorOBtYDHgYOy8y/lfs8SNGkPxZ4Gtg7M+dGxPrAT4HVgQXAsZn58GB9Fkkjz0D+DCufux/YPzPvHLxPIWkkGuAM9gHgo8Ai4CHgPZn5VOWfwdAtSZIkVcv2EkmSJKlihm5JkiSpYoZuSZIkqWKGbkmSJKlihm5JkiSpYoZuSRoBonBNROxXM3Z4RFzSzLokaaRwyUBJGiEiYkuKK+C+ARgF3Azsm5n39eNYozJzycBWKEmty9AtSSNIRHwdeB6YUN6vD2wFjAY+l5m/jogNKC7eNaHc7YTMvC4idgc+CzxGcSnlHSguSjGNIsR/MTPPGqzPIknDiaFbkkaQiJgA/Bl4BbgIuD0zfxYRqwM3UMyCJ7A0M1+KiOnALzOzvQzdvwW2zMwHIuJQipny95fHXi0zFw76h5KkYcDQLUkjTER8AXgOOBwYDywun5oE7AM8CnyXYjZ7CbBJZq7cMdOdmXuUx9kEuJRitvuizLx68D6FJA0vo5tdgCRp0C0tbwEcmpl31T4ZEZ8D5gPbUJxw/1LN0893PMjMuyNie2B/4KsR8fvM/ELFtUvSsOTqJZI0cl0KfCQiAiAi3lCOrwY8lplLgaMp+rWXExFrAy9k5s+AbwDbVV+yJA1PznRL0sj1ReCbwF/K4P0g8Dbg+8C5EXEYcAU1s9tdbAX8Z0QsBRYBH6y6YEkaruzpliRJkipme4kkSZJUMUO3JEmSVDFDtyRJklQxQ7ckSZJUMUO3JEmSVDFDtyRJklQxQ7ckSZJUMUO3JEmSVLH/D5/SBKkBEDISAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "rides_df = data.groupby(['Company', data['Date of Travel'].dt.year])[['Customer ID']].count().reset_index()\n", + "display(rides_df)\n", + "ax = sns.lineplot(x = 'Date of Travel', y = 'Customer ID', data = rides_df, hue = 'Company', palette = ['pink','yellow'])\n", + "\n", + "ax.yaxis.set_major_formatter(FuncFormatter(thousands_formatter))\n", + "ax.set_title('Quantity of Rides 2016 - 2018')\n", + "ax.set_ylabel('Number of rides (in thousands)')\n", + "ax.set_xlabel('Years')\n", + "ax.set_xticks(rides_df['Date of Travel'].unique())" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "55dbcaac", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CompanyNumber of rides
0Pink Cab84711
1Yellow Cab274681
\n", + "
" + ], + "text/plain": [ + " Company Number of rides\n", + "0 Pink Cab 84711\n", + "1 Yellow Cab 274681" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "3.2425659005323983" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rides_df = data.groupby(['Company'])[['Customer ID']].count().reset_index()\n", + "rides_df.columns = ['Company','Number of rides']\n", + "display(rides_df)\n", + "ratio = rides_df.iloc[1,1] / rides_df.iloc[0,1]\n", + "ratio" + ] + }, + { + "cell_type": "markdown", + "id": "2351876d", + "metadata": {}, + "source": [ + "Yellow Cab has had **3.25** more trips than Pink Cab in the period from 2016 to 2018." + ] + }, + { + "cell_type": "markdown", + "id": "0f61ed5e", + "metadata": {}, + "source": [ + "## Which company tend to retain more customers?" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "cd832a80", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CompanyYearCustomer IDNumber of rides
0Pink Cab201611
1Pink Cab201622
2Pink Cab201632
3Pink Cab201652
4Pink Cab201661
...............
134895Yellow Cab2018599963
134896Yellow Cab2018599974
134897Yellow Cab2018599982
134898Yellow Cab2018599994
134899Yellow Cab2018600007
\n", + "

134900 rows × 4 columns

\n", + "
" + ], + "text/plain": [ + " Company Year Customer ID Number of rides\n", + "0 Pink Cab 2016 1 1\n", + "1 Pink Cab 2016 2 2\n", + "2 Pink Cab 2016 3 2\n", + "3 Pink Cab 2016 5 2\n", + "4 Pink Cab 2016 6 1\n", + "... ... ... ... ...\n", + "134895 Yellow Cab 2018 59996 3\n", + "134896 Yellow Cab 2018 59997 4\n", + "134897 Yellow Cab 2018 59998 2\n", + "134898 Yellow Cab 2018 59999 4\n", + "134899 Yellow Cab 2018 60000 7\n", + "\n", + "[134900 rows x 4 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[,\n", + " ,\n", + " ]" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAHwCAYAAACPE1g3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAB6NklEQVR4nO3deZxbdb3/8dcnM9OZdrqv0JZSKrSUtlCgLYIUKIiyiqxSEAuiXFTE/rzKRb1ccN8Q2fRWvLIJsi8qAlf0soOytlBalpYWqEA73ddpZ5Lv74/vOZNMmsycpFln3s/HI4+ZSU6SbzLJN598zuf7OeacQ0REREREoomVewAiIiIiItVEAbSIiIiISA4UQIuIiIiI5EABtIiIiIhIDhRAi4iIiIjkQAG0iIiIiEgOFEB3Y2b2mJl9Ifj9TDP7a7nH1FWY2Y/NbHYBb+8hM5uV5bLRZubMrLZQ91cIwZh2L9JtX2hmPynGbYuUipndaGY/KPc4qomZ1ZvZAjPbqdxjicLMlprZx8s9jiiK/TkT/O9eN7Oh+Y+yciiALjIzO9jMnjGzdWa22syeNrOp5R5XOufcrc65T+RzXTObZmYPmtna4DE+Z2bn7Mh4zOwwM1u2I7dRLmY2BPgc8Jvg73Di2ZhyuiSX23TOHe2cu6kY461S1wGf7SoTsVSGSgt2zGxnM/udmX1gZhuC4OO7Zta4g7dbtC+3JXAe8IRz7sNyDyRdOb8QVcPnjHNuK3A98B/Fuo9SUgBdRGbWF3gAuAYYCIwAvgtsLcJ9lSX7aGYHAv8HPA7sDgwCvgQcXY7xFEMez+3ZwIPOuS1p5/d3zvUOTt+PeN9mZhX9Pi3Ha8851ww8hP+iItLlmNlA4FmgJ3Cgc64PcCTQH/hIGYdWUHnMH/8G/L4YY0lnZjWluJ8Cq/TPmT8As8ysvkT3VzQV/cHcBYwFcM7d5pyLO+e2OOf+6px7BcDMzg4y0tcEGerXzeyI8MpmNtzM/hRkdReZ2RdTLrvMzO42s1vMbD1wdpAJfjbIBH9gZteaWY+U6xwZ3Mc6M7sWsJTLzjazp1L+nmBmjwT3vdzMvp3lMf4cuMk591Pn3ErnveicOy3T7QbntWU/zOyYYHfcBjP7l5l9I8iuPAQMT/kmPTzY/XOlmb0fnK4M34RhxtrMLjKzFcHj/3Rw+28Gj+PbKWOImdnFZrbYzFaZ2Z3BB1bqN/lzzexd4P/MrCF4rlcFz+/zZjYsy3NyNP4LRV7Ml9b80MyeBjYDY6x9uU2NmV1uZivN7G3g2LTr90vJWv3LzH4QfhCY2e5m9njwGlhpZnd0MI5PmdlrweN9zMzGp1y21Mz+w8xeATZ19iEY/O8uN7N3g9fTHDPrGVw22MwesOQejCfDyTy4j38Fr483Ut8fwGPpj12kGDqZe+ab2fEp29YF763Jwd93mdmHwXvuCTObEPFuvw5sAD7rnFsK4Jx7zzn3NefcK5Zhl3raPJHxvW5mTwSbzwvm1s9EmKdvNLNfm9/Fv9H859ZOwfOwxvznyr4p1x1uZveYWZOZLTGzC1Muy/bZ9YKZrQ/mhyuy/B9G4b88/DPlvFzHNj54ntYG89un0m7rv83vUd0EzOjosaSN7TzgTOCiYBx/Trl4spm9Evwv7jCzhuA6A4K5rykY6wNmNjLt//n94DFtMLO/mtngTPefKyvT54xzbhmwBvhoIR5HOSmALq43gbiZ3WRmR5vZgAzbHAC8DQwGLgXutSCQA24DlgHDgVOAH1n7AOIE4G58RuJWIA78v+C2DgSOAL4MPkgB7gH+M7h8MfCxTIM2sz7A34CHg/veHfh7hu16Bfdzd+dPRVa/A/4tyK5MBP7PObcJH4S+n/JN+n3gO/g33WRgH2Ba8HhCOwEN+Ez/fwG/BT4L7A9MB/7LzMYE214IfBo4NHiMa4BfpY3tUGA88ElgFtAP2AWfZT8fSM8whyYBb2Q4/x3zQf4NESbBs/C7KvsA76Rd9kXgOGBfYAr+tZHqJqAV/3/bF/gE8IXgsu8DfwUGACPxe0e2Y2Zj8a+/2cAQ4EHgz5byhQyYiZ9U+zvnWjt5PD/Ff6GcHIwr/B8B/Dv+dT4EGAZ8G3BmNg64AJgavD4+CSxNuc2F+NeBSLF1NPfcjJ9nQscAHzjn5gZ/PwTsAQwFXsLP1VF8HLjXOZfIc8wZ3+vOuUOCy/cJ5tasX6LTnEby82MrPjv+UvD33cAV4JMTwJ+Befj3+RHAbDP7ZMptpX92XQVc5Zzriw+Q78wyhknA2xnmm6hjqwvG9lf8/+OrwK3BXBM6A/ghfu59JsJjAcA5d13wWH4WPK/Hp1x8GnAUsBuwN34vJfgY7AZgV2AU/jPl2rSbPgM4JxhvD+AbWZ6bUDV8znSJuVsBdBE559YDBwMOH8w1mc8op2YuVwBXOudagonsDeBYM9sluO5/OOeag8n4f/Av+NCzzrn7nXOJILv9onPuH8651iBj8Rt8EAh+Ul/gnLvbOdcCXAlkqyE7DvjQOfeL4L43OOf+mWG7AfjX0Ac5PjWpWoC9zKyvc26Nc+6lDrY9E/iec26Fc64JXw6T+ny0AD8MHt/t+MnzqmD8rwGv4Scv8LsBv+OcWxbUZV0GnGLtM6mXOec2BaUYLfjAefdgb8KLwf83k/74zFFoJTAVP0nuj5+sOvsQvdE591rwv2xJu+w0/GvmPefcauDH4QXBa+toYHYw9hXAL4HTU56jXYHhwf/2KTL7DPAX59wjwf1fjt+VfFDKNlcHY8j2RSIck+En4//nnFvtnNsA/ChtTDsDuwbvgyedcw7/hbAe//qoc84tdc4tTrnpDfgvNSLF1tHccwtwjPmSPYLz20oMnHPXB3NQOM/sY2ZRXreD2PG5Ncp7Par7gnmvGbgPaHbO3eyciwN34IMo8HPdEOfc95xz25xzb+M//05Pua12n13BWHc3s8HOuY3OuX9kGUN/2s+tuY7to0Bv4CfB2P4PX2Y5M+W2/uicezr44jIpwmOJ4mrn3PvBfP1n/BcxnHOrnHP3OOc2B/PiD0l+ZoducM69GTxPd4bXzaCaPmc24P+XVU0BdJE55xY65852zo3EZ1iH44PX0L+CYCH0TrDNcCAMNlIvG5Hy93up92VmY4NdQB8Gu8Z+hA8iCW6vbfvgPttdP8Uu+Ax1Z9YACXzwk6+T8cH9O8EunwM72HY47b8lh89VaFUwYUIyO7w85fIt+MkT/Jv7vmA33lr8N+I4PgMaSn1+fg/8L3C7+V24PwuyGZmswU9eAAQfCC8Ek9RyfFb1EykfuJlk+99A2v+S9s/JrkAd8EHKY/sNPnsBcBG+dOe5YPfl5zu4j7bbDT5M3qOD118HhgC9gBdTxvRwcD74MqBFwF/N7G0zuzi4z0X4DPhlwAozu93MUv/ffYB1EccgsiOyzj3O7x17GjjZzPrjA4tboW03+E/Ml4qtJ7kHJcpu+FXs2Nwa9b0eVfpc2tHcOjx8rwfv92+TfW4FOBe/h+p18+Vxx2UZQ7u5NY+xDQfec+2z+h19rkZ5LFGkJqs2h+Mxs15m9hszeyd4fTwB9Lf2tdcZr5uuyj5n+gBrO7jvqqAAuoScc68DN+ID6dCIIEMXGgW8H5wGBuUUqZf9K/Um0+7iv4HXgT2c3xX2bZJ1zh/gA2OgLSu4C5m9R4RFKs65zfhdZSd3sNkmfPAU3m+71kPOueedcyfg33j3k9x1l/7YwD8nu6b8HT5X+XgPONo51z/l1OCcy/j8BpnR7zrn9sJnYY8j+wK2Vwjq37MIb9cibJNJu/8l/nkIvYffhTk45XH1dc5NCB7Hh865LzrnhuOz8L+2zKvx2z3XKa+Xjl5/2azEf4hNSBlTP+dc72BMG5xz/+6cGwMcD3w9LFVyzv3BOXdwMBaHLwUJjcfvWhUpts7mnpvwZRyn4rOr4fvkDHy5wsfxe0tGB+d39N4P/Q040bIv7toU/OyVcl7b/JrDez28razzdI7eA5akza19nHPHpGzTbu5wzr3lnJuJ/xz4KXC3Ze408gq+VjffhcvvA7ukPacdfa5GeSxkuW4U/w6MAw4IPrPD8poor4/OVPLnTJeYuxVAF5GZ7Wlm/27BooCgLGMmkLp7aihwofmFJ6fiX1gPOufew9df/dj8Ara98d/SO9ol0wdYD2w0sz3x3TBCfwEmmNlJweRzISmTbZoHgJ3MbLb5xTN9zOyALNtehF8E8k0zGxQ8zn3M7Pbg8nnB/U42v3DispTnp4f5/tP9gt1H6/FZYPAZhEFpuzpvA/7TzIYEtV3/hd99mo85wA/NbNdgLEPM7IRsG5vZDDObFGQG1uN3UcWzbP4gKbvhzOwAMxtnfuHiIOBq4DHnXL7Z0zvxr5mR5uvqLw4vcM59gK89+4WZ9Q3u8yNmdmgwllMtuUhlDX4CzfQ47sSXEh0RZNr/HT9hPpPrYINsz2+BX1rQds7MRlhQR2hmx5lfdGIkXwPx4Dk73PxirWZ8EJ461kPx9aUihVQXzLnhqZbO5577gf2Ar+FrokN98O+bVfgA9Uc5jOMKoC9wU8o8NcLMrjCzvZ0vJfkXvp1jTZDla0t8dPJeXw6E60Ggg3k6D88B680vAO4ZjG2iddC+1cw+a2ZDgrlibXD2dvOS8wvQ3sLXoOfjn/gvCxcFn7mH4b+0355l+1wfS/rz2pk++Hltrfm1T5fmcN12quVzxsxG4LuSZSvTqRoKoItrA36R4D/Nr+j9BzAfH4yE/olfYLISX/90inNuVXDZTHzG4n18XdelzrlHOri/b+AzHhvwAUvqyteV+OzIT/CT+R743Y7bCcpGjsRPLB/iJ6wZWbZ9Bjg8OL1tZqvxPXofDC5/E/gePpvyFpBeC3UWsNT87qvzCRbjBNn624LbXGt+1/0PgBfwWYhX8YtE8u25eRXwJ3zZwAb8/ybblwTwXzbuxgd4C/FdNrIF7zfjayJ7Bn+PwZcsbMD//7fSvuYuV7/Fl5PMwz8H96Zd/jn8YpMF+MnrbpK7gqfiX48b8Y//a865Jel34Jx7A/+/uAb/2jweON45ty3PMf8HvkzjH8H/+m/4zAv41+LfgI34PRq/ds49hq9//klw/x/iv2x+GyD4kD8Gn/kTKaQH8UFNeLqMTuaeoD71HvwisdT34834Xd//wr8fIwcNQd3pQfgv6/8M5qm/48uWFgWbfRH4Jn5On0D7L7gdvdcvwwfma83stAjzdGRBGd3x+FrdJfj37//Q8XqFo4DXgrFeBZzufD1zJr+h/dqXXMa2DfgUvsxmJfBr4HPB502m7XN9LL/Dr9lYa2b3RxjSlfi1JSvxr42HIz6UTKrlc+YMfOeugrfzLTVrX34rpWRmZwNfCHZRSxdiZj8CVjjnriz3WLoiM/sqsItz7qJyj0UEwMz+CxjrnPtspxtL3oI9Ui8DRwSZUKkSwf9uHnBIsPCwqimALiMF0CIi1S/Y/f4ycJZz7onOtheR6qcSDhERkTyZP8DVe8BDCp5Fug9loEVEREREcqAMtIiIiIhIDhRAi4iIiIjkIN9m5GUzePBgN3r06HIPQ0QkLy+++OJK59yQzrfsGjRni0g1yzZnV10APXr0aF544YVyD0NEJC9m9k7nW3UdmrNFpJplm7NVwiEiIiIikgMF0CIiIiIiOVAALSIiIiKSg6qrgRYRkerW0tLCsmXLaG5uLvdQuqSGhgZGjhxJXV1duYci0mUpgBYRkZJatmwZffr0YfTo0ZhZuYfTpTjnWLVqFcuWLWO33XYr93BEuiyVcIiISEk1NzczaNAgBc9FYGYMGjRI2X2RIlMALSIiJafguXj03IoUnwJoERHpMj788ENOP/10PvKRj7DXXntxzDHH8Oabb5Z7WCLSxSiAFhGRLsE5x4knnshhhx3G4sWLWbBgAT/60Y9Yvnx5uYcmIl2MAmgREekSHn30Uerq6jj//PPbzps8eTIHH3ww3/zmN5k4cSKTJk3ijjvuAOCxxx7j0EMP5bTTTmPs2LFcfPHF3HrrrUybNo1JkyaxePFiAM4++2zOP/98pk+fztixY3nggQcAWLp0KdOnT2e//fZjv/3245lnnmm73cMOO4xTTjmFPffckzPPPBPnHH//+9858cQT28b2yCOPcNJJJ5Xq6RGRAlIXDhER6RLmz5/P/vvvv9359957L3PnzmXevHmsXLmSqVOncsghhwAwb948Fi5cyMCBAxkzZgxf+MIXeO6557jqqqu45ppruPLKKwEfLD/++OMsXryYGTNmsGjRIoYOHcojjzxCQ0MDb731FjNnzmw7bPnLL7/Ma6+9xvDhw/nYxz7G008/zeGHH85XvvIVmpqaGDJkCDfccAPnnHNOyZ4fESkcZaBFRAQAM/uamc03s9fMbHaGy83MrjazRWb2ipntV4Zh5uypp55i5syZ1NTUMGzYMA499FCef/55AKZOncrOO+9MfX09H/nIR/jEJz4BwKRJk1i6dGnbbZx22mnEYjH22GMPxowZw+uvv05LSwtf/OIXmTRpEqeeeioLFixo237atGmMHDmSWCzG5MmTWbp0KWbGWWedxS233MLatWt59tlnOfroo0v6XIhIYSgDLSIimNlE4IvANGAb8LCZ/cU591bKZkcDewSnA4D/Dn5WhAkTJnD33Xdvd75zLut16uvr236PxWJtf8diMVpbW9suS+9sYWb88pe/ZNiwYcybN49EIkFDQ0PG262pqWm7rXPOOYfjjz+ehoYGTj31VGpr9TEsUo2UgRYREYDxwD+cc5udc63A48CJaducANzsvH8A/c1s51IPNJvDDz+crVu38tvf/rbtvOeff54BAwZwxx13EI/HaWpq4oknnmDatGk53fZdd91FIpFg8eLFvP3224wbN45169ax8847E4vF+P3vf088Hu/0doYPH87w4cP5wQ9+wNlnn53rQxSRCqGvviIiAjAf+KGZDQK2AMcAL6RtMwJ4L+XvZcF5H5RkhJ0wM+677z5mz57NT37yExoaGhg9ejRXXnklGzduZJ999sHM+NnPfsZOO+3E66+/Hvm2x40bx6GHHsry5cuZM2cODQ0NfPnLX+bkk0/mrrvuYsaMGTQ2Nka6rTPPPJOmpib22muvfB+qiJSZdbRrqxJNmTLFhYs0RESqjZm96JybUu5xZGJm5wJfATYCC4Atzrn/l3L5X4AfO+eeCv7+O3CRc+7FtNs5DzgPYNSoUfu/88477e5n4cKFjB8/vpgPpaDOPvtsjjvuOE455ZSC3N4FF1zAvvvuy7nnnluQ28uk2p5jkUqVbc5WCYeIiADgnPudc24/59whwGrgrbRNlgG7pPw9Eng/w+1c55yb4pybMmTIkOINuArtv//+vPLKK3z2s58t91BEZAd0oxKOjUAc/53BOvgZ/i4i0r2Y2VDn3AozGwWcBByYtsmfgAvM7Hb84sF1zrmKKN8ophtvvLFgt/Xiiy92vpHkoBVoBnqhz24ppW4UQD8PbM1ymQEu7acBNfg3ZE2W32P4pzCWcl5tys+OAvX0gL2jnyIiJXFPUAPdAnzFObfGzM4HcM7NAR7E10YvAjYDamIsZbQGeAX/UqwBBgNDgH5AY3CeSHEULYA2s12Am4GdgARwnXPuqrRt9gRuAPYDvuOcu7xY4/HfUgcR/RtqAh9Mh6dEymlrhsvS/yb4PZNMAXtH24YBupE5YM90fk3aKZeAvaNgX0S6Kufc9AznzUn53eFrpEXKqBX/He5toC8wFP+5uwFoIvm5OiC4rB/Qh26VM5SiK+arqRX4d+fcS2bWB3jRzB5xzi1I2WY1cCHw6SKOI0+VsivIZTgl8OUorfhgPgzYMwXyLuV2ogTsHUnPymcK2DvK0temnJdvAK9gXkSk+1oLzMOXbQwh+VkdA3oHJ/CfcVuAN0l+RvYFhgH98QF1j1IMWLqoogXQQV3cB8HvG8xsIb7d0YKUbVYAK8zs2GKNo/pVUrCYnmEPA/QwmE8N2LMF81ED986y9GEwnx7IZyurSc3Sp16eKVBPzdzXptyOiIiURys+47wYHyQP7mR7w9dF9wr+dviE09v4zyzwZR5DgYHBbfYs7JClSyvJ/gwzGw3sC/yzFPcnxVJJiyzTM+zZgvlsQX96MJ8pQHcpvxtQB9Tjsxapv4d/pwfdqb+LSCWpqalh0qRJtLa2Mn78eG666SYWLFjAzTffzNVXX531ekuXLuW4445j/vz5Hd7+m2++yezZs3nzzTepq6tj0qRJXHPNNQwbNizj9o899hiXX345DzzwwA49rq5pLb7WeQs+cM7nM8iAhuAU2oZvLLMk+LseH1APxgfUvaicBJZUmqIH0GbWG7gHmO2cW5/nbaT2FC3g6KR6hZniUgnr3+P4SXxT8Huc9oF8JmHwnRpspwbfPeg4+NYELlJoPXv2ZO7cuYA/sMmcOXP4+te/zpQpO96iu7m5mWOPPZYrrriC448/HoBHH32UpqamrAG0ZBLHZ4zfwpdcdJZ1zlU4/4ZageUkjxVUR3JhYh98xroSEkhSCYoaQJtZHT54vtU5d2++t+Ocuw64DvyBVAo0PJEcpJaH5CrMjCfwzQ22kAzIW+m8rKWWZABen/Z7DzIH3eHvmuxFOjN9+nReeeWVdlngyy67jHfffZe3336bd999l9mzZ3PhhRe2u97bb7/NySefzHXXXcfUqVPbzv/DH/7AgQce2BY8A8yYMQPwGeyzzjqLTZs2AXDttddy0EEHAbB+/XpOPPFE3njjDQ455BB+/etfE4t11/fwOnyt82ba1zoXUy1+wWGoFZ/9Djs1xkgG1H3xWWrtYeyuitmFw4DfAQudc1cU635EKl9Yf52vMPMdZ/vMd1jLl15yEv4eo/PgO1sAruy3lMCid2Hj5sLeZu9esHu0vZWtra089NBDHHXUUdtd9vrrr/Poo4+yYcMGxo0bx5e+9KW2y9544w1OP/10brjhBiZPntzuevPnz2f//ffPeH9Dhw7lkUceoaGhgbfeeouZM2cSHl33ueeeY8GCBey6664cddRR3HvvvQU7+mH1CLPOi/AZ33IeiKeW9gsTE/hjSqR2+uiPX5jYL9iuruSjlPIoZgb6Y8BZwKtmNjc479vAKPCtkcxsJ+AF/Fe5hJnNBvbKt9RDpGsKs9/5TMxh9juOX7UeBuBh8N1Z9jssOemRdgqD8Y6y3wq+pXJt2bKlLfCdPn065557Ls8880y7bY499ljq6+upr69n6NChLF++HICmpiZOOOEE7rnnHiZMmJDT/ba0tHDBBRcwd+5campqePPNN9sumzZtGmPGjAFg5syZPPXUU90sgF6Pr3XeSP61zsUUwwf1jcHfDj+vvoGfUw1f6jEM30KvN36ulK6omF04nqKTT1Dn3If4Q8EWWZRAQaQrCrPf+ZaepLdMTA2+E9mvCvhAOr3mO/y9nuw13+FJuoWImeJCS62Bzqa+Phn81NTU0NraCkC/fv3YZZddePrppzMG0BMmTODxxx/PeJu//OUvGTZsGPPmzSORSNDQkFzU5nfckvXvrisOLMUHor2JnnX+G/Ab/DEe9gX2AfYm2Xmj2AzfuSO1e0cz/rG8RbITyBCSCxPV6aOr6CZdxY8HHsZ/eIdZs7q0v3t0cnldyjbZLu/oFHUb7TaXSpHa0i8fqXXem/FZpdaU8zOVnKS2Lcy06LIOv4o+fK9kC8D1HpLi6dGjB/fffz+f/OQn6d27N2eccUa7y8844wx+/OMf85e//IVjj/VdWh9++GFGjBjBunXrGDlyJLFYjJtuuol4PN52veeee44lS5aw6667cscdd3DeeeeV9HGVx3rg1eDnYKLNN2uAn+ID6D3wB1D5HX5eqQHG4YPpfYHJ+DZ1pZKp08f7+KAakp0+hqBOH9WtmwTQZ+DfQDX4D/CWDKfU85vxH/Yt+Bd/puu0kqw/LaSwY0N6YJ8pAO8sKM/1i0KULwsK9CWqQiy8jOPfg1uIXnoSZt1Ty0/CkpMwEO8o+K603cZSiRobG3nggQc48sgjaWxs5IQTTmi7rGfPnjzwwAPMnj2b2bNnU1dXx957781VV13Fl7/8ZU4++WTuuusuZsyYQWNjY9v1DjzwQC6++GJeffVVDjnkEE488cRyPLQSiQPv4LPOvfBBZRR/B36C/4z+Cr5StDb4+1XgZWAucC9wW3CdUfhgOgyoR1C6z69MnT6a8O3zHO07ffRFnT6qh/kjs1aPKVOmuHDBRW4ewRf7F/KFGe7a7iwgz3bKFphv6+TybIF9tvvsbFd7PsIMYa7Z+M6C9s6+KETZJvWkUoDuKTXYTv+9swP6xNi+5ju19jsMthvJZ3esmb3onNvxXmlVItOcvXDhQsaPH1+mEXUPlf0cb8DXOq/Hl19EmafX4rPOjwDjgUuB3TvYfhuwEB9Mh6cNwWWDSZZ87BvcTrk+K8LWqM0kM+iD8AF1uDBRn2PllG3O7iYZ6GIJM1aVvkggTrSAPN9tOvuysAU/UWb6kpD6dzG+zIWL76KW5fQgueq6T8qpd9rP8HetuK5M4Xszn/9PZz2/wb9uR+HrLUUkmgTJWudcss6PAj/Gf458CZhF5+FLD3yAvE+wfQLf3WMuySz1I8G2jcF2k/EB9V6U7nO9hu07fWwCVpL8TByAf676o8+dyqEAuluolkVZmQL9jkpo8snwd3T5Fnxt3dv4TMVGOs/eN5A9wA4b7/dh+2A83K7Sv3x1R1FKT6K8NkQkaQO+xGIduWWdfw78L7An8Gs6zjp3JBZcd3cg7GzyAclgem5w++AD1L1Ilnzsg5+vSyFbp4+3SM45ffAB9QD0OVI+CqClglRaoO/wi9/CYHpDhN/X4o9iFZ7XWZ18DzIH4OmZ7kzBeW98AK9adBGpVAngXWABPiiMmnV+DJ91XgucD5xN4UOWnYPTMcHfa/EHb5kbnH4P3IifY3fHB9OT8YF11Mexo7J1+ngHWIz/nAqz+YPwnw36XCgFBdAiWRntMwG5cvjWbxvSThtpH3inBuIb8VmRjSTLXjpSQ/bsdrZAPPV3rQAXkWIJF/atwQd3UUKOdcDlwEPAWOCa4Gcp9AcODU7gA9X5JMs+HgDuCi4bTjKYngyMpnRzabZOH+8Ef/fA11CHnT4aSzi27kMBtEjRGMmJLt+jaYUBeLagO9N5K1P+bu7k9mNkz3pHqQPXinERSZfA74lbgM+cDot4vSeAH+IzwecBn6e8YUoDMCU4gS/7e5NkQP0s8GBwWT/aB9R7UrqxZ+r0sRL4V/B3DX7h5FCSc7jm7R2lAFqkooUHHRmc5/VbaJ/d7qgMJfz5LsngfFMntx9m6TsqP0kPxFPP742mIZGuZBM+a7sa3z42yvt7PfAL4C/4vs5X43s5V5pafG30Xvj2uA4/X76ML/14GQgPoNMATCIZVE+kdAd4qcW3xAvF8c/xCvyYY/j/zdBgO83D+dAzJtKl1eEXmgzI8/qt+A/EKKUn4Xkf4he8bAiu21l3lV5ELz/JlBXXinTJjXOO6dOn853vfIejjz4agDvvvJPrr7+ehx9+uN22jz32GJdffjkPPPAAN954Iy+88ALXXnttwcby3HPP8Y1vfIPly5djZhx88MFcffXV9OqVOdgqxhgKI8w6LyR5sJAonsJnnVcDXwDOJfp72uHLQ+L4oLAXpa3/NWDX4PTp4LwmksH0y8D/BOMMD/ASZqgnk/+8nKtMnT624P9X4YGr+tG+00eP7W5F2lMALSIdqMVPrP3yvH6C5ELMjoLu1AB9JbAk5fLOul3UE60OPFtJilawdzdmxpw5czj11FOZMWMG8Xic73znO9sFz8W2fPlyTj31VG6//XYOPPBAnHPcc889bNiwIWsAXZnyyTpvAK4A/oxfoPdLfNlDVFvxwfMuwEh82ccKYBXJfsrh4rtS1v8OAT4enMDPY6+QzFLfBdwaXLYr7QPqUh3gJfyyEb7GwvU6i/BfRgw/Pw7F/z/DBeuSSgG0iBRRWGPdG7/aPVcOnynpKPjO1AllWcp5rZ3cRx3ZA+xs59UAH8nj8UilmDhxIscffzw//elP2bRpE5/97Gf54Q9/yKuvvkprayuXXXZZu6MLpnvnnXf4/Oc/T1NTE0OGDOGGG25gxIgR7LHHHixevJh169YxcOBAHnvsMQ455BCmT5/ODTfcwO67J9uw/epXv2LWrFkceOCBgA/sTznFt1h77rnnmD17Nlu2bKFnz57ccMMNjBvnyxree+89jjrqKJYsWcIZZ5zBpZdeWsRnqiMO/15bgM9YRs06P43POq/C1zl/gegZzzDrbMDUlPscCIzBv9834hcjhgF1mGUNA+pS1v/2Bg4KTuAX/C0g2enj78D9wWVDaN/p4yOUpjNV6nqd0FZ8ecrilMuH4ReD9qb0X0wqTzcLoDfg3zjhP93STlHOg+7+ohEpHSOZKYm6EClVmFlJz3Z3tjDzw5S/t2a57S8D0/MYk7Q3Gx9IFNJk4MpOt7r00kvZb7/96NGjB8cddxyHH344119/PWvXrmXatGl8/OMfz3rdCy64gM997nPMmjWL66+/ngsvvJD777+fsWPHsmDBApYsWcL+++/Pk08+yQEHHMCyZcvaBc8A8+fPZ9asWRlvf8899+SJJ56gtraWv/3tb3z729/mnnvuAXxwPX/+fHr16sXUqVM59thjmTKl1Ae33Ay8hi9ZiNphYyM+6/wnfLB7Ob6eOKqt+C/II/DZ6kx7j2rxZQj98RneOMmuRk34PVxhyUcDPhAsZfvUHiSDZEge4CUs+ZhL8gAvvfEHawoPQz6e0u0xC9ffhFrwHaKWplweHoI8XFDevWKjbhRA745/wzuSRxpLpPydfn6mbcLfC3HEvGwvtPTb3pFgX18KpLtLzazkuxAzDMBTs99N+EVBUs0aGxv5zGc+Q+/evbnzzjv585//zOWXXw5Ac3Mz7777btbrPvvss9x7770AnHXWWVx00UUATJ8+nSeeeIIlS5bwrW99i9/+9rcceuihTJ06NaexrVu3jlmzZvHWW29hZrS0JFtaHnnkkQwaNAiAk046iaeeeqqEAbTDd3eYjw8Go36xfRb4Af69cw7wRXKrs10T/Nw/h/sEHxyHZWi7kDzSX7iobiU+ax3OFT0pbWiUeoCXU/HPb/oBXp4Jtu1B8gAv4VEWS3WAlzral/K14kt23sePuRb/RWoYyYC6ko7rUHjdKIDerYC35bKcOros31O2oD6sC83l/GJ9Kegs+C7HlwJ9IZBCCTMxg1LO20j+deHS3pVlvfdYLEYsFmurPw7LJELLly+PdDtmfs6ZPn06c+bM4f333+d73/seP//5z9vKONJNmDCBF198MWOpyCWXXMKMGTO47777WLp0KYcddth295Xt7+IJs84riV7rvBH/P74f/zl8Pbl9+dyGD9RGUJgMbIxkSdYI/OdTuFC6KTiFX1bq8Xu/ShkqGb7H9HDg2OC8tSSD6ZeBm0nWKu+BD6TDLHW+LVNzVUvyeSQYT/gcJkh2+hhCcmFi1wo5u9ajKZmuGKAV+4tAR18K0oP5zn4v1peC8H/q0s4z/Dfp8BDPNSk/a+h6rwWR7ueTn/wk11xzDddccw1mxssvv8y+++6bdfuDDjqI22+/nbPOOotbb72Vgw8+GIADDjiAz33uc4wZM4aGhgYmT57Mb37zGx544IHtbuOCCy5g2rRpHHvssRxwwAEA3HLLLXz84x9n3bp1jBgxAvCdN1I98sgjrF69mp49e3L//fdz/fXXF+hZyCbMOr+Gz0RGrXX+B/B9fFA1C9/bOZcAeE1w32HWuRhzbbhgLlynkbruYiU+S90cbFeHz6yWuvNPf+Cw4EQwvvkks9SpB3gZQft+1LtSms+oTJ0+mvF9s8NgP+z0MYCu0OlDAbQEuuKXAsg/wI/jd1HF8dmIbcHPrSm/bw5+ZgvWU5/P1KA7NfgOg3IRKadLLrmE2bNns/fee+OcY/To0RmD3tDVV1/N5z//eX7+85+3LSIEqK+vZ5ddduGjH/0o4DPSt912G5MmTdruNoYNG8btt9/ON77xDVasWEEsFuOQQw7hpJNO4qKLLmLWrFlcccUVHH744e2ud/DBB3PWWWexaNEizjjjjCKXb2zBB84riF7rvAmfdb4Pf4S+fLLOa/AB7XhK2wEifd3FBPxzEHYIWoHPCDt8ANiT0nfy6YlfQBmWBYUHeAkD6mfwPbXBB6uTSWapx1Ga0C9bp4+38Z+rjvadPsJDkFcPc64Q9bylM2XKFPfCCy+UexgiKcKAO/XUmvb7tgynluAUTiapUrPhRvvsd6ZgXEorLOGYnPM1zexF51ypV3yVTaY5e+HChYwfP75MI+oedvw5dvj61tfwc0z/iNd7Dp91Xg6cCfwbuQVGa/Fz6iSKl3XeUc34OWAVPru+MTi/hmQv6nJy+MN6zyVZ9hEelbAn2x/gpWepBxjYiv9yEiaiUjt99KFSOn1km7OVgRbZYWFwm+9uPUf24DtTAJ6aEQ9PmQLw1POyBd/h7+WfpESkUmzBt1pbjs8ORpnbNuGPIHgPMAp/AJG9c7jPFnytczmyzrlKXZg8Dj8fb8BnzZfjs9Rh4qPUB3chuK/RwenTwXlNJIPpucBvSR7gZU/a96PuX6JxZur08SG+fR74190Q/PMcLkysnD22CqBFys7wb8V8346Zyk7ST9vw3/bTg+/m4O/0um8ynJct+60yFJGuIewAMR//3o7a7eIF4HvBdT8LnE9+Wed9gZ2ovi/0PfBZ00H4bhot+Kz0Girj4C7gA9EjgxPB+OaRzFLfCdwSXLYbyWB6Mn5BYynG21GnD/CfM2HrvPAQ5OXbA6sAWqTqpQa3+S7KSJA9+A4D8PTs9zZ8pmobye4vmYLv1DFmyn6rDEWk/JrxWecPiZ513gxcg1/ANgqf1Zycw32GWedh+PZs5SolKLQ6fO3xACrz4C7gg8+PBSfwCZaFJLPUj+Br2MHXKU+m/QFeSjHe9E4fCZKdPsLnb0Awvn74x1S6BZ4KoEUEPxnuyIroTHXgqSUoqWUoLSm/h1nxeMptZVuQmSnoTv1ZbVmr7s05V8L2a91LbmubHL7s4FX8+yhq1vlFfNb5feAM/IGFcs06x/FB2c507fdvpR/cBXwpxeTgdHYwntQDvLwM/DXYtg/JA7xMxn/5KUVHjdQj20KyY8obJD83+tK+00fxFngqgBaRAih0HXimevBsCzHDRSjh7aRL7ROenv1ODcK78gd4ZWloaGDVqlUMGjRIQXSBOedYtWoVDQ1RgtlmfNbxA6JnnbcA1wJ34A9Mch0+kIqqq2adcxHl4C5hUqEcB3cJx7hHcDqN5KLSl/GlHy/jD8kOPnieQDIA34dkkFtMqR1TINnpYwnwVsrlQ/HlNX0pZECtAFpEKsCO1oFDx8F32I5wa9rPsA68hWQZSqaxhbsLw4C7BR1IJX8jR45k2bJlNDU1lXsoXVJDQwMjR47sYIt8s84v4bPOy4CZwFfIL+u8D6Wrq60GlX5wF/D/qxHB6bjgvDUkg+nwAC83kDy64mSSB3jJ90iwuY4xXOAZ2obvQLIEvwhx+wMa5UsBtIh0EWFGOV+pZSiZ6sFTS0+20f7IhJKLuro6dtutkEeHlejCWtf38bu5o+x6bwZ+BdyOD3x/gz+4SVSt+LrfofhMZXfMOueiGg7uAv71cxjtD/DyKsks9Z/wixPBB96pnT5KdYCXHsEpgf8CVzgKoEVEgB0vQxGpdMuBV/CBS9Ss81zgu8B7+F35XyW3AHgtPoDeGx9EKeucu2o4uAvB/U4LTuD/76+T7PTxFP6oieBLhvYhmaUeS7WFpNU1WhEREcnRVnwg8y9yyzr/GrgNnwWdA+Ry/J/UrPNeJOtUpTDC7h1D8H2zw4O7rMYH1GEv6nIe3KUWf6CWifj2huEBXsKSj3nAo8G24QFewpKPiVR2L3AF0CIiIl3YCnzWGXwwGyUDPA+fdX4XOBWfdc4lAF6HL3lS1rl0Ug/uMpbKO7gLtD/Ay4nBeStof4CX60ge4GU87ftR9y/ROKNRAC0iItLlbMW393oPn3WOsku/GZ9pvhV/QJP/BqbmcJ/hgS8G48sMlHUun2o4uAv4L3WfCE7gg/7UA7zcQfIAL2PwZR9hLXV52x8qgBYREelSVuAXcyXwNbNRgoxXgcvwu9hPBi7EL06LKsw6TwRGRrxPKZ1qOLgL+E4kBwcn8F8EF5DMUv+V5AFehtH+AC9jKOWYFUCLiIh0CduAN/GlF/2JlnXeiu+qcQs+G/gr4IAc7jPMOg/CZ51zCbqlfDId3GUTPqCulIO7gH8Nh3XR5wRjWkyy5ONF4H+DbfvQfmHieIp5gBcF0CIiIlWvCV/rHCd6rfN8fK3zEnxN6tfI7QAY6/EB+AR81rkcGUspjBr8gUb6sv3BXcJe1OU+uAv4cY4NTp/BZ83/RbLk42V8tw/wwXd4gJd98IebLxwF0CIiIlUrzDq/g88mRulcsA2/WOtmfBeHa4GP5nCfYdZ5IL5lmbLOXU81HNwF/BfFkcEpPMDLapIHeJkL3IQP/icCny7YPSuAFhERqUqr8IFCK9FrnV/DZ53fxgcTs8kt67wBv9hwL3ymUlnn7qFaDu4C/ovdjOAEsBm/d2ZjQe9FAbSIiEhVaQHeApbiDykf5bDy24Df4rPOg4CrgYNyuM+wr/NAfD/oXIJu6Xqq5eAu4Mc4DR2JUEREpNtahc+mtRC91nkhvsPGYuB44Ov4XfNRbcAHRxNQ1lmyq4aDuxSOAmgREZGKF2adl+BrnftGvM7/ADfiM8dXkmwPFkWYdR6Ass6Su44O7rICn6l2lPfgLvlTAC0iIlLRwkVRLUSvdX4dn3VehF9c9XWiBd2hjfja0b3w3QuUdZYdle3gLmvxR0uslIO7RKMAWkREpCKl1zpHzTpfH5wGAL8Epudwn3F8INMPn63OpdRDJBepB3fZjco9uEtmCqBFREQqzhp81nkr0Wud38B32HgTOAb4BvllnccBo6mkYEW6g2o5uIunAFpERKRitOLLLt7GB79RMsCt+Izz7/DBxy+AQ3O4zzg+OFHWWSpJtoO7bMBnqMt7cBcF0CIiIhVhDb7DxlZ8J4MoGeC38LXObwBH47POUdrahcKs8574rF/5MnoiHUs9uMtwOj64Sw98L+rihbkKoEVERMoqPes8KOJ1bsR32egLXA4clsN9hrXOfYGPkVuph0glyPXgLoWlAFpERKRs1uJrnZuJnnVehM86vw58EvgmvnQjqjDrPBZf66yss3QFnR3cpbWg96YAWkREpORa8RnnRfhd0oMjXucm/BEF+wA/Aw7P4T7j+JZ4fVDWWbqH1IO7FJYCaBERkZJah886byZ61nkxvsPGAuBI4CJ8+6+oNuEzcXsAY1DWWWTHKIAWEREpiTg+6/wWPgscJSvWCvweuA6/KOonwMdzuM8Evta5EZ91zmWBoYhkowBaRESk6NbhO2zkknV+G1/rvAA4AvgP/CG5o9oUnHZHWWeRwlIALSIiUjSpWefeRKt1jgO3AL/B12/+GF+2EVVq1vkglHUWKTwF0CIiIkWxHp913ogPnKNkgJfis87zgRnAxURraxfajG/jFWad9TEvUgx6Z4mIiBRUHB8Iv4lvqRWl1jkO/AH4b3zW+YfAJ4h2CG9IZp174bPO/XMZsIjkSAG0iIhIwawHXg1+DiJ61vl7+Gz1Yfisc5RSj5CyziKlpneZiIjIDkvgA+E38FngoRGuEwduw2ed64Ef4A+MkkvWeTXQABxIbm3tRGRHKIAWERHZIRvIPev8Lr6v8zxgOvAdcss6bwnubww+86yPc5FSitJHJy9mtouZPWpmC83sNTP7WoZtzMyuNrNFZvaKme1XrPGIiIgUVgJYAjwJtOBrnTsLnhP4WueZ+O4c3wWuIHrwHNY6x/FZ5z1R8CxSesV817UC/+6ce8nM+gAvmtkjzrkFKdscjT8s0h7AAfj9WAcUcUwiIpKFmf0/4AuAw6dUz3HONadcfhjwR3zUCHCvc+57JR5mhdiIf4rWEr3Dxnv4WueX8Vnnb5PbIYa34PtJh1nnuhyuKyKFVLQA2jn3AfBB8PsGM1sIjMB3hA+dANzsnHPAP8ysv5ntHFxXRERKxMxGABcCeznntpjZncDpwI1pmz7pnDuu1OOrHAl8+cVCotc6J4A7gWvwQe9lwLFEr3V2+KxzD3zWOZeDqYhIMZRkv4+ZjQb2Bf6ZdtEI/Ffy0LLgvHYBtJmdB5wHMGrUqKKNU0Skm6sFeppZCz46fL/M46kwYdZ5Db7WOcpH6DJ81vkl/KG0v0O0oDvUjM8674ayziKVo2g10CEz6w3cA8x2zq1PvzjDVdx2Zzh3nXNuinNuypAhuezuEhGRKJxz/wIux6dXPwDWOef+mmHTA81snpk9ZGYTSjrIskkA7+BrnbcCw+g8eA6zzqfjO3P8F3Al0YPnMOu8DfgoMB4FzyKVo6gBtJnV4YPnW51z92bYZBmwS8rfI1HGQ0Sk5MxsAL6sbjdgONBoZp9N2+wlYFfn3D74eoT7s9zWeWb2gpm90NTUVMRRl8Im4Hl89eFAoE+E6/wL+BLwM/zO1zuATxG9ZKMZWI7/SDwYlWyIVJ5iduEw4HfAQufcFVk2+xPwuaAbx0fxGQ/VP4uIlN7HgSXOuSbnXAtwL/6Qdm2cc+udcxuD3x8E6sxsu/YRXWOvYVjr/CT+QCVDiZZ1vhufdX4d+E/gamCniPeZnnXeC2WdRSpTMWugPwacBbxqZnOD874NjAJwzs0BHgSOARbhZ6hzijgeERHJ7l3go2bWC9/u4QjghdQNzGwnYLlzzpnZNHwSZlXJR1p0m4D5+IOUDCTaR+X7wPfx2eoDgEuIHjhDstZ5NL4xlQJnkUpWzC4cT9HJ/qqg+8ZXijUGERGJxjn3TzO7G1+m0YrvtXadmZ0fXD4HOAX4kpm14oPs04N5vItw+MrCBfiOF1HqlR0+WX8V/iPvO8Cnya3Dxmr8x/E0cjuYioiUi7qvi4gIAM65S4FL086ek3L5tcC1JR1UyWwGXgOaiN5h4wN81vk5fPB7CbBzDvfZjO8jvSswFh+0i0g1UAAtIiLdmMMv+puPD2CHRbzO/fiuGg64GDiZ3LLOa/AHXzkAZZ1Fqo8CaBER6aY248s1VhA96/wh8APgH8BUfNZ5eA73uRUfPI8CxqGss0h1UgAtIiLdjMMv+puP/xiMmnX+I/BLfLeN/8BnnaM2swprnWvwgXcuB1MRkUqjAFpERLqRLfha51yyzsuBHwLPAPvjs84jc7jP1KzzWKA+h+uKSCVSAC0iIt1AmHV+DZ8Fjpp1/jNwBb4xyTeBU8kt67wGXxutrLNIV6IAWkREurgt+Frn5fi+zlF6LK/AZ52fBvbDH4o7n6zzLvhaZ2WdRboSBdAiItJFOfyiv1fJLev8F+ByoAX4BnAa+WWdp0S8TxGpNgqgRUSkC2rGZ50/wNc6R8k6NwE/wh++ezK+JfYuOdznNnzwPALYE2WdRbouBdAiItKFOHypxqv4rHGUw2k74EF81nkb8HXgM/isdVRrgtvZH1/rHLUntIhUIwXQIiLSRTQDC/FZ5wFE67G8Ep91fgLYG5913jWH+9yGb08XZp0bcriuiFQrBdAiIlLl0rPOUWudHwZ+jl/wNxuYSW5Z57X4ntD7B/eprLNId6EAWkREqthWfNb5X/gOG1GyzquAHwOPAZPwWefROdxnCz7rvDMwHmWdRbofBdAiIlKlwqwzRK91/ivwM3xru68BZ5Bf1nnf4D6VdRbpjhRAi4hIldkKvAEsI3qt82p81vlRYCI+67xbDvcZZp13AvZCWWeR7k0BtIiIVJEVwCv4bHLUbhePAD8FNgFfBc4kt4+/tSjrLCKpFECLiEgV2Aa8DryHzzpH6bG8BvgJ8Hd81vgyYEwO9xlmnYcF1++Zw3VFpCtTAC0iIhVuBb7WOU70bhd/w2edNwJfAc4i96xzHNgHGB7xPkWku1AALSIiFWob8CbwLtCfaFnntfjA+RF8h4xLgd1zuM9WfJeOocAElHUWkUwUQIuISAVaC7yEzwJHrXX+P3zJxnrgS8Ascs86t6Kss4h0RgG0iIhUoKX4AHZghG3X4g+I8r/AOOBXwB453Fdq1nkvoFcO1xWR7kgBtIiIVKhYhG0ew7enWwucD5xNbh9t6/CLBffGH45bWWcR6ZwCaBERqULrgMuBh4CxwDXBz6ha8R02BuNrnZV1FpHoFECLiEiVeRz4ET7rfB7weXLPOm/DH1BlJMo6i0iuFECLiEiVWI/POj+Ir3G+Gl/zHFVY6xxmnRsLPUAR6SYUQIuISBV4Evgh/uAoXwDOBepyuP56/CHAw6xzlPpqEZHMFECLiEgF2wD8AngA38/5SmDPHK4f1joPBKahrLOIFIICaBERqVD/wAfPq/F1zl8AeuRw/TDrvBewC8o6i0ihKIAWEZEKsw64DPgjMAYfRO+Vw/XDrPMAYCrQu8DjE5HuTgG0iIhUmB8BfwbOBL5CblnnDcAWlHUWkWJSAC0iIhXmP/EHNhlJ9OA57LAxAJiCss4iUkwKoEVEpML0wbeZWxdx+9Ss8yiUdRaRYlMALSIiVSqOzzr3B/bHB94iIsWnAFpERKrQRmATvqXdaJR1FpFSUgAtIiJVJMw69wWmo6yziJSDAmgREakSG4HN+MN37wrUlHc4ItJtKYAWEZEKl5p1/ljwU0SkfBRAi4hIBQuzzmPxtc7KOotI+SmAFhGRCrUWGIyyziJSaRRAi4hIBWrE94LeDWWdRaTSKIAWEZEKtEe5ByAikpUaZ4qIiIiI5EABtIiIiIhIDhRAi4iIiIjkQAG0iIiIiEgOFECLiIiIiORAAbSIiIiISA4UQIuIiIiI5EABtIiIiIhIDhRAi4iIiIjkQAG0iIiIiEgOFECLiIiIiORAAbSIiIiISA6KFkCb2fVmtsLM5me5fICZ3Wdmr5jZc2Y2sVhjEREREREplGJmoG8Ejurg8m8Dc51zewOfA64q4lhERERERAqiaAG0c+4JYHUHm+wF/D3Y9nVgtJkNK9Z4REREREQKoZw10POAkwDMbBqwKzCyjOMREREREelUOQPonwADzGwu8FXgZaA104Zmdp6ZvWBmLzQ1NZVwiCIiIiIi7dWW646dc+uBcwDMzIAlwSnTttcB1wFMmTLFlWqMIiIiIiLpypaBNrP+ZtYj+PMLwBNBUC0iIiIiUrGKloE2s9uAw4DBZrYMuBSoA3DOzQHGAzebWRxYAJxbrLGIiIiIiBRK0QJo59zMTi5/FtijWPcvIiIiIlIMOhKhiIiIiEgOFECLiIiIiORAAbSIiABgZv/PzF4zs/lmdpuZNaRdbmZ2tZktMrNXzGy/co1VRKScFECLiAhmNgK4EJjinJsI1ACnp212NH7tyh7AecB/l3SQIiIVQgG0iIiEaoGeZlYL9ALeT7v8BOBm5/0D6G9mO5d6kCIi5aYAWkREcM79C7gceBf4AFjnnPtr2mYjgPdS/l4WnCci0q0ogBYREcxsAD7DvBswHGg0s8+mb5bhqtsdHdbMzjOzF8zshaampsIPVkSkzBRAi4gIwMeBJc65JudcC3AvcFDaNsuAXVL+Hsn2ZR44565zzk1xzk0ZMmRI0QYsIlIuCqBFRAR86cZHzayXmRlwBLAwbZs/AZ8LunF8FF/m8UGpByoiUm5FOxKhiIhUD+fcP83sbuAloBV4GbjOzM4PLp8DPAgcAywCNgPnlGm4IiJlpQBaREQAcM5dClyadvaclMsd8JWSDkpEpAKphENEREREJAcKoEVEREREcqAAWkREREQkBwqgRURERERyoABaRERERCQHCqBFRERERHKgAFpEREREJAcKoEVEREREcqAAWkREREQkBwqgRURERERyoABaRERERCQHCqBFRERERHKQUwBtZjEz61uswYiISOFozhYRKY5OA2gz+4OZ9TWzRmAB8IaZfbP4QxMRkVxpzhYRKb4oGei9nHPrgU8DDwKjgLOKOSgREcmb5mwRkSKLEkDXmVkdfjL+o3OuBXBFHZWIiORLc7aISJFFCaB/AywFGoEnzGxXYH0xByUiInnTnC0iUmS1nW3gnLsauDrlrHfMbEbxhiQiIvnSnC0iUnxRFhEOM7PfmdlDwd97AbOKPjIREcmZ5mwRkeKLUsJxI/C/wPDg7zeB2UUaj4iI7Jgb0ZwtIlJUUQLowc65O4EEgHOuFYgXdVQiIpIvzdkiIkUWJYDeZGaDCFZxm9lHgXVFHZWIiORLc7aISJF1uogQ+DrwJ+AjZvY0MAQ4paijEhGRfGnOFhEpsihdOF4ys0OBcYABbwR9RUVEpMJozhYRKb6sAbSZnZTlorFmhnPu3iKNSUREcqQ5W0SkdDrKQB8f/BwKHAT8X/D3DOAxQJOxiEjl0JwtIlIiWQNo59w5AGb2ALCXc+6D4O+dgV+VZngiIhKF5mwRkdKJ0oVjdDgRB5YDY4s0HhER2TGas0VEiixKF47HzOx/gdvwbZFOBx4t6qhERCRfmrNFRIosSheOC4LFKdODs65zzt1X3GGJiEg+NGeLiBRflAx0uHpbC1BERKqA5mwRkeLqqI3dU865g81sA8ERrcKLAOec61v00YmISCSas0VESqejLhwHBz/7lG44IiKSD83ZIiKl02EXDjOLmdn8Ug1GRETypzlbRKQ0OgygnXMJYJ6ZjSrReEREJE+as0VESiPKIsKdgdfM7DlgU3imc+5TRRuViIjkS3O2iEiRRQmgv1v0UYiISKFozhYRKbIofaAfL8VARERkx2nOFhEpviiH8hYRERERkYACaBERERGRHGQNoM3s78HPn5ZuOCIikg/N2SIipdNRDfTOZnYo8Ckzux1/NKs2zrmXijoyERHJheZsEZES6SiA/i/gYmAkcEXaZQ44vFiDEhGRnGnOFhEpkY4O5X03cLeZXeKc+36uN2xm1wPHASuccxMzXN4PuAUYFYzjcufcDbnej4iI7PicLSIi0UVpY/d9M/sUcEhw1mPOuQci3PaNwLXAzVku/wqwwDl3vJkNAd4ws1udc9si3LaIiGSwA3O2iIhE1GkXDjP7MfA1YEFw+lpwXoecc08AqzvaBOhjZgb0DrZtjTJoERHJLN85W0REootyJMJjgcnOuQSAmd0EvAx8awfv+1rgT8D7QB/gM+F9pDOz84DzAEaNGrWDdysi0qUVa84WEZFA1D7Q/VN+71eg+/4kMBcYDkwGrjWzvpk2dM5d55yb4pybMmTIkALdvYhIl9U/5fdCzdkiIhKIkoH+MfCymT2Kb4t0CIXJZJwD/MQ554BFZrYE2BN4rgC3LSLSXRVrzhYRkUCURYS3mdljwFT8ZPwfzrkPC3Df7wJHAE+a2TBgHPB2AW5XRKTbKuKcLSIigSgZaJxzH+DrlSMzs9uAw4DBZrYMuBSoC25vDvB94EYze5XkJL8yl/sQEZHt5TNni4hIdJEC6Hw452Z2cvn7wCeKdf8iIiIiIsUQdRGhiIiIiIjQSQBtZjEzm1+qwYiISP40Z4uIlEaHAXTQR3Seman5sohIhdOcLSJSGlFqoHcGXjOz54BN4ZnOuU8VbVQiIpIvzdkiIkUWJYD+btFHISIihaI5W0SkyKL0gX7czHYF9nDO/c3MegE1xR+aiIjkSnO2iEjxddqFw8y+CNwN/CY4awRwfxHHJCIiedKcLSJSfFHa2H0F+BiwHsA59xYwtJiDEhGRvGnOFhEpsigB9Fbn3LbwDzOrBVzxhiQiIjtAc7aISJFFCaAfN7NvAz3N7EjgLuDPxR2WiIjkSXO2iEiRRQmgLwaagFeBfwMeBP6zmIMSEZG8ac4WESmyKF04EmZ2E/BP/G7AN5xz2h0oIlKB8p2zzWwccEfKWWOA/3LOXZmyzWHAH4ElwVn3Oue+V5iRi4hUj04DaDM7FpgDLAYM2M3M/s0591CxByciIrnJd852zr0BTA5uowb4F3Bfhk2fdM4dV9BBi4hUmSgHUvkFMMM5twjAzD4C/AVQAC0iUnkKMWcfASx2zr1ThPGJiFS9KDXQK8KJOPA2sKJI4xERkR1TiDn7dOC2LJcdaGbzzOwhM5uQ1whFRKpc1gy0mZ0U/PqamT0I3ImvpzsVeL4EYxMRkYgKNWebWQ/gU8C3Mlz8ErCrc26jmR2DP0DLHhlu4zzgPIBRo0bl8ChERKpDRyUcx6f8vhw4NPi9CRhQtBGJiEg+CjVnHw285Jxbnn6Bc259yu8PmtmvzWywc25l2nbXAdcBTJkyRYvORaTLyRpAO+fOKeVAREQkfwWcs2eSpXzDzHYCljvnnJlNw5cBrirQ/YqIVI0oXTh2A74KjE7d3jn3qeINS0RE8rEjc7aZ9QKOxPePDs87P7j+HOAU4Etm1gpsAU5XW1MR6Y6idOG4H/gd/khWiaKORkREdtT95DlnO+c2A4PSzpuT8vu1wLU7PkQRkeoWJYBuds5dXfSRiIhIIWjOFhEpsigB9FVmdinwV2BreKZz7qWijUpERPKlOVtEpMiiBNCTgLOAw0nuDnTB3yIiUlk0Z4uIFFmUAPpEYIxzbluxByMiIjtMc7aISJFFORLhPKB/kcchIiKFoTlbRKTIomSghwGvm9nztK+nUxs7EZHKozlbRKTIogTQlxZ9FCIiUiias0VEiqzTANo593gpBiIiIjtOc7aISPFFORLhBvwKboAeQB2wyTnXt5gDExGR3GnOFhEpvigZ6D6pf5vZp4FpxRqQiIjkT3O2iEjxRenC0Y5z7n7UT1REpCpozhYRKbwoJRwnpfwZA6aQ3D0oIiIVRHO2iEjxRenCcXzK763AUuCEooxGRER2lOZsEZEii1IDfU4pBiIiIjtOc7aISPFlDaDN7L86uJ5zzn2/COMREZE8aM4WESmdjjLQmzKc1wicCwwCNBmLiFQOzdkiIiWSNYB2zv0i/N3M+gBfA84Bbgd+ke16IiJSepqzRURKp8MaaDMbCHwdOBO4CdjPObemFAMTEZHcaM4WESmNjmqgfw6cBFwHTHLObSzZqEREJCeas0VESqejA6n8OzAc+E/gfTNbH5w2mNn60gxPREQi0pwtIlIiHdVA53yUQhERKQ/N2SIipaMJV0REREQkBwqgRURERERyoABaRERERCQHCqBFRERERHKgAFpEREREJAcKoEVEREREcqAAWkREREQkBwqgRURERERyoABaRERERCQHCqBFRERERHKgAFpEREREJAcKoEVEREREclC0ANrMrjezFWY2P8vl3zSzucFpvpnFzWxgscYjIiIiIlIIxcxA3wgcle1C59zPnXOTnXOTgW8BjzvnVhdxPCIiIiIiO6xoAbRz7gkgakA8E7itWGMRERERESmUstdAm1kvfKb6nnKPRURERESkM2UPoIHjgac7Kt8ws/PM7AUze6GpqamEQxMRERERaa8SAujT6aR8wzl3nXNuinNuypAhQ0o0LBERERGR7ZU1gDazfsChwB/LOQ4RERERkahqi3XDZnYbcBgw2MyWAZcCdQDOuTnBZicCf3XObSrWOERERERECqloAbRzbmaEbW7Et7sTEREREakKlVADLSIiIiJSNRRAi4iIiIjkQAG0iIiIiEgOFECLiIiIiORAAbSIiIiISA4UQIuIiIiI5EABtIiIiIhIDhRAi4iIiIjkQAG0iIiIiEgOFECLiIiIiORAAbSIiIiISA4UQIuIiIiI5EABtIiIiIhIDhRAi4iIiIjkQAG0iIiIiEgOFECLiIiIiORAAbSIiIiISA4UQIuIiIiI5EABtIiIiIhIDhRAi4iIiIjkQAG0iIiIiEgOFECLiAhmNs7M5qac1pvZ7LRtzMyuNrNFZvaKme1XpuGKiJRVbbkHICIi5eecewOYDGBmNcC/gPvSNjsa2CM4HQD8d/BTRKRbUQZaRETSHQEsds69k3b+CcDNzvsH0N/Mdi798EREyksBtIiIpDsduC3D+SOA91L+XhacJyLSrSiAFhGRNmbWA/gUcFemizOc5zLcxnlm9oKZvdDU1FToIYqIlJ0CaBERSXU08JJzbnmGy5YBu6T8PRJ4P30j59x1zrkpzrkpQ4YMKdIwRUTKRwG0iIikmknm8g2APwGfC7pxfBRY55z7oHRDExGpDOrCISIiAJhZL+BI4N9SzjsfwDk3B3gQOAZYBGwGzinDMEVEyk4BtIiIAOCc2wwMSjtvTsrvDvhKqcclIlJpVMIhIiIiIpIDBdAiIiIiIjlQAC0iIiIikgMF0CIiIiIiOVAALSIiIiKSAwXQIiIiIiI5UAAtIiIiIpIDBdAiIiIiIjlQAC0iIiIikgMF0CIiIiIiOVAALSIiIiKSAwXQIiIiIiI5UAAtIiIiIpIDBdAiIiIiIjlQAC0iIiIikgMF0CIiIiIiOVAALSIiIiKSAwXQIiIiIiI5UAAtIiIiIpIDBdAiIiIiIjlQAC0iIiIikgMF0CIiIiIiOVAALSIiIiKSAwXQIiIiIiI5KFoAbWbXm9kKM5vfwTaHmdlcM3vNzB4v1lhERERERAqlmBnoG4Gjsl1oZv2BXwOfcs5NAE4t4lhEommNQ0srxOOQSIBz5R6RiIiIVJjaYt2wc+4JMxvdwSZnAPc6594Ntl9RrLGIdMg5HzhvafbBsxk4wAAcxGIQq4GamD/FYn6bmAU/VQklIiLSnRQtgI5gLFBnZo8BfYCrnHM3Z9rQzM4DzgMYNWpUyQYoXZxzPmDe3OwzzjUx6FG3/TYOn42Ox5MZaQdYSnY6VuMD6dogwI7F2gfYZqV6VCIiIlJk5Qyga4H9gSOAnsCzZvYP59yb6Rs6564DrgOYMmWK9qnLjnEOtrX4jHPcZQ6cQ2ZBJrqDANg5f0rEYWtqkO381RxBMJ0eYMeS54fBtoiIiFS8cgbQy4CVzrlNwCYzewLYB9gugBYpiEQiCJy3+t9ra6BHzY7frkUIfsMguzUOrjWZ2TbABdeN4YPqsEykpmb7AFtBtoiISNmVM4D+I3CtmdUCPYADgF+WcTzSVSUSsHWbD5zBB6a1BQicc5FPkJ1wyeuGwbbZ9gF2ek22gmwREZGiKloAbWa3AYcBg81sGXApUAfgnJvjnFtoZg8DrwAJ4H+cc1lb3onkLB6H5m3QvBUwqKup7OAylyC7pdVn053bftGjhVnslIWP6QF2JT8PIiIiFa6YXThmRtjm58DPizUG6aZa4z5o3rrNB4p1tdEC03UbYf1GqK2FHrW+Ljo8VUqnjTD47Wg4zvnsdbwFtqWWiqDOIiIiIgVQzhIOkcJqbfVlGttafCAYJXBOOFizDpav8tnqWMyXfKSrrYG6uu0D6/BUW0HZbTOo6WzRI+osIiIikicF0FLdnAsC52ZoSfgAL1tHjVTxOKxcCytW+3KInvUwejgM6Osv39YKLS0+GE89bW2BDZu3D7LNksF1XXqAXVuBWWxQZxEREZH8KICW6tTWim5rSg/nCC/nllZoWg1NayCegN69YNTO0LexfbBXX+dP2e47nkgG1S1BYB3WJW/Y5H9PV1vTPrCuq63sLLY6i4hIpQnnnXC+CdeB1GivmJSWAmipLs4lO2q0taKLkHHeug2Wr4ZVa/1t9OsDOw2Cxp65j8HM329tDfRqyLxNwqVksFuTgfa2Fl+fvX5jsstG6u2mZ63bZbRrKyeLDeosIiL5yxQIt+35cuAS/mfq7y5Bcs+ZS/4e7hGrxGSEdFkKoKU6JBI+y7ul2U+wtTVQGyFw3tzs65vXrPdz7cB+MGwQNNQXd7wxg/oe/pRJehY7/bR+a7QsdnqwXVNhHxw5BdnqLCJSdfINhJ0l39+p5WTh+z/8ck3we00M6CDL7BxsC7outZXU9fBzZiUlHqTLUAAtlS2egK1b/QI/iJZZcA42boYPV/lyilgMhg70pyjZ6lKIlMVOJMtCtqVls7ds9V1Dwtrk1NvNFFinlo1U2odJavCbrT13ITqLKMgWya4ggTAks8J5BsL5MvMdlML7bonD1k3+77qgJK8S5z+pWgqgpTLFU1rRYdED57UbfMZ5c7O/zvAhMHhA6Q+cUgixWIQsdrx9YJ16WtfsSyfS1dVuX3+dGnRXWhYb1FlEJKpcAuFEIrisggLhQggTFNQkF0NvavUPrTaYV+uCuU4kTwqgpbK0taJr9ZN0bZRWdAlYvc7XOG/d5jMNu+wEg/p17WxDmHGprYVeWbZJJLJ0FGnNnsVOrSWsy1AqUlfnt6kk6iwiXU2pAuFYBQfChWDmA+UwVk4kYFOz/2IdSwumu+pzIEWhAFrKL1xktqXZlyzEYtGOGhiP+24aK1b76/dsgN1GQP8++U2ECdc+e5m+678aJ9dYDBp6+FMm4XPf1lEkLZO9uYMsdrZuIj3qKnNF/I52FiGoyw47i9TXZ39eRaD9l7RMwXBngTCk7EHp5oFwocRi0CNIrCQSPpGweasWIUrOFEBL+YSHpN7cnNKKLkKNcksLrFjjg+dEAvo0+oWBfXrlGTgnfMAUi/l65JqYr71OBKfWoCwAl8zupHaQqOZOEeGRGutqs3ckCbPYqYF1mNHevMVftl0WO7Z9DXZ6NrsSn6+oQXY8Dq0tgALobiFyIJyABAqEq0W4hwm0CFFypgBaSq+th3MzxF30wLl5m69vXr3O30b/oBVdrzxa0YEPguIJv+uudy8/hvBDK9Nwwg/FhEt20YgnfElAPJH8UDXXPsDublns1DKRlohZ7PQSkfq6yq1PrNb/o+QYCKe819sFwtCuc4QC4a4h6yLEIMmgRYiSRgG0lE4ikewg0dbDOUKQtGmLD5zXbvCT3KB+MHRQfrvPw8A3kfBlIo2N0eqsITlxdtQpIvVDOLyfMNCOB23pum0WuyXzgsfNW/z/NmMWu4PDp0c5VLt0TYUIhCHICqcHwin19AqEuyctQpQIFEBL8SUSyYOfgJ90OuuK4ZxvQbd8lT90dk3Ml2kMHegnrly11bU6H3z17JXMNhRK+OEbA6jZPou93SKgMIsdTwbaXTqLXZ+9/3ZbH+gM3US2tfhFP/EMWewetRkOnZ4SdOsDrnq1tvosoAJhKSctQpQsFEBL8cTjvuyieSt+N1jEVnRr1vvAectWPzGNGAqD++cXDKUGzg3Boq9yBVVR+x07lxIwpNRhJ7p6Fjso38iWxQ4PPNPSsn02e9MW/7pJF5YH1dVlzmYri125mrf6gyfFYgqEpXJoEaIEFEBL4bWm9HAOd+9HaUW3aq1vRbetxX+rH7UzDOybX81ZmNEF6Fnvb68aatfasthZxrrDWexYSq1mlamJ+f9lzw6y2G1dRDK07tu0OfmaSJWatc6Uza6pgtdNV1UT014EqVxahNitKYCWwmnr4dziv41HCZxbg1Z0TUErul4NMHIo9Mu3FV1aR40edV1r8srlqH0uWxY7KIVIz2JX+xH7Uo/CmE08nqWjSCts3ALbOshitwuqa6BvL+jdWLzHIyLVQ4sQux0F0LJjwtrVLc3QkkjuxurMthbfv3nlWh/U9Q1a0fXOsxVdRx01upu2o/btQBY74VIy2Ja83dTa0mp8fmtqoGdNxCx2hkWPG1Oy2MOHwKABpRu7iFQHLULsFhRAS37aWtFtTenhHOHltGWrr29es85PJgP6+sC5V0N+Y2jrqFELjb1UexbFDmexgy8r4YFFjOTCre6Sxd6y1WeUREQ6okWIXZYCaMmNc8mOGm2t6CIEEhs3+8B53UY/SQwe4Dtq1OfZiq417oO3+lpoKEJHje4unyx2azxZIhKP+wNKdNksdn3nnWRERNJpEWKXoahDokkk/Ir4Lc0+WKqtgdpOAmfnYP1GHzhv3OIDj50Gw5AB+beiawmOCFjujhrdXaYsdvoXqUxZ7PSDz3TFLLaISBRahFjVFEBLx+IJ2LrVt6NzRG9FtzpoRdcctKIbOQwG9c+vo0FqR41eDX7XuSaUyhc1ix1msBNpddhdOYstIpJKixCrjgJoySye0ooOi7ZLKR60oluxyi+8aqiHXXeGgf3yXBgYBFFdtaNGd9fuwDNZhIF1GGgriy0iXZ0WIVYFBdDSXmoruvAbcaet6FphxRrfji4e9wfC2GUn6NtbHTVkx4QLcLLJKYttbQerSwbvCrBFpIJpEWLFUgAtyQVgW5p9C69YLFoP560tPtu8aq0PYPr1Traiy2cM8bi/HXXUkKh2NIsdjycPCx1msGH7DLZehyJSCbQIsWIogO7Owp63m5tTWtFF6KixpdnXN68ODjoxsJ8PnLP11u1sDO06ajSou4EUVkGy2C4IsINAO+H0OhWR8tIixLJSAN0dtfVwboa4ixY4O+c7aSxfCes3+W+7Qwf6U5SgO9PttQRHxGvooY4aUj75ZrH1oSQilUKLEEtOAXR3kkgkD37S1sO5k6DVOd+7efkq2LTFX2fnwTBkYH4ZuPBQ22bqqCHVo7MstohIpdAixJJQAN0dJBLJg5+Af9N0FvwmnD9a4Ier/HV71MEuQSu6fALesOY0Zn6RYX0P1WiJiIgUkxYhFo0C6K4sHvf9m5u34nfjRGlFF4eVa2HFal8f3bMeRg/3h9ze0Y4afXpFW5woIiKSSTzuP5taWn271NZWHwQ29szvAF3djRYhFoxebV1Ra9jDucUveIoStLa0+qB55Rof8PbuBaN2hr6Nub+R2nXUqFNHDRER6Vi4qL2l1Zcahr+3tCSD5ZZWH/Rl06POlwY29vSnXg0qEeyIFiHuEAXQXUlqD+dYxIzz1m2+vnnVOv8G6t/Hd9Ro7Jn7/YcdNXD+jddQr04FIlXEzPoD/wNMxFdMft4592zK5YcBfwSWBGfd65z7XmlHKVUlTKiEAfB2QXHwe2t8++saPglTV+v3hvZt9EFyXW3yVFvj97Ru2uJPm5th7YbkbfSsTwmoe/oF60rmbE+LEHOmALraORcEzs3QkkjuhunM5qAV3Zr1/o0zsB8MG+iD3nzG0BL3k11DD787TYsTRKrRVcDDzrlTzKwHkKmp+5POueNKPC6pRInE9oFwpixy2F89VW1NMgjuFZRf9AgD47pkcBwl2O1d2/74Ay2tKQH1Ft9ydeVaf1lNzN9faqZapR/taRFiJHrVVKu2VnRbU3o4d/LvdA42bPaB84ZN/pvksEEwZEB+rejCjhrhobbVUUOkaplZX+AQ4GwA59w2YFs5xyRlEiZmUksn0kspWlp8uV+6mCUD4DA4Tc8aFzuTWVfr96b275N8PM3bfDAdBtbLVyW3V+lHdlqEmJUC6GrjXLKjRlsrugg9nNdu8BPG5mZ/neFDYPCA/Eoswo4aNebrm+t1qG2RLmAM0ATcYGb7AC8CX3PObUrb7kAzmwe8D3zDOfdaiccp+Qr7macHxZmyyJmEwW99nc/49kgNioMguSZWeZ8HZr6Uo2e97yQF/nnY3Nw+U92u9KMBGhtU+pFOixDbKICuFomEXxS4pdlPgrU1UNtJ4JxIwOp1sHy1D7rr62DUTr5cI59v163xZNCujhoiXU0tsB/wVefcP83sKuBi4JKUbV4CdnXObTSzY4D7gT3Sb8jMzgPOAxg1alSxxy3gF223pi/Ay7AgL5GhnKImlgyCG+pTyinSMsddab6PxfyXgFxLPxobgp8q/ejuixC7+X+/CsQTsHWr3/3kiN6KrmmN76rRGve7o3Yb4Xdn7UhHjR510KCOGiJd1DJgmXPun8Hfd+MD6DbOufUpvz9oZr82s8HOuZVp210HXAcwZcqUDBGbRLbdIrwsWeOMi/AsGfz2rId+vdNKKVKyxhKt9OPDtNKPxpR66u5c+tENFyEqgK5U8bAV3TbAogWtLS2wYo0PnhMJ6NMIOw3y37DzCZzDjhr1PaBeHTVEujLn3Idm9p6ZjXPOvQEcASxI3cbMdgKWO+ecmU3DHwB9VYabkyjayik6yhp3tgivLpkNTQ2Ke3TPutSCylT6EU/4PcFhQL1ps1+MH0ot/eiuBw3rJosQFUBXmtRWdOE3us7efM1bfZnG6qAV3YC+vqNGrzxa0SWCbAcEHTXqlZ0Q6T6+CtwadOB4GzjHzM4HcM7NAU4BvmRmrcAW4HTnMkV33VxqT+OMC/ByWIS33QK8MJPXzYKySlGTqfSjxS+s66z0I6yn7k6lH114EWI3+i9WsDDbu6XZT6yxWLR6s3Al8doNfttB/XxXjfoeuY8hvaNGD3XUEOlunHNzgSlpZ89Jufxa4NpSjqmitFuE18ECvE4X4fVIriNJzxrHKnARnnSsrg76121f+hEG1Cr9SOpCixAVQJdTmKXY3JzSii5CR40Nm/ybceNmf51hg2DowPy+1cYTyfvu3cvffxW8cGXHtbS0sGzZMpqbm8s9lC6poaGBkSNHUleXR4tIKb2E67yUosNFeCkH/EgNisPAOMreROkaUks/6O/PSy/92JhW+tGroX2mujuUflT5IkQF0OXQ1sO5GeIueuC8Zr3POG/Z6iflEUNhcP/c64ic82/mhPP1SH0bNbl3Q8uWLaNPnz6MHj0a0/++oJxzrFq1imXLlrHbbruVezjdW7iHLzUIzrQgL+dFeHXJNm4V+gEvFaSz0o9NW3wZ5so1ye27U+lHFS5C7ML/jQqUSCQPftLWw7mT4DeRgFVrfY3zthb/rXTXnWFAv9xr4NI7avSsr8q6IymM5uZmBc9FYmYMGjSIpqamcg+la4snMnSmSM8a57IILy1rrPlRiinf0o+w7KOrln5UySJEBdClkEgkD34C/p/eWUeL1qAVXVPQiq6xJ4wc5jMgeXXUCGry6nv4Pp9VvvpVCkPBc/Houd0B4V665q1+L127rHFKwJxxEV4sGQT37pkWFKf8rv+PVJpspR+bm5MBdXcr/eh0EWJ92Q7gowC6mOJx/22yeSt+N0SEbMa2Ft+/eeUanynu2wjDBvsPglxfHO06atSro4aUxIcffsjs2bN5/vnnqa+vZ/To0Vx55ZWMHTu23EOTavHO+/DOB9ufHwa/DfW+TWf6ArwKyEqJFFRNzC847ZNS+rGtJQiomzso/Ug56EtXKv3YbhFiM2ymLIsQu9CzWkFawx7OLWBEy3Zs2errm1ev838P7OsXB/ZsyP3+1VFDysQ5x4knnsisWbO4/fbbAZg7dy7Lly9XAC3RDezvs9CxmG+nWVc9K/NFii4MFPv39X8752OO1FZ6H65sv31XLP0o8yLELvAMVpDWVt8hY90Gv4uxrqbz4HnjZlj8Hix82++WGTIAJnwERo/IPXiOx/03U4dfqNC/j8/UdIU3ilSFRx99lLq6Os4///y28yZPnszBBx/MN7/5TSZOnMikSZO44447AHjsscc49NBDOe200xg7diwXX3wxt956K9OmTWPSpEksXrwYgLPPPpvzzz+f6dOnM3bsWB544AEAli5dyvTp09lvv/3Yb7/9eOaZZ9pu97DDDuOUU05hzz335Mwzz8Q5x9///ndOPPHEtrE98sgjnHTSSaV6eiSqvo1+LuzXO5lBU/AskpmZjxcG9/drpMaPgX3GwR6jfLOBXg0+1li2HN58B+a9Aa8vgfc+hFXrfNBZ7e3cw0WIYQa6Je7jsTUbYP0mX0abyFDytQOUgd5RYX3xlmZoSSR3I3R2nfUb/eKATVv8LsedBsPQAclVqLncfzzhXxh1NdCojhpSPvPnz2f//fff7vx7772XuXPnMm/ePFauXMnUqVM55JBDAJg3bx4LFy5k4MCBjBkzhi984Qs899xzXHXVVVxzzTVceeWVgA+WH3/8cRYvXsyMGTNYtGgRQ4cO5ZFHHqGhoYG33nqLmTNn8sILLwDw8ssv89prrzF8+HA+9rGP8fTTT3P44Yfzla98haamJoYMGcINN9zAOeecU7LnR0SkJGpivsypT2PyvPTSj1Vr/VqrcPvU0o/GnrnHI5Ui2yLEWCy5YLMAqvTZqQBtrei2pvRw7uTpdM6