diff --git a/Data Intake Report_G2M case study.pdf b/Data Intake Report_G2M case study.pdf
new file mode 100644
index 00000000..0dfa1a3b
Binary files /dev/null and b/Data Intake Report_G2M case study.pdf differ
diff --git a/G2M insight for Cab Investment Case Study.ipynb b/G2M insight for Cab Investment Case Study.ipynb
new file mode 100644
index 00000000..abf5c66c
--- /dev/null
+++ b/G2M insight for Cab Investment Case Study.ipynb
@@ -0,0 +1,1786 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "63b21722",
+ "metadata": {},
+ "source": [
+ "# Go-to-Market(G2M) insight for Cab Investment firm\n",
+ "\n",
+ "## Introduction\n",
+ "\n",
+ "**The Client**\n",
+ "\n",
+ "XYZ is a private firm in US. Due to remarkable growth in the Cab Industry in last few years and multiple key players in the market, it is planning for an investment in Cab industry and as per their Go-to-Market(G2M) strategy they want to understand the market before taking final decision.\n",
+ "\n",
+ "**Data Set:**\n",
+ "\n",
+ "We have been provided 4 individual data sets. Time period of data is from 31/01/2016 to 31/12/2018.\n",
+ "\n",
+ "Below are the list of datasets which are provided for the analysis:\n",
+ "\n",
+ "**Cab_Data.csv** – This file includes details of transaction for 2 cab companies\n",
+ "\n",
+ "**Customer_ID.csv** – This is a mapping table that contains a unique identifier which links the customer’s demographic details\n",
+ "\n",
+ "**Transaction_ID.csv** – This is a mapping table that contains transaction to customer mapping and payment mode\n",
+ "\n",
+ "**City.csv** – This file contains list of US cities, their population and number of cab users"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "71f56ea5",
+ "metadata": {},
+ "source": [
+ "## To decide which company is a better investment opportunity for XYZ we will try to respond the following questions:\n",
+ "\n",
+ "•\tWhich company has had more profit over the years?\n",
+ "\n",
+ "•\tWhich company has users with better income?\n",
+ "\n",
+ "•\tWhich company has more users by city?\n",
+ "\n",
+ "•\tWhich company has more ride throughout the years?\n",
+ "\n",
+ "•\tWhich company tend to retain more customers?"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4f003b9c",
+ "metadata": {},
+ "source": [
+ "## Exploratory Data Analysis (EDA)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "c346aa0e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
Transaction ID
\n",
+ "
Date of Travel
\n",
+ "
Company
\n",
+ "
City
\n",
+ "
KM Travelled
\n",
+ "
Price Charged
\n",
+ "
Cost of Trip
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
10000011
\n",
+ "
42377
\n",
+ "
Pink Cab
\n",
+ "
ATLANTA GA
\n",
+ "
30.45
\n",
+ "
370.95
\n",
+ "
313.635
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
10000012
\n",
+ "
42375
\n",
+ "
Pink Cab
\n",