XaCxf7b/x9aj1CwMH9c+9NjlszeTCjhq9qvfFLl3eU089xcyZM6mpqWHYsGEceuihPP/88/Tt25epU6ey8847A/CRj3yET3ziEwBMmjSJRx99tO02TjvtNGKxGHvssQdjxozh9ddfZ7fdduOCCy5g7ty51NTU8Oabb7ZtP23aNEaOHAn4LPjSpUs5+OCDOeuss7jllls455xzePbZZ7n55ptL+EyIiJRJ1tKPIKjuqPSjsadf3Fhte7TDRYixlDVhBaKIK1fOJTtqtLWi6yTjHA9a0a1Y5VeSN9TDrsN9nXNeHTWCwLmh3tcHatGMVIgJEyZw9913b3d+R0d7rq+vb/s9Fou1/R2LxWgNu8ewfVcLM+OXv/wlw4YNY968eSQSCRoakmVPqbdbU1PTdlvnnHMOxx9/PA0NDZx66qnU6ouniHRHYelHzwYYHJwXTySz1JvTun4YftuwL3VjQ9fr+pGDKvsqUUbhISfXrPff1sJSjY6+jbW2wvtNMH+Rrz3qUQcfGQnjd/OH3c7lRZdwyWb/DT1gQF//IlbwLBXk8MMPZ+vWrfz2t79tO+/5559nwIAB3HHHHcTjcZqamnjiiSeYNm1aTrd91113kUgkWLx4MW+//Tbjxo1j3bp17LzzzsRiMX7/+98Tj5BhGD58OMOHD+cHP/gBZ599dq4PUUSk6wpLP3YaBGNGwqQ9YOLusNsIGDrIxzyr1vpOOQvehlfehEXv+lhn3cZky9xuQKmXzsQTsHWrb0fniNaKbuu2oBXdWp8p7tfbd9RIPQJRVOqoIVXEzLjvvvuYPXs2P/nJT2hoaGhrY7dx40b22WcfzIyf/exn7LTTTrz++uuRb3vcuHEceuihLF++nDlz5tDQ0MCXv/xlTj75ZO666y5mzJhBY2Nj5zcEnHnmmTQ1NbHXXnvl+1BFRLqHsPRjQJbSj01bYH1K6Ud9XUo9dZWWfkRgHe1arURTpkxx4SKhooqHrei2ARathdLmZt+Kbs16v6tjQL+gFV19x9fLdv/xhM8w96z3L95uuptEimPhwoWMHz++3MOI5Oyzz+a4447jlFNOKcjtXXDBBey7776ce+65Bbm9bDI9x2b2onNuSlHvuILkPWdv3OSTB9rLJlL52ko/Uso/WoJs9HalHz19kF3KmCY8EvOAfjlfNducrQx0utZWX6qxrSXZFqWjf7JzvkZo+SrfKiUWg6ED/amz2uhMt9XWUaMWGnup96lIge2///40Njbyi1/8otxDEZEd4VxwwpdV6rOyfLJ1/di0xScXt+v6UZM80EvY+aPK1qMUbbRmdj1wHLDCOTcxw+WHAX8ElgRn3euc+16xxtOhcGHelmb/jSk8FGxngfO6Db4V3eZmH+juPMT3Lu3sMN3Z7t/hO3Ooo4ZIOzfeeGPBbuvFF18s2G2JSBGFAXLCJfsUO/xhnJ35oLkm5jOc8YTfzhxgwYF4DCym4LpcMpV+bNnaPlNdxaUfxYzSbgSuBTrqEfWkc+64Io6hYy5YmLe5OaUVXSdZ40QCVq/3Geet2/z2uwSt6HL9Rzvnm32jjhoiItLNdBog4z8T62r8z5qUYDgW2z4ods5/RifCvblxaE34z3fn/I274Dox/PUtCMAVYBefWfJIiIMH+PPi8WSGelNzWtcP80F0OUs/OlC0ANo594SZjS7W7e+Qth7OzRB30QLneNwvClyx2gfdPeth9HD/zSrXf2Yi4d/c4F9I9VoYKCIiXUyhA+TOhD1/a4D0j/TU4Do8AFq4SD8elIHgkvcZjsOUvS6qmprspR9h+UeFln6Uu07gQDObB7wPfMM591pR7y2RSB78pK2HcycZ35bWoKPGGh/09unlD5XZpzG/wFkdNUREpCvIJ0C2oPQinwB5R6QG19A+adb2OFKy1/HWIHvd6h9LWBoS3lZMwXXRVEnpRzkD6JeAXZ1zG83sGOB+YI9MG5rZecB5AKNGjcrv3pq3+m8y4N9EndUpb93myzRWrfP/vP59fEeNxp6533dqR43evdRRQ0REKl96gBw27UoNkGMVEiDvCEvJercJumelPgfh3uN43J9agxLMsOa67XYUXBdUp6Uf6Qd8SSn9CMs/OjtSdB7Klv50zq13zm0Mfn8QqDOzwVm2vc45N8U5N2XIkCH53eGWYKFfXa1/cWezeQu8vQxeW+yD54H9YK8xvqF4LsFzuDBwW4t/U/bt7ftBd+Oj9oikq6mpYfLkyUycOJFTTz2VzZs388ILL3DhhRd2eL2lS5cyceJ2a5O38+abb3LMMcew++67M378eE477TSWL1+edfvHHnuM444r37IMkZIKs67xuN/bui04tbT4n/E4YP5zs2eD3wPbtxH69fFH0h3Qz3+u9e6VbLdaV+uD6a7yORcG1uFRh3vW+8fbr4/PkPbv6z/f+zb6AK8uSJDFg8//ba3+uW1pCcpFEslsveQvLP3YaTB8ZBd/sJfwgC9DBiQP+LL0fViwGF5dBP9aUdAhlC0DbWY7Acudc87MpuGD+VVlGYxzsCFoRbchaEU3bBAMHeDfDLneVthRo74WGhpz78oh0k307NmTuXPnAv7gJnPmzOHrX/86U6bseJvk5uZmjj32WK644gqOP/54AB599FGampoYNmzYDt++SMVra/MWZpGD8y2l9Vss5mtIqzmDXC5tGWeAmu3rrhOJ5HMfj6fUXKtjSMGZdVz6sXFLwWOxomWgzew24FlgnJktM7Nzzex8Mzs/2OQUYH5QA301cLor9VFdnPMp/zeW+kNRbmmG4UNg0u4wYmhuwbNzwTfNuM8y9+8NvRU8i0Q1ffp0Fi1a1C4LfNlll/H5z3+eww47jDFjxnD11Vdvd723336bfffdl+eff77d+X/4wx848MAD24JngBkzZjBx4kSWLl3K9OnT2W+//dhvv/145pln2rZZv349J554InvttRfnn38+iUSiSI9YZAdlyiCH2c5tLUEGGR8gb5dB7hdkkPt07QxyOcViQQ14re+01aunz1YP6Osz+P36+Cxq714+bojFfHDdkrIXIPyfxuPta82lc2Hpx+ABfu3asEEFvfliduGY2cnl1+Lb3JVeIuHLM1asgq0t/oU7aic/oeRaeB5+owz/UeqoIdVo0bu+hqyQeveC3aOtWWhtbeWhhx7iqKOO2u6y119/nUcffZQNGzYwbtw4vvSlL7Vd9sYbb3D66adzww03MHny5HbXmz9/Pvvvv3/G+xs6dCiPPPIIDQ0NvPXWW8ycOZPwaHnPPfccCxYsYNddd+Woo47i3nvvLdgREEVykimDbODbsaEMcjVLX9SYKmvHkLAln6GOIeVX7i4cpdUa9zUxK1b733s1wG5D/QLBXF908WAxQcyC3oSqbRbJ1ZYtW9oC3+nTp3Puuee2ywYDHHvssdTX11NfX8/QoUPbapibmpo44YQTuOeee5gwYUJO99vS0sIFF1zA3Llzqamp4c0332y7bNq0aYwZMwaAmTNn8tRTTymAluJQgCyZ7EjHEILgWh1Diq57BNBbt8EHK33WOZEICs8H+QxZzoFzakeNnuqoIV1DxExxoaXWQGdTX1/f9ntNTQ2tra0A9OvXj1122YWnn346YwA9YcIEHn/88Yy3+ctf/pJhw4Yxb948EokEDQ0NbZdZ2vs5/W+RyCIHyDVQU6sAWTqXb8eQ8GAyqdlrBdc7pHsE0AsWw/pNPtO802Cfec6Fc8n6o7o6aOzlJzy94ETKpkePHtx///188pOfpHfv3pxxxhntLj/jjDP48Y9/zF/+8heOPfZYAB5++GFGjBjBunXrGDlyJLFYjJtuuol4WCuKL+FYsmQJu+66K3fccQfnnXdeSR+XVJFsAXJ4UI6OAuTtgiCRHZS+qDFdW1lIIrkXPQyuE8GL1wgWNaa9VmU73SOA3n2U7xPYqyG3F0K7jhp1fhGAFgWKVIzGxkYeeOABjjzySBobGznhhBPaLuvZsycPPPAAs2fPZvbs2dTV1bH33ntz1VVX8eUvf5mTTz6Zu+66ixkzZtDYmDwK1oEHHsjFF1/Mq6++yiGHHMKJJ55YjocmlSCXADlWk0ysKECWShSL5dgxJJEMrrfrGKK9JFbqxhc7asqUKS5c7JOTNeuiryx2znfTAOjZw9c31yhwlq5l4cKFjB8/vtzD6NIyPcdm9qJzbsf79FWJvOfsjZt8AqOYc29nAbKZzxrXxJK1yAqQpbtJrbkOu760JiARZq7D0hD8+6cSFzWGlQQD+uV81WxzdvfIQEeVfqhtddQQEaleUQPk2hoFyCLZdNoxxCUz2O06hrR26Y4hCqAhWQtUY76+uV4LA0VEKl5HAXK4yzmmAFmkaMx87FQTvJdy7hiSdltVtKixewfQrUGdT22NbzBfV1sV/zQRkW7B0b420wWZLAXIIpUvl44hbUdpzNQxhPZHaayQOK37BdCpHTV61EGDOmqIiFQci4ELdgGHAXJN8FMBskh1K2jHECvLYdC7VwAd9I+lRw911BARqWS9GvxBqkSk+yl0x5AiBNbdJ4CuCVoM1dcna3VERKQyaa+giGQS7nmqwZfepuqoY0iBO/p0n0iyb2/o1VPBs0gFcM5x8MEH89BDD7Wdd+edd3LUUUdtt+1jjz3GcccdB8CNN97IBRdcUNCxPPfccxxyyCGMGzeOPffcky984Qts3rw56/bFGIOIiBRA2DGkrta3IO7VE/o2Qv++Pg4soO6TgRaRimFmzJkzh1NPPZUZM2YQj8f5zne+w8MPP1zScSxfvpxTTz2V22+/nQMPPBDnHPfccw8bNmygV69eJR2LiIhUD6VjRaQsJk6cyPHHH89Pf/pTvvvd7/LZz36WH/7wh0ydOpV9992XP/7xjx1e/5133uGII45g77335ogjjuDdd98lHo8zZswYnHOsXbuWWCzGE088AcD06dNZtGhRu9v41a9+xaxZszjwwAMBH9ifcsopDBs2jOeee46DDjqIfffdl4MOOog33nij7XrvvfceRx11FOPGjeO73/1ugZ8ZERGpdMpAiwgwG5hb4NucDFzZ4RaXXnop++23Hz169OC4447j8MMP5/rrr2ft2rVMmzaNj3/841mve8EFF/C5z32OWbNmcf3113PhhRdy//33M3bsWBYsWMCSJUvYf//9efLJJznggANYtmwZu+++e7vbmD9/PrNmzcp4+3vuuSdPPPEEtbW1/O1vf+Pb3/4299xzD+DLPubPn0+vXr2YOnUqxx57LFOmdJuDC4qIdHsKoEWkbBobG/nMZz5D7969ufPOO/nzn//M5ZdfDkBzczPvvvtu1us+++yz3HvvvQCcddZZXHTRRYDPND/xxBMsWbKEb33rW/z2t7/l0EMPZerUqTmNbd26dcyaNYu33noLM6OlpaXtsiOPPJJBgwYBcNJJJ/HUU08pgBYR6UYUQIsInWWKiykWixGLxdrqj8eNG9fu8uXLl0e6HQu6NkyfPp05c+bw/vvv873vfY+f//znPPbYYxxyyCHbXWfChAm8+OKLnHDCCdtddskllzBjxgzuu+8+li5dymGHHbbdfWX7W0REujbVQItIRfjkJz/JNddcg3MOgJdffrnD7Q866CBuv/12AG699VYOPvhgAA444ACeeeYZYrEYDQ0NTJ48md/85jdMnz59u9u44IILuOmmm/jnP//Zdt4tt9zChx9+yLp16xgxYgTgO2+keuSRR1i9ejVbtmzh/vvv52Mf+1jej1tERKqPAmgRqQiXXHIJLS0t7L333kycOJFLLrmkw+2vvvpqbrjhBvbee29+//vfc9VVVwFQX1/PLrvswkc/+lHAZ6Q3bNjApEmTtruNYcOGcfvtt/ONb3yDcePGMX78eJ588kn69u3LRRddxLe+9S0+9rGPEY/H213v4IMP5qyzzmLy5MmcfPLJKt8QEelmLMz2VIspU6a4F154odzDEKl6CxcuZPz48eUeRpeW6Tk2sxedc90m4tacLSLVLNucrQy0iIiIiEgOFECLiIiIiORAAbSIiIiISA4UQIt0Y9W2BqKa6LkVEem6FECLdFMNDQ2sWrVKgV4ROOdYtWoVDQ0N5R6KiIgUgQ6kItJNjRw5kmXLltHU1FTuoXRJDQ0NjBw5stzDEBGRIlAALdJN1dXVsdtuu5V7GCIiIlVHJRwiIiIiIjlQAC0iIiIikgMF0CIiIiIiOai6Q3mbWRPwTh5XHQysLPBwpOvR60Siyve1sqtzbkihB1OpNGdLCei1IlEUdM6uugA6X2b2QqZjmYuk0utEotJrpbj0/EpUeq1IFIV+naiEQ0REREQkBwqgRURERERy0J0C6OvKPQCpCnqdSFR6rRSXnl+JSq8ViaKgr5NuUwMtIiIiIlII3SkDLSIiIiKyw6o2gDazXczsUTNbaGavmdnXgvMHmtkjZvZW8HNAcP6gYPuNZnZt2m31MLPrzOxNM3vdzE4ux2OSwivU68TM+pjZ3JTTSjO7skwPS4qgwHPKTDN71cxeMbOHzWxwOR5TJdGcLVFp3pYoyj1nV20Jh5ntDOzsnHvJzPoALwKfBs4GVjvnfmJmFwMDnHP/YWaNwL7ARGCic+6ClNv6LlDjnPtPM4sBA51z6inZBRTydZJ2uy8C/88590QpHocUX6FeK2ZWC7wP7OWcW2lmPwM2O+cuK/mDqiCasyUqzdsSRbnn7KrNQDvnPnDOvRT8vgFYCIwATgBuCja7Cf9k4pzb5Jx7CmjOcHOfB34cbJfQRNx1FPh1AoCZ7QEMBZ4s3sil1Ar4WrHg1GhmBvTFT87dmuZsiUrztkRR7jm7agPoVGY2Gv+t4p/AMOfcB+CfXPwbpqPr9g9+/b6ZvWRmd5nZsCIOV8pkR14naWYCd7hq3X0jndqR14pzrgX4EvAqQVYD+F0xx1ttNGdLVJq3JYpyzNlVH0CbWW/gHmC2c259HjdRC4wEnnbO7Qc8C1xewCFKBSjA6yTV6cBtOz4qqUQ7+loxszr8ZLwvMBx4BfhWQQdZxTRnS1SatyWKcs3ZVR1ABw/6HuBW59y9wdnLg7qYsD5mRSc3swrYDNwX/H0XsF8RhitlUqDXSXhb+wC1zrkXizJYKasCvVYmAzjnFgfZrjuBg4oz4uqiOVui0rwtUZRzzq7aADqoU/kdsNA5d0XKRX8CZgW/zwL+2NHtBE/Wn4HDgrOOABYUdLBSNoV6naSYibIYXVIBXyv/AvYysyHB30fia/O6Nc3ZEpXmbYmi3HN2NXfhOBi/GOBVIBGc/W18/cudwCjgXeBU59zq4DpL8cXhPYC1wCeccwvMbFfg90B/oAk4xzn3bqkeixRPIV8nwWVvA8c4514v3aOQUijwnHI+8DWgBXgHONs5t6pkD6YCac6WqDRvSxTlnrOrNoAWERERESmHqi3hEBEREREpBwXQIiIiIiI5UAAtIiIiIpIDBdAiIiIiIjlQAC0iIiIikgMF0NItmPeUmR2dct5pZvZwOcclIiLb05wtlU5t7KTbMLOJ+KOW7QvUAHOBo5xzi/O4rRrnXLywIxQRkZDmbKlkCqClWzGznwGbgMbg567AJKAWuMw590czG40/SENjcLULnHPPmNlhwKXAB8Bk59xepR29iEj3ojlbKpUCaOlWzKwReAnYBjwAvOacu8XM+gPP4TMdDkg455rNbA/gNufclGAy/gsw0Tm3pBzjFxHpTjRnS6WqLfcARErJObfJzO4ANgKnAceb2TeCixvwh/58H7jWzCYDcWBsyk08p4lYRKQ0NGdLpVIALd1RIjgZcLJz7o3UC83sMmA5sA9+oW1zysWbSjRGERHxNGdLxVEXDunO/hf4qpkZgJntG5zfD/jAOZcAzsIvXhERkfLSnC0VQwG0dGffB+qAV8xsfvA3wK+BWWb2D/yuQGUwRETKT3O2VAwtIhQRERERyYEy0CIiIiIiOVAALSIiIiKSAwXQIiIiIiI5UAAtIiIiIpIDBdAiIiIiIjlQAC0iIiIikgMF0CIiIiIiOVAALSIiIiKSg/8PCn1+gsfVVWMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "retention_df = data.groupby(['Company',data['Date of Travel'].dt.year,'Customer ID'])[['Payment_Mode']].count().reset_index()\n", + "retention_df.columns = ['Company','Year','Customer ID', 'Number of rides']\n", + "display(retention_df)\n", + "\n", + "sporadic_customers = retention_df[retention_df['Number of rides'] <= 5]\n", + "loyal_customers = retention_df[retention_df['Number of rides'] > 5]\n", + "\n", + "fig, ax = plt.subplots(1,2)\n", + "\n", + "sns.lineplot(x = 'Year', y = 'Number of rides', data = sporadic_customers, hue = 'Company', palette = ['pink', 'yellow'], ax = ax[0])\n", + "sns.lineplot(x = 'Year', y = 'Number of rides', data = loyal_customers, hue = 'Company', palette = ['pink', 'yellow'], ax = ax[1])\n", + "ax[0].set_title('Sporadic Customers (5 rides or less)')\n", + "ax[1].set_title('Loyal Custumers (more than 5 rides)')\n", + "ax[0].set_xticks(sporadic_customers['Year'].unique())\n", + "ax[1].set_xticks(sporadic_customers['Year'].unique())" + ] + }, + { + "cell_type": "markdown", + "id": "fd9167c8", + "metadata": {}, + "source": [ + "We categories the customers as sporadics and loyal based on the number of rides they take in each company every year (5 rides or less is consider a sporadic customer in our analysis), and we found that Yellow Cab is doing a better job than Pink Cab in customer retention." + ] + }, + { + "cell_type": "markdown", + "id": "89c5e747", + "metadata": {}, + "source": [ + "## Recomendation\n", + "\n", + "Based on the questions previously analyzed and answered, we can conclude that **Yellow Cab** is a better option to invest than Pink Cab.