+ "
ATLANTA GA
\n",
+ "
28.62
\n",
+ "
358.52
\n",
+ "
334.854
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
10000013
\n",
+ "
42371
\n",
+ "
Pink Cab
\n",
+ "
ATLANTA GA
\n",
+ "
9.04
\n",
+ "
125.20
\n",
+ "
97.632
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
10000014
\n",
+ "
42376
\n",
+ "
Pink Cab
\n",
+ "
ATLANTA GA
\n",
+ "
33.17
\n",
+ "
377.40
\n",
+ "
351.602
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
10000015
\n",
+ "
42372
\n",
+ "
Pink Cab
\n",
+ "
ATLANTA GA
\n",
+ "
8.73
\n",
+ "
114.62
\n",
+ "
97.776
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Transaction ID Date of Travel Company City KM Travelled \\\n",
+ "0 10000011 42377 Pink Cab ATLANTA GA 30.45 \n",
+ "1 10000012 42375 Pink Cab ATLANTA GA 28.62 \n",
+ "2 10000013 42371 Pink Cab ATLANTA GA 9.04 \n",
+ "3 10000014 42376 Pink Cab ATLANTA GA 33.17 \n",
+ "4 10000015 42372 Pink Cab ATLANTA GA 8.73 \n",
+ "\n",
+ " Price Charged Cost of Trip \n",
+ "0 370.95 313.635 \n",
+ "1 358.52 334.854 \n",
+ "2 125.20 97.632 \n",
+ "3 377.40 351.602 \n",
+ "4 114.62 97.776 "
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
City
\n",
+ "
Population
\n",
+ "
Users
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
NEW YORK NY
\n",
+ "
8,405,837
\n",
+ "
302,149
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
CHICAGO IL
\n",
+ "
1,955,130
\n",
+ "
164,468
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
LOS ANGELES CA
\n",
+ "
1,595,037
\n",
+ "
144,132
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
MIAMI FL
\n",
+ "
1,339,155
\n",
+ "
17,675
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
SILICON VALLEY
\n",
+ "
1,177,609
\n",
+ "
27,247
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " City Population Users\n",
+ "0 NEW YORK NY 8,405,837 302,149 \n",
+ "1 CHICAGO IL 1,955,130 164,468 \n",
+ "2 LOS ANGELES CA 1,595,037 144,132 \n",
+ "3 MIAMI FL 1,339,155 17,675 \n",
+ "4 SILICON VALLEY 1,177,609 27,247 "
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
Customer ID
\n",
+ "
Gender
\n",
+ "
Age
\n",
+ "
Income (USD/Month)
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
29290
\n",
+ "
Male
\n",
+ "
28
\n",
+ "
10813
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
27703
\n",
+ "
Male
\n",
+ "
27
\n",
+ "
9237
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
28712
\n",
+ "
Male
\n",
+ "
53
\n",
+ "
11242
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
28020
\n",
+ "
Male
\n",
+ "
23
\n",
+ "
23327
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
27182
\n",
+ "
Male
\n",
+ "
33
\n",
+ "
8536
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Customer ID Gender Age Income (USD/Month)\n",
+ "0 29290 Male 28 10813\n",
+ "1 27703 Male 27 9237\n",
+ "2 28712 Male 53 11242\n",
+ "3 28020 Male 23 23327\n",
+ "4 27182 Male 33 8536"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ],