\n", + "\n", + "**Profit through the years:** Yellow Cab has earned **8.3** times the earnings of Pink Cab in the period from 2016 to 2018.\n", + "\n", + "**User income profile:** In each economic group (Poor or near-poor, Lower-middle class, Middle class, Upper-middle class, Rich) Yellow Cab has more users than Pink Cab.\n", + "\n", + "**Users by city:** In the Top 5 cities with the largest number of users Yellow Cab has more presence than Pink Cab.\n", + "\n", + "**Volume of rides:** Yellow Cab has had **3.25** more trips than Pink Cab in the period from 2016 to 2018.\n", + "\n", + "**Customer retention:** We categories the customers as sporadics and loyal based on the number of rides they take in each company every year (5 rides or less is consider a sporadic customer in our analysis), and we found that Yellow Cab is doing a better job than Pink Cab in customer retention." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 5c2e3e00ae4127410b474bc065d035e4cff72c38 Mon Sep 17 00:00:00 2001 From: David Ortiz Date: Mon, 13 Jun 2022 22:45:28 -0500 Subject: [PATCH 2/3] EDA G2M Case Study --- Data Intake Report_G2M case study.pdf | Bin 0 -> 26656 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 Data Intake Report_G2M case study.pdf diff --git a/Data Intake Report_G2M case study.pdf b/Data Intake Report_G2M case study.pdf new file mode 100644 index 0000000000000000000000000000000000000000..0dfa1a3bab269e44449f03a65c010bd94ecdf3d9 GIT binary patch literal 26656 zcmeFZcUV-*vOWw5g5;=@2PDUtAq_d_oHI%oavX*%phN`(Bq&LcjDSRmf=ZAa1Vo9F zK|skt5aCa&bX|pg&1e%@GcY&ekqKGp9wk6$l`Mi-~co!ja}yK${>a__QxAZaq7=7aXC1 zfLp^6aA(WYPQYhvh>780!=0_pq&cnlL##7#xTRe@oPjR6mF=wDjX^x8?SUX?%%-5< z*-!7BV+SAs9RloUVraqLT|5v#_khH5F3!l)3k1Y>c25op5&s?<+YLKNH}m` zURwYpa7G}n4FkdcqR>FNSZc$O#@v8vxpm;)NNzql zcXoF@g=Fc&Ev?Nh1NXGEglox50Uha>Tet%xKOfak*zO?k?;1L7_?L#{>>QDB1h0$-vR)IU)AZqL^uS9?@3X2>it9qfi-cnvbkEO6hq!<4giL*;0y^ z+T~AB`^VU_5 zh&vs=1u%*GD@m;MCX{t<;T&z{rKb}L`6O}Ymc6eq5SOt>>t-AvAJBf4RL94CQ+o0kmNcKD^A4(NIW{rIe)-;wk2n_GiN%%umRf z;Fsr0$+LjQYr6Q-GwrIBq*z`5j^1+Q@M4XO0j`FV)M+P*~H!1f>~nN4flO6=<+ z=0(nMWzKWoS2>QGn7dNfY{>yfOg(<2HE^}erH1_mNlwpjRarsE6sIZl)RSc!+q2oQOZi7GotM2=IWXRWVQ?Kp3ByoQpm6els;dz;3IIg)sW4qJ}}1e%V| zb@k-5{gkE(#_xsclg!HBb{H@V>0f5O{?y&=G_k^D=s(tD?!FJ#E9#|sGBO^$xuxyFLVcBZE_~%_uiLwf-jD?FA9C;K|uX>oi4DysLm2;iLESG)#2aHHl~ z1H*#DmX&x$Zg~wkKO%}OF|rcgPJvPj8u3l$)Upqw=RRjL)@`TL(RHZtG!S@eblIc- zW!(^(l#H**LgLZQ5Vzr~Yj_%=?uq*JjESQIrSFMddBV|1U}Rjpx;9nw`BpYsQ@v!W z*Y;By@Db7A`#R*YL;Rh}Y9u{N$}3~2;h&p3?TpiA|0ckhg2a^w4(r_omyr85c%RDbww2jaq3H4joQ42+IIT_jSjSf7P zXm~3C%MKH)d~`BZMZ%f`9kJpsbD?y>A`+a3I7%Ni@V;rFK{5(UA$`2<47u_z#hEl9 zwh*|FrX@OVapP?fU$)VE+TbXoVdgx1tAUqK&}Uh5ctBsK!>ZK_A4a`LauCW~HVrEovqU`>uw2~26q4|i5f?RgYiq;KWKic_Um znR9#y^D6O{H&7-IRV{RSp3wk2kKS|>vchg@v+k`T4|nIr35mOuD&_Uf=2h=?9cbJ|HJ+ximh*& z18iAY@&sR9rGs^Iv2W;Y&t7IX<(auofkPIS9gX+xNt0P5<)dk9`Asd$U}cEjtLc&H zy6CT%G?aDMJ-o4y%N_2tV>n780u7HGv6afFdR z#*d*Wfa^wfb|`}s+p=yqJ-neH_@yJb^*UQF<|7G8g&iigPaHJavsaUiunlY7vXz^L zbL=yznCdr*bt;Q6_91%#PVYSWyEswrvWe8>$Zkw%CJa6(m)>bk|?^ z@#}~vkdPUBujF;SZtrVzzrw5ix^ye7*u$qC#oZ56l1GN{1^8K0WCdnja*N_+fr!bu zn#W6)WK-$OeiiK{Z1+)gz0+elo&23Mti|&`IHG%N+gS(u4S6ypeRL?HxI<|AZO6ix zrs4qwM#uXNe9vK5*Pe*A&mYNTT#3kJUSQG42=Up5fO+d~pqH?z6xx~2`Pf_z{63M~ z)Gl+_!&Ufo^R-P>eFQ7;UPv<4g1Nz5%}24mr!+&y#l#QrPG3c`7!YCZkMM3nUz_I8uI~xz5U}Tp_q0!5#mI+z7F{+m)Iol93JA-%+ zQIswxkG_v=ER?`}8x30q-^_r&t1a(EPxXMh(Iu`oO(jafU?-YcqYpgHF7mUaEwFxz z5~_yQ78A}Oo*M07=*M^S)?6jPd+jAI>&z!55aUFxMn*%>o0p+d)<%nkZ?H5L=t^$c z1>9q+Bx2&zwXRkSNT;}EcC&s3ANU2s>w&ai+vTYDo%AqsE^Di^zW_GG7{TvLb36t&utV9pR zSSyLqGCWZesU*V^xOYPewqoNV5*l3Zk77Bb67!53iMs@^*5)QZ|fb|VADQ0F+z_yc|yT^OqnvVNvnVQ_R9OR zHZkm{R%0U){GHn*2QM(ed+)&$#+Bu0NEp_nAcB0th~n1TbH*U+dmvkLE$Ma%$5MU# zy6C&Mxn^FJw{c}=M6u0lVw0D$Nb|5WBJC81CSHXerCB~Dn(l?f;;lU~QUzyxtX)zf zEyN*ct6s3T_aA#-wC2ROIyI%DDCVZ;6ch9~v*LPCpjtr=nKJu+)f@`Z@K+;rJXT{q zg9b34;9RJ@Zj#Qp&{rR?LLc^NHNI@9f8i3^C(t!1kF`3t&}Um3qTJ@9e$(!mM02dChGo9CmS+9EOyu(4@Y}}u4vj$kNQ}}HYBw7eymewM#w{ zz(run+5M!-eNH37Ji$g&H(Ea;1A~tqrYp?HqKl{MTsZr4gz0=ufB7up-p(`ZcSI;dSI=qFy|tM9Vx0gD;Akudn#H6XbQZXt3Q%Bw8i4 z4Wa90jdi-0@feUdIQ`nr)3c%5ZpI77R*2@*3Vmstl)$lGVaKHfOr;5cDiQ!yu>Mqq zvzBN7WR8rCZw>=lI3;Mjg|HYL?uSsXg%Us(rn7e7>Opd&<7pV9d%gz_%?D37MOfKm z_zA+DT*eiP(AA9|@IKWj?X1Le{q&GLQv1zv=z}@`$u}^OS`tj0D>wv#XcYHzZaUq% z@uY>SI;7h*W0wic#i76M0`qQnt6S{fMy2v!$vJ5Y-j-We=!ttX{^aJr5DuAO|RgLqsSmWxp3&2!EegJIHBbo124SkJv(XZL^7FE<#-i+k^~rQ0s}1e_ev z`Ldhm+rVC-kqWW zZ^rIT7j>!O)fe*e*6AnK7PhUm!6!#6G}RmwrkN#cWnMnrvWlt+LxwkcK6DKaIeoDU zVaoG_G_)($zI!)N0qcl7nOWx|ipHIi)W+YkkyI=(TYm6qmIhNo5r1jP3}yJk$)#t? zNU5`U#4q3XS7_oiMDWXVK6A)VqX*pD9u~;c@QDr(^*F0lGk1am5e053b9eX|g^ryQ z++7XsrRCye?yRA$s>3bo4EWl1&NkfocFvN{?sk8FKc$y}yIUgcT#+sa5dT>aK+X=~ zj+C}FM}T;sKt$%RG6V_**sYMZ?jVTZS@hy}FaMPDoUH$9`7H2pCg^$LfM|e?`)OB- zKs?CKQqtMR5e@=#OS)U0#!z5_5Fp_2v&;#F@B?8ZR|UA8jV%(yFUZ3!>1lH&6o?lL z0pda4KfgfvA-rc@>i?wV1%tT_{^El2fq|fd`KdZUyig!=0e8{^xX;L?&LSk7eEcxb zXKvo;g(Y6R&zl(nLBb@nu8#}E9f+c^WQQ_Oa94p8XNk9 z>EDe2=zlo^IHg=1t^R{y06C2jX>tD##=+Tu`5opN>p7AC2Ls`kjQ{)5ARzGDXn+d* zHX8W&V84$Bf&X?iK>rvGe1DGyFc3Nu5cqR6oQ2qaA^!E_RIzh*;MRg$B7qPbjE{>) z5X2`4;erBTKPWF3ABZ2!#|4G};WsI5AlRmV8ZhIQ1MzZ8{tCTGS|aUSoPofau9o8I zhs73&bafZv=C-jz+Im=US-LoJTe%>RcD@LpBm+b}fxw_Ur#w`ZQ`+2uQ_DH^ zAORi!{R{bj5#0Q5W0{b%crEu?{PLGZ|JT7x=pV!T_jvDr9nFOBf%#6^e!bDX(;8EN zX_23>eTs6!Yg)M|iF{Ks2S$pK@`7E6<87GLNMsgEf{vmHOv{=bwO;-84S4qphPaC7 zToR^&B2zzn>S;Z4g8NF+E6^GP{5^d(H>o4~1G*#pc)KGHGV}*h1wJ25VjS8C-FGVv zB+X=zLo>_GvQ1QH4s4Wqi$ny7K1ur_MTBcIrOJ#RWg!!r1Iwf8guP{r5(ydzXTQJp zahh;4)oXciGJJV{8&~$`yWP^EPCwWEc4W|}n<>-NO!ozeBW{JVSSHamyV}2%|6U1- zHVmPzW1=r7JPf8{o=|E1Jk{|kdJ*|(QpTO%c=5A#tIen-@3qR?fkOFMAQkfk(sx~{ zi9%O#R1&Gd3BoHKlPKy{o`WCyu$n~Nm|SwVF-{^pu9lB-n&{#@>8kjgvyP4@Wsz$_ z@hX~J5uu_G$iRykoh0$GCc}ny>H#?~84Qm3sC{%?x2m?=nH`D0-h)YTi-bcn%E##S z=Wkx6VYsU+CE=?ppD1m>v2l~_xmtGP%~o%=-XR{MUbD?iwj404+c}iP6)OAAA_68#y>q@`QbS=8#1#b%oM&FHlH99u8DiJMD#1>RZbN)$XpR*n zUjf`9a=GuNLejqBZbM-z{#w(vYbYtA#44s4oUT`7F7PCe73xTvXV6_^m* z5dsBGNL!1p(N(%lGYxIcfQII**kAO;ruJA*sOGijs4}U03<-y*kOMbZC9I`fE4(cG zRcl`NWg5zQEwIJ$B^hGyqD2c|GCYx2z!d5@!-+a$=AapLivNK}xv!Ugxt_ z&m7wu1~|o)Rk@o9-8K)>eT1$aV#_j=ltTS?M_v@M1W#=x(|L3|$V`*zPGumx1pI1^ zx(Y@eJ>Q27R0UxSQ3=UxA7DQn*IW~nkRC8Oz)y*O_z=pW7!%b$Cx=@3YWxKYn1(xj}kSx7uzB+z<7kzQE18lLMV8FzXlx)i4Wg$||LE=>`DVL`+_9J4|I6VH< zo+|0baV4*rJta5l_Zdu#jEA=6;)Mg_Pluw|Iw_Fy|5~F z0@sVgJxe<>#>%Zu-ipPt=bxw>{DW>XF7CYSL6$o3ABuZ@n4Ei0n7ooYq|3tqDG9EW z)G{!Rh*)iXhu%IIw#!Yfco@Vm=i)k z!f-y7TcI$VitUQ-Xm7+SA+be^tk!;4FIkoP-5*6p{&0F@YOfE$1#7Rz--Ci3F zq{&YtiY6J&CX2a>LPO4WTiCDYqlb|f#fNvuLFwFgv|I8D^^cb@mEE2^PGiE@dq>Z* zAZ~5rm2#o|el`#OF{l1%z5!M|_+K`gwvUsAi{tNBnxYjjf!iT{I2Hb~fUV4(k*7@n z7WmKQLmd}gXS>s7G+?GZTQB@$uKL@50F00`L(LTQuXWF}nqR{G?K=D|#4kfeT2bb- z$5V>{`g2wA3G}{z^*=BrUgNME@Ymv{mTpl ztfDg$6W|d1%SQN3wBHSEb%Yfh0odv+zq$byhPB`}cEHr?!y*Z+;lfW>ialIi9pR_; z&Yx?KXTAIad1lr8DaM(ZcjlJ-4gBBRp8!6-|B*Yw59r}4Wh9 z?t_4TIv}TPyEZ#+ckzjF-$AMP&? z5eit!XO`c;L_FjCA3cj-GX48UA^7K$0EXS)j-db)_M0of`-fx5&-d@1#4pE?hv%1L z_|uR4%Q58V=R18aV8Ag100Q0o=?Vb${lEM*Ne`s03xY-41L0#1(g7T7bEK^uFjl33 z1#ZCCW;s4VQAM#su|z?jxS+TLA8QmON(l-GMIR_5P^^HGD~dT#G6zcMDM2VaDEugV zzZwL*1;7h{v&aYmISx=TKZFMgD&!6wtY`q;!2<2ERh$PCEFK&GlU3Q9 z0u$n}WU1^(Ru3XWX?{0oRgihu&OJz{!RiL@Y*G`?_0=>1LI=|(f06xnL~KSk3l-zb zQLmLtePvCNS((Eu9I*<%k0HOIIQ`gM4(+u`h2pgSQ+>48TA94xbT>LlzEpdgxwWc$ zwi!OgHGmN|vt9DY>Lil?{A311ppD>f_adudU`o}u+lMlD!3{CssFJMp(z=?Nsz z>x1d)h_6Mlk|LE|Q?VFhO<9Xc7w+Fu1}7_A!Mu$^4Z9C}hE5&jb|)pYJ1aa6g+y%{ zCGuA5v}^bvh%~G44y|H19MVK9L8XQT4QcrD86T#7RLmUp5P6*tr&%h0zv^-nS749{!*+jLLieT_GP9L_PjHe8c|O%hVIr5)@|Yg zX2Kj+A3&fRg;$f~v6FF2b0bFRxLu_lqTp}IJVX)NmQe$t$4e-`GZndd<-1I@RoAD% zD{UNiL!1O-$u zDB_^GfmE3{o7bl+HD)jK?$Dl2G5=?=P7CJ1(;aazhilXW2$dG#bQ&515g=;@P$qUf~y z6GiESRr7Rk*cOL(;q?x-=_{{_$kV762GLRK8P^LIHJH>G9)cklNqduCsrs$vP@B~4 z-lE>Ok7KqMZwG!q=snIaI`G{-Qs?;r=P&(4u5S72=Yp zCfMyn&fW6Np2${f+}^!QP3&dD7=_HYh9hp_$>tIbP(X)Fj`Twus0HcO3c*B6?9H?9 zRx|zPW>wx-$a3P(1S#g@q}RB}UacFT`GQmEZ=oeuI({v@?|n9B-nQfjkEQ_)wtFE@ z>P&H*!cARxrGmCje~$TloNg$YY0~H9d9_`YA|*Slp&ZM+2woxUK|&tIjNVqI1Y}Q+ zHe?9bCQ+t|%{t8hEj~I~q*X-^GS@nmjO>~J>mFRU2Uc!tL(SuJFS*!Kj$_QQT}6zH zr`J_ak$X&h?Na~|$zYAva97|Z0r|LLz5EZ6UssC^({Q!sR@Zv3u;VDWsj;Z#5-IzY z+u!bf_aZA;k)zk4IqVi&JjIkXtcU@v=+hM%m9Dp+a3nPKVQOi35wAY8w2-Ok0$++3 zG0iP1-kX!N9Af8__p#mY@>MnD?z=qvEd5za$8Z5QNzs91(wAg&a)V73o-|!zjH0B? zSw{_zp7(Ut1&uk1B;7v4lG2SuB>qDhElQn-E44&6==R}uYnhM6G}7^@%R^{7DPf;= zHp&i6ISp&0Y0K|u6KL$eyDq6GA8XJOGv7&5kuP%cr$7^d7vRHj-~NlQkoB*sB-8Fq9Q3SP3f@!F1fJLkM z)8ZgT#XI6n=i7&R3L|ToY9YRj(eyrx8|*AwmZUz^vWUrjpqQWC!4q+GUDizgp@_#f zGSUM`L_;)vUDqKQ>4Vf)t6UbRH9ZV)^*3EGWxWC;}~;B}x-nu$g_3 z76~uKqTUm&p1d=ZhfL3_XN^gJKX=7{$GbU?AiSqO(C=#rb^wr&D#G&Oa!8@0hpu0J-Ou3GGdRnjU9z6{^1UAUd0=OPr&cNZ~8Q}cxO z-6Gk?YOX9%XHjttqf*{W^o{Yh@x;oFs82qi<2NLz?-P4vI%!E13uJBIvBgj}Y>N97 z#pQqo=Uym%L+q8~q*sI3#StzYd@$-r=bW=D;kZS0hYpu8-X zaJ<3*v%A^{*f4mQw&pal;IM@ZV}GMgYzOx<-5S%qFSO-3_Zr0R?|b>^SC1~#!9x|& zY4z^SA2vuad>kRml6>%T)${fBHd~G2wUjOHfQL1r?H#q+yKfgU4>jECh<&2mE#8{c z89e_o-?3{Qs-U+2aV+r41p&W-h5M^ z#8r%kwqGT8HW0KO*!j%32xdy%EZi0*36yTCtG~_vA=(6UTdR@i9dChRG zef*W*n`jvHaMm-u-}B{PNpW^(r48EH8eYnMISnxqkd9t>0yj(#Wl^=4+bm;Q_aR{$qjdgYTSn3IYMO zsNr9a5ne4HYrc1%IJs4r{3w6}#Jv(teT?uE z4LqzgO-Cz}duP^m;8%b;LGh-xwfe1ipnvm}$Huj5N1T@e;cve0H&pideP~FXDDS>* z^|@;6jh}6U@Z0Zl4L62rln(J_rpQ14*!zSj-gQ~7d|@eiVD*Z9^2+kbQNW2=AisD7ZojY&`&*dR*EqrP~wh?f|sIeA1vA)76oYhoeF> zP5M(n#WkU%HEWdN`Hs~6Su@AItEmpJ8_*o zs@AvSlKWJMwcpc6SjeR4iMtIKR(*&tXheOOsher<;vX%Haq7O*NTyf z^@;o9BF5*X!%-JM^)7m&@K_BKfNAg601J7Y5 z>wKT}pB58rn61c3H3uKTS=b3SMZ5w(Q*2YL`M0X0xzd&PFMBWabQ_~W8x+PT*K6DQ zb5{yP9b#{;=u1WWGn-YRB`Dp~$Aujxmdmfbz5?3jxWoEs9Vd+5XS&(v>Cy3>*(v14 zcMp_uGL+kd1*P=+y;-a4MPrXNzGu>nOB_u5IizRuH_;fv^j($ zFa2d+>5G6W&Eb0sZ!cf#l|!NIw2*~2khDuA2Ie=U0moFxvjhc6HprWV*ajfy zX+zAoSfj7WHWM{Qlk8qo2|+HYmv zq1(Kd)LScMujVD7$hQ0_Wms2wZD4VYDM5h7!7+i7%+iNEiqeuON>)KN{>L1H6QeoG z;}0f0eRt_-o@?~4xb5ev@R$Z0Dv zw(hsy%PBV;WkxZ%%3~#PGiDYq{4mD}us= z0_OKc1%VM0Dy);^jC^v=v6I>3FChZS*=#Rjk_c?9$D-vw-RZHmdr_&(U*us}F*)$! zmI%4rxO}wLNKRB8&jNfduhsTe`x2wAgvpVkL~^<%p=G{?@^_@wl`4f-RP0iTX~af@ zjM?hlcKICPno9_)mTooI#FgeK@ApYLRb(RYL{N|~zT#oumz0!bvrn9sjN)(k-6QN-l8%+Z zxqU949}5_E-SZMZ-&PKvs4#bb{9a`2`P=GTcl@hQZidRuV~8)V5MI$T`W7}nYBAN*^Nd5K>ltT` zcZySJ4Q%N_I~4J$^}B|-Zr`V|!Zgaw>RHhc*aG|QVpzNW=hgkmFE3>cEPcr8%Nm?>ViXp17xs_=kL2_vQAI_c6~0V>pLn40kMZ56f@=Fi000 zjkN-kFOtvV$^|z)<-xk#hY~jLI*(_}>MzHXRN*+#m)zTpL9am)dlTuo4?Kl)@P~6hGCo%+HXBCXFEL(Kwkg>e9MxAI z@8F4*zAPEz|M{NS6254zC&(j8vz-O_Z>VzkrIAqm`}T^j_GB3Jqn?PI;{qpUQLmQ^ z))?!~yVZ1F_4P&aacxfWRhR0XzHDF4%a+!R=~9Zfk5A3nJbdyv>62pq>O!8|$mql< z->acKUh0yXVS(;wrtfaHjG}Xl-6+a%Q_nBE_4&QX;l1I!!P1-NeTPIoI;l`PK~3j7gH3}tC7?!7{_?>3`z4CKEM z_7&V%owa9a3-YJwYj)2;ADgzC*L9V;CV;!3aKc2@vR*ANK@uQ-a6P+c<#LGQ+$<+bTuF6gYcA zB}m~TxRp^`c%99h)$uNk<5bu>{S?7;hG6oE83RuR&z9}{QW?r~@es2U^ni$ZF?!-r znY4);M;-GwZ(MpP{pA5~s8P&wnnt@&!rQch>Ptd znDdw<7*-yz^=7{4VRZ-Jb!CxgaQeaZDyGjN&!@vdxGhy>IM2spoN%+fuu>y7MecsZ z_$J!$;48H^f!LdMdm?|{IATY#5j{f6x*$h}aRu5dahK-ph?)8yX2gjaaSv}xY96>x-d4yb~Dkfcr&8unE*YEx<_4+VQ5gTJSc#J3!AH1aCU z3Ei>=Q?wput$k$RvnZaq_vNA;pPqH)4YnivAKyhAFlbwtuT!nu#D>HpwC-;n=c2D+EPp>URyEE5mC*8*?ZBfbD zE;_h+tQ3F~$VWT7KD)kna`$yc;2nZ(=7Y!RY6V1NA$MG}!Av3yBCJO$-x4?K4d_Y; z<;$PVYHk{CQk%wcDc2Z$%*0vs2qS8F8KwwB6AyNS`OYwtj4G>GQ3WV`TEGanwh#UI z_AMg6!+GXf4k3?*vcv?zrHz}m=KKeYHBly=!kyMpQ_h3R)o;AMVH`;xk!@7KB!s^4 z&j#VopxkDAg@W&vAl&0V%OWl*HiLhca?f3u319Au6%8^ryiUH%q9oXeW zmWpb+Zryr+UoCwJYPk~>FA{g#yb=OBt~1?KHwj+9s)L&Bu17_)bxWuGKL;eZ1_pEYHl8*yj}Q52Blv z`*dp$@24tI2L??Xf6Q;KikDn!ZT_tPdQErd9ro+0#L{XrJ8B?ffsA-Q6jE0wxYZmr zF#)V2nmcnbbMwx3G5MG)m2h<8;2;)U=Z)J3->~Hx7k>b6jyl>cciP!4KVzu`bCNZ^ z*TH?t*PFtXo9O}r#TNB2Km<8G z2C_)E<79QaA8{#~n1H&KdqR@5=S>>97J>|$msHcbyIhKrI0{D+9*@-vQumhSoR zvjT)8SaQ6%^l|L$AcnW?qo-|eflUorTX7sTuyT36 zU~kdZCsNe=%IW*idUcKZtCNYj^_xF>O4q*k`8Nu?R4!U?jbksAel-~sdXaYo4 zS0FuMv9CURk(A>$M8K3G@8Y+P}X1%~O^pvS*%6L{N8PS$3oLxosw= zFgzEvqGG$cb+xic%Occ=(QfclYmCJ=h!iv;q&&+=T1Cz+sfThZhLYA{zQ+zZjHLJ> z|1o*}{tk*QRe2&O2QSmLdFJ`0t3BKuG3;I82H7I&UCcP~<=8gZti%^ytJ20?6Z2SEyOdvh_}Lp9u50In_34K(FJk>9*G)EKDBvjZ zMa}Um3cneH9z4~Pm3p$gfc(7mq=?Jz-zG-0n?%y7fITKjZ*R=)}rA>Gjk(6@zOD`(xo2Pb4@R!yGh{$%N}wo zH($NHdfgv0csEL{=hmfQ7jsu!CG5HH8l+5w%tE|L!9KHId`aP+ZjG05D!pYCu4TNx zMV-`|VONHV-5NMFechIjnRldP6zM@hg~Qb%zzf6o#dC3R6?rYNhyeOCo;yx#YBLmT z)A~NwO->~cDHhYb`4}=H^EKvX`}6@8^ILh#IFU&4(6@Bh`F&Y7WmP|L`z-3Spp`b8 z^F2Y^*H6?gKj!(ShfQfc>X^hR?tE2Lt@5>dYw3iTbZ;XxQrqDcw?VQ{5a!M(yl>YtZVACC1YFq|{x3 z{mk}BJNX8Ne`DsXXRgb;RV>HByvGJ?Y}v{mJk(aDr2YL-!>2@{sW}R&sO@DoPt}d4 z##bc;*oq$Od)13dKKm#@7?(C8C~`^i+0aladafSaz7n(h!Y?!$s;^5ts zG@(>~#cP_%lP14~9YfUrk|xBz>khF*L?EH`Rh=CEn0cfy8omwIlWK)Qxt!fYG%bxQ zp#{S3ts1D3`SRpgKJOImMy`!C*+zr3r`Gqg{60H(Fwd~Dc38+ugYT)Nqq1I?a+ZJd zHi-B|tu$TWgJB^N5y$0^7Iu=XdR_%n4qpid0voFLFl%Jr8nEo*lw8+qP|zKTTmGWd zBq>f&AX8<`@Y02_k@Df?fw_0cymv?&3AYgNA(#5Qb&se7$h9A+F^}X|Ktf;i(SD?B zV7=Xq0=qOO?V+;aFb5HbX+`*3y)T5qj{df8#*t6RN| zA%B#T=q0uFr^;@<2J4g?(F(HZ7K+R3lE&5}n$1gw-6N*FEe1d!Bz(9x3a$RO(Fg3S zcj*c2udx0==3|Hy3@=d9Y#dUR)D5`HNQc7juYEJ{KfEk`+!Q;nRgjv{{@nYA`wjbt zE0}V;o+*T+_cq=9d_`=xm#$&IEjHRPY|A9OO?W5Zh-GIsdXbAK~E zdHoJy^rh)$F%+(2nt-&xN8)$)-Hzpt=HA_3{ZU(SZRrV2$(3+j?MNqYLnuKeHYGMdqDot{Bhd+BCe%To7E&s*dFtj*9uFHRc97`) zYmyYErY+ylYOR%=8I5Xi*$CO1hiP8$-{FyL@Y7U+486k)u1%4%AHpblJiUUQ05R?s z+F7%Bokg^pS&Z`C(d)*sp$T^6wFOE!)l0QjQP_V!Q0pYK$JP~R=R1RcV4OIW`ts~RvJgTS(AjmCBY(cJ&4Clj~CpgCtes z!e!ZEUitlnq${bZJ~Qq9=5P6XQZN|%o-0RMM<#CWXLGUd(apPoyIHP=IJp;>t852U z3E5)!@|nROJ&N4t+Vzk9;k^QXnDJG(xA4hZwv?AdRG3v%;auhUS(;uIY+hw!Ppj4~ zZU=bsM}fO^uKws)uDd0!1_!5@ix-s!=&jTB*3($G>o_-#InyRpv)9vi>`6@1E3LmE zfDd`w9;P+IgaX1|y5c?GgFY`@R-_m<=6}8SAWLis^tx2$npR+MXT zDc3^%qc^!u$kAIETX9^LTV29V0p3miYMw#UAwQUJP^iJ8bziEo4>>j);3)7r{F-(b|nuLnDY~9Jh^5e^!D3-5$peZkq$Tm#u(Uw0yYH!N7?{IUVfnX z`^wVK?7d&Ba{@q?+wW<7zbCn!3>n~r^gY2wC>GkY?BuEEQdLAwarvMm2FNQ6Gu(B4?l9Bt13HT;T zf4Ywb*hb^!<;CU2!{vgo;RX^=1-ZdcZYY!!px|`(aYmYZb2_`<_|?L%tW_Yz4s_b0 zxrK`dQk0$^^jEvCzqRY^&UGf(*#;fp1~-I@hx@c4pe*z&zfMfm&Jy9`?qZE>E&=Jg zAgn;Z;X3A^ziUA}{CpzZe{hI!pZ5HlB!8j%t>!}6tStYA?CODVJOgZH$qoOREb9)4 z2RReZ%2LSkXI`S%nbx%7Za)i-c4B{KF#ePTsQy_vBjo;_{eLMb@PPjo^$#t211ZK3 zF7TO{0FlsN`I9;>E{^{*MgEgX{mYrpYc z03P)J!yoql4}F0Cuao~s%m1gY|5Mk0q=Em4`2R-N|EcRg(!hU2{C}hCKU3GwX&I3D8Xk)OYNCBJXX zKJ!WpwBXj<+IGHhV6zSnw?4234mjiT^vKJz!$i-{#pFKQpmw%vM~hog##jU*!zaTl z$P4C&$?$^tcm+>wrQb~@vHzX|=-|Ijq~e919gX?R8S+l!doQaUt4Vr!nxG797f)#1 z#f3{sBwSAUvaB5EE&dlh9UbHx?S>bu@7pD+_E1V2li4Nzd9FSlo5i#`n_W50BO@c? z*%S)d6Wg|Z2@3?Mit06*-4xm~Yr&fgiMAMt#e9hmk0m^bSKeLkV3qX;)iA{_-D{ZI z{J2RpI$+$;;>VkP<%C(h)$f4yxhWd)!w`PkNYBqvd!O&&E66b;CH0XlU@Q7d&lDtu z1~r1rK1Xxx$PmnD5%}J~9Q_>gszX|Q-V*Dw1giCkl;9=sVz5zekl(zd3)kGa_F>fW;>0;`;7nOO?9**v zyujtJzth}FK0Y2k(CMwe{!TYPp8kQH|E_}ohl~8P4$1?J$A8fAosP>t>v(xj4^;R^ z9dNM3xjGp1T)(_97?6|s4_?939NRzZ_<${k=jwR)&eQSnou`8V$EEzEJptbHvIy|; z0Y^mq*{=W}?0lU7aB#*y>0qa)JN(HDJ3Xf5pLJ01IbIkq&pA3U7z*sL{O5Cn@?KB} zoZE4Z4#*2WR|n)6pR0piP$zi4jt9s${wFUmHqO^wFxG%)d7kb99KZ-YPj>+ho(pjB zTz~_3M(5h&y#NRA1vq#wz`=U~4j`}kd>0py&YYY!Or z=j$%O0sLmp(_Mgr?*be^p7VL$3vd8O)10Tf00;jCIQTEX!G8e`{tIyMUw{MH8+%R` z{tIxN=HUPH83FIa^K}>C5V!z`zy&x2F2Esh0S;fFH3vdAM&hzbEfCF{`4%h`aU>D#3a`4afA$S1}U_LrecL5H;3vdWt zfCD&e?0kC{-~diQI8S#04&cCnf6@Wl`Y)(Ej{^dnAAg?rJPru>JPru>JPsiGc0qgR zaR4dz7tmdR1K65=PCj5hKVNqNj?aqq|@}hg>k91H1Jv;Jx5^ z@LcdbE|||DfSq$*mJ4uPFrPy%n9m^>%;%5`=5xpe^Eu>#`5f5ie_lS`3!cXX^Eu># z`5bb=d=9x_J_pX_I^XXF^Erg?g6DC;d=3HZ*mHWmU_OUjFrP#CE_fan%;ylk|F5_+ z$UzVWqUhelJGgNTj}VLp(5+|S3WRume*qWJw>55?(oQE+US^X1k+>3`BRofVj_@4e zIl^;<=LpYBj#K$%kaGynqXtobD?CSdj_@4eIl^;<=LpXco+CU*c#iNK;W@(d=m^$+ z5uPJFM|e)fZt|O~a;p~MId{1q!gGx06>GC^=I!%063)jwnLISD=5>^3kh^>^9xY-s z$FanCHI{Si$GTkAEmBV3_2y}e49~PQvf1iO{m+X^>ubevn%B}pSJYk7TIc$B oJ<}{@D@U~F(_f5h(qreH{yed%DP_0Fx?C2g9jzYv+pt;v0hEU2MF0Q* literal 0 HcmV?d00001 From 01c9aa4061437374a2efaeb9465cc70f895f23db Mon Sep 17 00:00:00 2001 From: David Ortiz <94481436+dortizrom@users.noreply.github.com> Date: Mon, 13 Jun 2022 22:46:25 -0500 Subject: [PATCH 3/3] Delete Data Intake Report_G2M case study.docx --- Data Intake Report_G2M case study.docx | Bin 16818 -> 0 bytes 1 file changed, 0 insertions(+), 0 deletions(-) delete mode 100644 Data Intake Report_G2M case study.docx diff --git a/Data Intake Report_G2M case study.docx b/Data Intake Report_G2M case study.docx deleted file mode 100644 index b16b705f4f84b98ca7a62900bcbc5a9f6c073fc9..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 16818 zcmeIZgLh`j)-U`d>DWnkY;~-TZQHhOqhs40+qP}nR>!t(_Ib~_d!K#I_x%I+UC(&t z7^|v&bJbd7&Z=1xGU6a#z5>7i5C8xGA3z^tt!xAY0OW%L0LTCcV0C_LD+fa>2Wf%SudT9{^9|GR}rW=;TT1fNzhI66}F-@L< zLK&n4?)Y-s-aB?#=<5M4g`<;6^d2vc*~Y+6<;M#4v{7AoM_;czT1)*((R(tOt4 z4Cf*Y8;&bcL@@~B)B@k~tLU47KH_X^)m*bxs?)CoWHj(IYR-H*D`;J#$P69pSJ6n26+l(?=K?C-w>M^AJIC00 z$w$(Ii+x7*>lV@xLKXlFoA1k5>Z$TEbF7hEc;yL?QPmIbxk`r&Hb0YZkCYclV(*r3 zc-v#Y7J)2#v>F6)e@fQJ2M9ps-_#Q)2BY!fvq$Pv`=CG7Q`^qa!k&iu5Bk4q`Twvk z{^ixnV!J=p5{Bo(@6B(zU3R4#Emw+0e`*zN85}}gR04T*$!zicjbmvESo26%cywkq zZpzI*O~`R8Uh@(oQ4uz@9dhAGt5^M{%>|GU(3Vf( z5(6yeF*td=3wfVh;C{al+LVB7a!#M9HaEjoaq%J9>qk}!-TZ=?h`Kv?38!F3Aa=_H zx)+oYcXiSas_3YmjT+59h2yv;`Uo?!J4y@-S{mZC7`-wmjLWv^W4GMS!v2r|O2}-; z5SkYcBMl_A_ruTwbZ({#eAPPbZEMUlP2QW&P3k}O!&)&of(8x%FtP*y5I;YPv$dT8 zje)hkqvhuw_Q&RRs%dV$BZBhQG4l={Fa2YNWUh5&+Cj+cUZA!eQ}SWV3$0vjfTf## zK&U~K?d_y-1iowFC+wG4rNVr$*Cxl4M}>9wDCnEnN$rB|t!e2QyvPmBE(#mEOF|kP z@af*xuuX2(q#eCzBP#}{UY6@kO^%nN{z+!t>?fjfGvR=H}< zi>lcX*6JjZT4Ucst^Xob$Qxz(v}udfrOSb^-Jxfi#JYr+1Wuql^OHGOYkZ)w6-u}- z?NCO(WEc4lD}=ZDAmQt>fB-U_hlZ}8S(now7Y)^rP0g{m-z^*;cD5aMZ!IjH9;#{E zLF>N~#!dM@#8C=V9j#_STX!5v(^Tx{0z+`cuy#q)ztr}h(ylN5T4OB^=dc3Vvc*su zs|_8kVp!^byIzs(?YTKa!T)W;m=MyBuBlPfsOn0e0Hej!hRQ&()e{*f zZ3rkw*U8wVQ&C_NFxCG}CEQqp?0}_|kiJtw%HEBnvSbTq!B(q>hi$woN<&f9<5)D| z_``Xp06K>v%!|A5chB0518DAYuP(^8C(@*`xOunkf>o0IPMnyO+Y&kW+%cXsy#2v$ zU;1#0-Ld8-mw@d~B;QdC77obpC9fCg+(#_wF|qfF_i$sWIj4;MSbxM=iO|)fYWu_< zmmQ})@`F+=5`7jO^00w~Wda?Uyt?bt_eQNz7^~OSR%n1fki!^CD&@yUdQi$ruD*$k z%vrPgay+w3Qc==}tKCN~#dkMpsb5}pbPDQmddAQ7E26U1gl}dAcb2`^zqfk~fHwS^;|^0Y{c8$vi55$aMXUy&=2O0uBp46Zvhk{Q zkw5dW?3Zygo$d{uvffg#ctINQN5wG1?;2s`*Q_fPw8HZ;r9@q0Ib)S}#|$}_4C1~~ zw#R4R$O(;(8rHQbOkay-%FA4E@n{SB(lvz zmYCG1Mwq)^9h*WONuQhGw1k9So$H($TOkxUA~p2FN#HT?Di%EIRT<}2d62bZ2QcD@ zZSGSdi4(N!3e-$%rrqPZ4#hDPN*KrTUQn;OCdM&tzD=^cm(l|VXW)`RCL4A3OPeJR zMP;jdshu@lQY)I&!TfA%6!r^N<3nYdIz|8js`gWE@j}25 z#oAmA(G%O2XS?BN{kcX&0e#7KoL>(N#merjH0wy%SGQW1YrDKmEOnd@C=ycKLztyM zQ6ScUFo+eBbHFIE^9AKys%VU$D$yNR9q9jcvRPPa1!YYRphWN0dCXMXYh>O6u4!K6Yf5-53b1;Rn=>_vrvDyk zJbz+@ztkij>rd8!yyDU}*%5TBV~PN)W1~>pWdSd!o+S9|G>quvNMG~%l|r6KLlyXI zaQgERaongM<8(oY=;4#ytOH*+%Z*kZnOGm_9*>m`0d;$Si0vZs`gm!aIgA_wui z{{yMfgyJp{E{|QTH_JDIp!na6!dE6z27e7xqQSEy_1v zY%P@V%DgA7zb>z}^=ly*mf9{bX~yJN@BdT`oU(^J7S>Gp^H%^a$~Jw>P~VUf&rxH){J# z6UpVhE3Ij`SKVeYe3paxHU3L&(tSgN>k<;-yg0rmlYX33b~Yn98l_((jHJ3_J)zlH zKrb|WXIL$J-*SLRvvX=QejxlJFl2X z#&nBc8f^)|1saM^FiN6o!2~Ew;t^dzFboS9fTdR*rb1*%YN|rm=Pd_~;?>M_b3Htl zPV^Pbk6^-7`m}e#}Uj-F<(yuv18) zcm@IJt);#i#)L6koZuH~-_ptC8-}pYZOHWuY^M8UOYOv{ObP6_u`b1;&jH@X{^-w5 z#7-3v)W-McU3Y1p7)*`GSV61CvpOUrrYd1MOgZOYS(9a>r zSyl60b6`1`K(4fkaVeUl$_A!;oVdSXvT|L;`Rf2;fo*EH6!b3AP0Mpm|#y5b~USA5kUj2Jt^>n74^Q|3$fUnva{V zadIFGYPQ>~D1Lr#-=knSQu50C50;!&v=XA(EjIlLuTvJZ7wl*-d3)8r(LK z!)G}+(GG8N9PBv4hM$X2N^v(9YcW@fggbHY%J zJL&VuSw)?WnsA9w0h^q!Yt+_BSDf#Qmxs+6;IxPGH?%DZJ=7GjQebS1O02o?FTyNI zbzk<2Qb}A(%uX-dI)tG&@xUaQT{e)kT4wUivjt5di#|_Qx2|}|Uyo5Lgv4Bp^u)o( zwhLrv2qJjUT+kq~L~)>;(-@xy?VE5(;Ns)Fchry2)D z`4K)~0Tf_G7h6g4o39}e$t~StCp0vdEEUDj_uNgZ3wqp^$)S!h;XL8e61sk(g=c&x zTxPl}oKJ_}{Y6>Bi7b^J*nEAgV5dNEO~cVtFmU;*eJL=0RuO!4NktQ*G*GU!uhE`! z)$EW$^#Swrp7+~D`b${`{NocphgC_P`sh5We}!h`d9bD>ZE2F8dg-r`DnFog;i_e> zAZ%XAd=-1FP|Q0#Fq!18;!3-tySfmic{_+$4- zlBm_-QNDcfnR~kmMg3w0sMF;(t-TJVY z%@d~n=QAHwN%T%}qzA1xJ+Ww`d~)iO!<`{K4}}#wd@q{&^~h4o1if~aY`)@qon=^& z3T{cy*;~bvJ0)b>I+5@n`BMcTG?Dbo!C<>jlrS83BG5-qZ877g*QX`Df&qO467C7R z!TNg1k+vJQbLSWhDY6?U$44s_98W6m1@sjgR7FeEF;Uk<_1~a#a17HLA1`I!WPDpp z{Sk(v(u%;XA>}xy9=82TSB7^|^yF1OQXjvlnJC~(in6o?%sd)%rVh-@1KMyw_XudcfE2F#Y$@$;Wsi|jhlNYz(U>c&hr2jdnExx-4z-C*g; z3w=4bcLG02>Qm?iDL0a6w*4SDe1@}X!1Sy6X-IZYN~bZEcr^CJ6<>am4GiWGmEh*z znucI_7??A7#Httius8&i;cN2x*iD_l=9|;^J%*!?)u=S7IuZKrR}6eqS!R@eEo9O( zXK=_4xE1M(b2aj%h}N?m6Bt9fuIceig6gYxIrfI=jC*4W;w?1K(hL|U#@cDPf1_Sa zt(Tg*T95|gE@leRO+spBtn<$^TkDrDk=&^e4~Z46kTY_OUDD^YhZfvt3y~`|G{P>H z9@Lh{Q^9+>bfksP#Dg?8^2@k?q*ay@)^HRUw;V{EROd6^nzXfQ#X1Cu>#syz5W#sM zpY+1nrTLVh|8#aV+!`m(fB^u*cmTk+&k_F+M+Xx_OGBD}P`ZCOJXFQQFoh91z^`!w zn@8Qof9sYp&WK!_FEVY^`$e_OnHQ92m`<;+)YAs)WZFS~NsH!(Y2HWRgQ4r&i^bKi z5>3O6ImQwFL3P&`rRfLR>Z{1zQS#nW($d0UzrFL8%qE-+-4h$B&Z%sRoff{7Or$&5 z?nz5ouOTcFAC71UdENv~xfaHr>ForRo`e`#4RRgA62)dkw14W+OesVg-p9(+3ppl< z78T=94L_mmO{hKNYQVJ-CCev}<`#2lX-+Q8n9|E)1z9V)z# zk!rBFw?6CeNh`N?p%O^JY8PyrSAR<7WEQ}H(JduUT`*xpb(y$?MQW+$@R0iEHs5u4 zyV!WCsqG2V29_^r4b6=OmI7;^Rd-~){ifBr$b4rmvtnVfotj{^X^!Cn8%io#p#D2_ zvk1I&y#gOuh(>+eaubuuT-+s){4j?iLE1pJtp7L8EI68#YErIez~jBB7K~&8`+`xfR^?aer7+ zR7R)A?aSz3ls4D1WAlB(nqj=ZYcn&q=gs6SO?s#I%hh7w`RllE~w z?@6n1WhS@#-P@w~+iM^2g`Gok5NkAn= zv>P5Fh^MCyY0Z|~Qr#{#+))o$8$+it!ba4i1`_n8+E>gj&Hg-FG*E(E&P2ZUkc>Q62F_Sf61+a9_$l6NoM7O3h$|Hg zG1ORTf+*yAi9!zwKQt{>LQRzR#=nT`5r{b8yo0}L`@AvpY&AOY6e!2&V9kk$_Q&L| zuM|Q9*~RseNVTR^+4OX3kdVoRp2RdAhW_bVhhA@OitbJL?L0)yh@nO8xT3*8$?nuFHKzC7Yq-upo9&cjPnEzK4?pLWG5un7(u)OL{dSSm3B z?do42p)z_hNL%SO2~$qh{yHctc-mZK5IlS;i)Ae}m>@@Q9TF}wsM!(Z23F(zJ*~FW zQ^(qyoZ&ACVa)MUpbfS5^MGgGlhB{B zp14TO{Sruy&>;tAmsCWz6H)D zC37C4O=zrxGZHeKG$B6@e;IcHd-fku2o4k-#2(Ji<|e8gYl`+H%K2JQIP*3rpm#2V z#9wx}&J!1|UcaE={wgqBPm!6if2+JP>_Xp7s7f2_s7tM=m(Gc=;<$t*av{8{e;7US zMD-=`I#toIiw@Dwa-43vd26DqDW)P(c-mz%7F$-p7*TD5^vNKj$I)H#dn5d~gT1nm zcXLXw4C_%}4#G#V0R!$6b|5&+RMxw4vcU zC7BhR{iCkhNS;<6VxGKVyyVI#|~lt;_HW6f zi~m(cOa>Vwi&Rjgwz)p82Fg<1fL$V{N$(pq&>F2&jK6e8J=so_BjXrac{Gu^9D-{d z=ODT|6>O?HBTa9jo`~o`iVkM61Yg5)G)&`1IH-5X<^Ykds-!Jhy>RL-u%1r-Qj8cH z)3Xv2z&X(1qgL|NRQDFH;>Pz32W?Usg$7a@T_Md-1%d@nEg2xX%zB@RnC_wNbKw;B z3u;VLxN?FJUQ2k3lMv1L@yHQtHnA6M)E+0cGt$^&2VYZf{c6>hl@OtM%(+tUN#%otF}JvCk2 z87*)pO>-5OSjwTYNK4p3Cj=f;)x+T@VCtL~zbu~wcXJ#N4Z@Re zQ@B#vKy_CRF}IQ4NY_VyLA#sy5dOjq4Y-EN;N}nEz@kXgBQh76WoMoJ9)psnhBSfR zNnu|U?`$u`ggMp?O55x1$f)yad-=5Pxzd_tomLvKGbdpz@U z(9@~M|zs@_R6tenShn+VCXFH20I_Mdk^lXdtfS+5;EiU9Kg5b(Khw?;B zA1T~@TL7Q(%u9b#pCW|dVr?~{BEeCKD#~d+-8$O`?`31h9E1GQ?lmJw zYi?(mX%-%MynOSWnS!whtgbp3QPbWRO#F_vCSl+gw@@C#BS!C;-(-wpJJXiU62Lbn zMS4tpZD?$rZysr`4y0qIp-=@@q&9;~w@@A8@v=offMu8DzsHmx9Q!Q3* z1KDgZN2@Yi5%OUlT_Ne|kaN-Xc*Y)rn4u15??D6}tUPRVdr>j&v}}uF{?;X=q$CCV zq@2AGs%BkOxxUrE5^H1fS-<^GZEQAqQRf-N(9Ae%otiDh*udD0kPy?6eskzm3I$Dd zYIs11Nr}EGjxH$d6>%V0mHa928z}qMYeR2l$S=K)qwO1LfGQ>J*AiAZXM@TJ1 zmhVVji3&u8zePF8Io9jSoqQt85>Z>A0@7l_|ADUStX5lIKJPMf4`&I^KSLTvPZn34~c}WYm0mt<)~-8o*HRV z-ZTx$RK}E>)Zf^Z*!| zyJ=+JKr09#8cd1{^F|vql<-fTAl)fJK|fjfNtbz`{#>3d#UKWB;pc&af?W~aBnC|3 z(3ZR>7P&*V>T^(3&;!~gq*#1d?)?>g5w4{EZ$F{)hGS)N9=dJ|VZjjJIeG}I%pfU8 zz>tk_kkJcd7i9W+sEDP_UP>1>nlcpb9cR^aR;*Q3&IfwgB@?VH3~|rMZ=4CJ&<|Eh z4n!q*g}W7{LYdgBsu|G6FozD@fi2K14=ls7jEmls&D@o-dx4e)-=0s=$~iu`=q}yU z3V7>KJT+J}Yp?vfVYw(d#C{Rl`eh6k0{LTiG4yldh6U19qHDPYTlL~|_Lgib6zZ|; z;aN=m0Pk=(fXJdx-}fWc%`G*yh!J9yI}>CU;20|w4O^`xj0nAR^|{mvtznrOa;+QW z7hC&vYyc>QE84|VK4iV269zR9OC*UhrzTR9yM*ZJ^}#$}LZ;2Mk(JQz+(|!UHa<(n z+TGw&4M-Fdk3WVdwwLna>{<7}hA|20lZg|ZRaMk+rij>A51Fn_(IeGJag2ra_2-1f zA@TA+ZO%Z~C7$1dZ|lA_)!s6a>d+R8eKQ>>LN7fqQ<^dovf=Jb6|nEb$j1D^lU1B1 z=D@q{c&q<0@bK34tmA1hPQgx!fvd9GOi9+?Ld?}2HVxzX_L_h8!D;D6rZqns)|qDt z!Mw__UNt%87E9RCuy4*#KjC&}pvnyIYi`)5Naln2Xgitct2WC%b(ZI612A?8;7P$S zBFk_*%}3%D4jH=dIsuVh0!u|VrXUPFM(Vp_(LEO=gG`(NZ{w6Z6tpgBK@KWLaZ*Tq zb(!z*dN(ez(xt^NT>YMG`OaHRI4|`Q2&tf%GYfdZ{eppIv+eO-N=V%?6byn*&9+nW z*wPjpmK#I%DlEKq%SQ;eaixuITN@VMG;Co|@h*zU+&LATIzTA@_=I?vuF!ZVg#BVF zripCRpdnQ=gEHHIyw(o6OZrQ-UaDl*s59bYjia~{gg#l8qFE%J{c=Dwb zK9hv^R}2w>2GOm-wb<}kR*gUnAN&dA=lVe-+1!C6y`3KNN$C_PE! zyM4K#WP{^!kK_RXu7eZ!?BGQredqzzd$#q}LIiF3*8Ab?O+QbF>>W#Rdh8bPr9F=ywo(qwBu z5K9*hV2tnCSKosiUEXkcuL@!?WgZKKk;N*)6fi>?rbIfT#aJP4DNbKQa8x3i*Cd3! z(6p!$C5wf#$w9;y3#v@Cf5*d0O{?>!e5d{KgXSpgNyAz9TF?|9X&Y2CHqE%$i{irI zslmheT{DD8-0x67HZVM0;#{?C?JhY|&Ln%JP{MC#7a%NU^>2~S)4<>^*A-1oNTI0=yi zJSmb)?j+m^)3FNGuhV(ex;1);Z}mCDlkq~SlOIj=1T@?bf*D1NFTy`|X)=V8Xz(>p z;gK^reSAL$9+czvX(|uTju2Kz_jd}@&Or&<7tNWXBK~)!0%?MeyraYx~q?XID zuXtBtW4A3v!fl!h*FLOFPrIM}o^?MP(s|Eh*AvZ?t6Ro72a{>Er8E<;r_|%Or&Qy! zrAzn5~pb8j5ikZgCrP(zllBJZFc-}q|jS{0t zzx_!@ug;1XRS?kEwuyr;ly`pPT3}woL+MBCK13`j%$!Cd9UsOBEAo{rLpUo>m70oh z2Wd8zx;Rf%#1pK6o75N*HkL!nC3u|C^>QFbbkFsXJSQnn2ApBIHUS0l24Rj4G9PV| zfwyfxsFD(!TL}XxZ9h$3y3E>(Z>(xy5e)1{2Lo;LRf116+Neqiw4(Ix|^E^YIe4*Xem0wCAI@1N*@#KE4?ctyc?K zR0^20KrFcELMaa}_xS+ROZfU^O0brnJFdN&(2(0jy}a3j^WY+ zS0t5jOqy!-dWi+-I&<#3F%E5m^c==K-kfyg3{>cqD>K67M~GF3tJG ztqC*d=OK?&rAX_gKt?Sk>)P1Gg9H)y@;w5N+ql3=?L~!>np0bbBQYE54AZ?RmdQL) zy>hZA&fQqv*v{}pidcGiih6|J!sp{2pRL3)VdvkG$cc|vtNTI8v^bCIyc(OEUa;r= zYDp<>I*M0a!VEZg^d;6C+TpK6h^_?1h9u(2 zNvw01?~>Z6zC%OsXHqjeYU$x_1QVid)F{|Eb@|sjwIkd(O8kKj-(w_jQLl+h+-a%? zbbA@JUxNa7<=2@JU0CUFIVZ=iglp#*7v61llOUWD~gHhzqKkVlp9PD5oXt#38v}-`SVD@K3r&8fhS2bV;osONc zliQ0UN@w-(k_@6kyY&T^D@l2`;})I0Y-=LUON}m0@pg=(XgoRBuvHx={?%FWim9@WimfUL*ZM*RAB9!3+ zJ&@uH_*y4}4@{*H{Mkd@Wy2S6{~5({N6qF74U@qK{h#(vL;%G93>&O(pI;L#iuOez z7sv{LLNv+#b+-fYiAa;lZvRB|3;wl_?~7Uyg3ljA{h`Lv{h`QAvj5p+W?P!wDwEAA zRW!Bn3E3e~5aIpD)c*CLKjuU5A5)x9qr}2jFo{AYuX9Eu&ufDCCimyu{sH;pHeSZ3 zIquKdKkw9X2%5Hzd7*mG&ARo!U&<>R=6W$$?_1^E2j!M1Evxok2(lpW(EV<^ve}%& z?8UR_PN5AdqAHwE)vy=+a@=?LaP!XY@#{7QUX%PHfc8)V=vAkPn5DpO3iVo2TxJjZ zR?ux0sf-Q&xyE`HNx~1@Q*`lnO$(`@q;OXg%{W82Gu46Ta*HlpP!o+XGt4%`gW*9S zKGs%;#~LjMjDww*xhIQFn$g`|{?94YNZ6j3^eNQDDP={rz#gU8Iy&Bn_7@u{WTJ8=KEEAY#AWsvaJ zQv8wSd4&A~Ga2GsO;|`3Wq#m=`RJ`Zv!Axki~_8!7&*@xmXSGi8WGnvy;zM9=4d-4 zdx7}WtjsXjCHaB%`t@^oEK1^2$_bOU^K!GMPCYUg%aHu*Cf~DOP5Za7&4sf$ErdTO ztW4$DyrNm;^vS--Z1~trqkit>U&O$fu|nNj~+z5#rL)&-qmTi^Q&fKDBuC-^kx4;ZQ1(93;#$u1`?gwRy8s zA=)xB^caNvEYXFI)mW-6+n&bN==CmEJ6`#_`0NLx(KF=lh}DFg9mp!;DGL|m zd2adq2uE?>>%!KNC`rH3+4_E*2>dn0Cb<`=QDbFQC&z@+hMC}sd?NAc#N&J>msa!9 zTr){|CVUl3O}JyDzR)wZ-TBpPi69T@(t0A18D_BnGYi;PjRGG_DupxE%bmvcxv*3s zxu1vE;Ju-VLNs|i#TS!ghmCnlYGr4sb}eI})}K}+KlFx2Cuv5faeWertUA!FlYVI9 z{za4OK&uOZw=1ZR;n*SNHaT`oBoH%dT{!j$(Dc;3H)$;G_ZS#^I7~$%Nzb}sEcu-K zYfbak_ZBET@z&DS0mG5H)p28X_QID|W5s*xfq~B`Rf5n(z{U9ev(K#I?1x-jlxsB! zez|vzl;Le0hkqiT z!P)&lwzgtC3oSNsJBKK|c8inTIfpKHL{u3wz{39a+){PjD#Kl{OFRlmlZhr1?n{Tx zfP#OD-fm3}Rc|Ls@{}ZBgHq?{< zi-R^TUNUMG@6&~m@Qh1&j>#^&Td+VvAy`^YZpmG@ejf=mSk$G$v*Y6J34TgsHQU>Q z`lIcVD+36&(OI}W)~`y+S2ga5@-qz&rir1I@#*T-rj{V&X3nOhE12=fpU^qA(b{S? z=i9#XHs`qmq+B=!gL>S`OM!^|pjmctDlZ`nwUQ3w9ZP+yg8Ym5<{Ir3>|IT~*fX`J zfvOZ(xF;-Vi5R^tyhUZe)pVv>b~MDme2wjQwHFLE=tO3eWE;4X>5@ZJ@^SPZ-p-&i zv8pyQPv|H=48F>mWE#`W90RLJflyWeSdj-!!{@t1rdba}xFX^*S!1JEK9a^Dwwey_ zh(>lCDoiisq|J|y>0~9u&0Gf@+0tT+`U}&6#Ki-M+U~y4P={ps^Vo|7+vKJ|d|W60#!VkAYTo+ORn z!?tNSDo8|GZe%)0W;&5eGVY<||;{l305CZ}EM=6`ixC9d;&N_W|PW}cWL?n?Qy1y+zs z#MzKO)8zv;yALQR`HUDveF)yf5?8gf(bl%@_tC8YOa!%YQI24du5Ys`GO4Uj?`eX%bgKFt`a~!> zjNFa$*t0b`N@ap%r(6;_CK77l%>g+#8no}SwdH#w&rjLg#7OnNdy|lrr<=NpV`J%;7ut`f;a)QyF-lzPf%!gAVk<*$yb`(19gV}EI09l zHC|~~F@!b96PZ*8UjQlNp<3~KTZ|6&#rdECJMlv=RAvr+XZiL-%crwKru>VmzyYe6p6+-R2gE6Rz&Dh9wRc(ViWeC@DQmGLzPnUYw_@vyUNs#md zGKFI&lDA#`T_vwqQb!S=YL=rrhSU$A8mKqm7-vdB-0c>Mm> z9`jwp{<==B9Ya;mfF9fPH(K*YI-)lwbJ}VI<=p~=RazVc6N$;zhPo}&j22VgL{oDf zAu4;u`Z)o1M?e_vqy5Rd(Uw@gLnKZDU!&3oe?U!Mz6z!-F|iWYx3v^KJEC?uU^Aep zN}d^U(U`orMzZJuflE~jDEIlG+RMym6U?f||LRVGT>gUW`?>O5e##%>XRgj?f{u)x zwT(TEzO~&yMDMd+>VFe-KGoJER#v))_G`eVO=F?t;R^x0lTJGMUAO?D5b#t^yjZ32o}nwQR$LeUV(ejl zAbN3kjH{Dt3{+h3OiwKptct=Gu=ETyqLC0&FiG}Y2<+Fjh&FzATg4UMT#!g2;v9m^Lt31Ift@WdkB2g>r*4+8`QijKS6RlWJvDFj>qw zL)+ai6s*fi%oHNjOE6Fj2F}IAp zNrukxRMx4!gxj1_RV6>ZI8>n~yjc*G);iAv#+8{TepA#IX?>CSKoq7r)F>O|YIzaeHM`9Qq2BVv z7dWizCkMCwZP0GUDGmQ>JWO(G_{UB`%*r3yZY5DZ$D*?QsAYW7+SjQ{m(vLK!iMIv zK5ZGX+(J9NmiWUdTYdNWDD%y5`>O3(#AJ6p|sF;_#qZd0_IenmVf__ zv#xHrFfG;Kxuh4If@R8jnBI~_5cPC=1gGLA`?+~&HEF`!vZuH zTRSDPxFt$+lpl-qsb7ZgEvvTW6km(=k<%mmnrg`E511-YDN(2A0bIq!4(Jitu&1J; z{>>TvqBqNps730G)c(Cp*mEY{BaY1eeaB{y{+Oj`XjoWBtWlF-_7=XnCy?8URX+QX zrx!fy`Ps|H&qJ4im~^Mm_b4ab*NDA8)7^l8sXpz-|6ZK_KVtAF{V%2JGUETv;NQz< z|AYbnnV;JBmtxw#1OHxE_$RdUGXd{Esto@Q|M$evKfwS1_GjYW|6dyE-#Ps~=kHHm zWvKrj8GwIh@%N00KUq}c{FB9B^C$ie|9edGPk1EZKjHrtq5M1k?{SVl@owM$_4xlA z_4p6)-_8?%f~6V$3I5yZ;_n>(Zj=7WL6Yg89RAHh{X72O?TSCqpJ|vZ0Kk7(8GncW j`|AEzxG(!(;Qw6fWyC>0#R~v{`TPNWN@yzAA9w!;2=2gA