+ "text/plain": [
+ " Company Year Customer ID Number of rides\n",
+ "0 Pink Cab 2016 1 1\n",
+ "1 Pink Cab 2016 2 2\n",
+ "2 Pink Cab 2016 3 2\n",
+ "3 Pink Cab 2016 5 2\n",
+ "4 Pink Cab 2016 6 1\n",
+ "... ... ... ... ...\n",
+ "134895 Yellow Cab 2018 59996 3\n",
+ "134896 Yellow Cab 2018 59997 4\n",
+ "134897 Yellow Cab 2018 59998 2\n",
+ "134898 Yellow Cab 2018 59999 4\n",
+ "134899 Yellow Cab 2018 60000 7\n",
+ "\n",
+ "[134900 rows x 4 columns]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "[,\n",
+ " ,\n",
+ " ]"
+ ]
+ },
+ "execution_count": 24,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAHwCAYAAACPE1g3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAB6NklEQVR4nO3deZxbdb3/8dcnM9OZdrqv0JZSKrSUtlCgLYIUKIiyiqxSEAuiXFTE/rzKRb1ccN8Q2fRWvLIJsi8qAlf0soOytlBalpYWqEA73ddpZ5Lv74/vOZNMmsycpFln3s/HI4+ZSU6SbzLJN598zuf7OeacQ0REREREoomVewAiIiIiItVEAbSIiIiISA4UQIuIiIiI5EABtIiIiIhIDhRAi4iIiIjkQAG0iIiIiEgOFEB3Y2b2mJl9Ifj9TDP7a7nH1FWY2Y/NbHYBb+8hM5uV5bLRZubMrLZQ91cIwZh2L9JtX2hmPynGbYuUipndaGY/KPc4qomZ1ZvZAjPbqdxjicLMlprZx8s9jiiK/TkT/O9eN7Oh+Y+yciiALjIzO9jMnjGzdWa22syeNrOp5R5XOufcrc65T+RzXTObZmYPmtna4DE+Z2bn7Mh4zOwwM1u2I7dRLmY2BPgc8Jvg73Di2ZhyuiSX23TOHe2cu6kY461S1wGf7SoTsVSGSgt2zGxnM/udmX1gZhuC4OO7Zta4g7dbtC+3JXAe8IRz7sNyDyRdOb8QVcPnjHNuK3A98B/Fuo9SUgBdRGbWF3gAuAYYCIwAvgtsLcJ9lSX7aGYHAv8HPA7sDgwCvgQcXY7xFEMez+3ZwIPOuS1p5/d3zvUOTt+PeN9mZhX9Pi3Ha8851ww8hP+iItLlmNlA4FmgJ3Cgc64PcCTQH/hIGYdWUHnMH/8G/L4YY0lnZjWluJ8Cq/TPmT8As8ysvkT3VzQV/cHcBYwFcM7d5pyLO+e2OOf+6px7BcDMzg4y0tcEGerXzeyI8MpmNtzM/hRkdReZ2RdTLrvMzO42s1vMbD1wdpAJfjbIBH9gZteaWY+U6xwZ3Mc6M7sWsJTLzjazp1L+nmBmjwT3vdzMvp3lMf4cuMk591Pn3ErnveicOy3T7QbntWU/zOyYYHfcBjP7l5l9I8iuPAQMT/kmPTzY/XOlmb0fnK4M34RhxtrMLjKzFcHj/3Rw+28Gj+PbKWOImdnFZrbYzFaZ2Z3BB1bqN/lzzexd4P/MrCF4rlcFz+/zZjYsy3NyNP4LRV7Ml9b80MyeBjYDY6x9uU2NmV1uZivN7G3g2LTr90vJWv3LzH4QfhCY2e5m9njwGlhpZnd0MI5PmdlrweN9zMzGp1y21Mz+w8xeATZ19iEY/O8uN7N3g9fTHDPrGVw22MwesOQejCfDyTy4j38Fr483Ut8fwGPpj12kGDqZe+ab2fEp29YF763Jwd93mdmHwXvuCTObEPFuvw5sAD7rnFsK4Jx7zzn3NefcK5Zhl3raPJHxvW5mTwSbzwvm1s9EmKdvNLNfm9/Fv9H859ZOwfOwxvznyr4p1x1uZveYWZOZLTGzC1Muy/bZ9YKZrQ/mhyuy/B9G4b88/DPlvFzHNj54ntYG89un0m7rv83vUd0EzOjosaSN7TzgTOCiYBx/Trl4spm9Evwv7jCzhuA6A4K5rykY6wNmNjLt//n94DFtMLO/mtngTPefKyvT54xzbhmwBvhoIR5HOSmALq43gbiZ3WRmR5vZgAzbHAC8DQwGLgXutSCQA24DlgHDgVOAH1n7AOIE4G58RuJWIA78v+C2DgSOAL4MPkgB7gH+M7h8MfCxTIM2sz7A34CHg/veHfh7hu16Bfdzd+dPRVa/A/4tyK5MBP7PObcJH4S+n/JN+n3gO/g33WRgH2Ba8HhCOwEN+Ez/fwG/BT4L7A9MB/7LzMYE214IfBo4NHiMa4BfpY3tUGA88ElgFtAP2AWfZT8fSM8whyYBb2Q4/x3zQf4NESbBs/C7KvsA76Rd9kXgOGBfYAr+tZHqJqAV/3/bF/gE8IXgsu8DfwUGACPxe0e2Y2Zj8a+/2cAQ4EHgz5byhQyYiZ9U+zvnWjt5PD/Ff6GcHIwr/B8B/Dv+dT4EGAZ8G3BmNg64AJgavD4+CSxNuc2F+NeBSLF1NPfcjJ9nQscAHzjn5gZ/PwTsAQwFXsLP1VF8HLjXOZfIc8wZ3+vOuUOCy/cJ5tasX6LTnEby82MrPjv+UvD33cAV4JMTwJ+Befj3+RHAbDP7ZMptpX92XQVc5Zzriw+Q78wyhknA2xnmm6hjqwvG9lf8/+OrwK3BXBM6A/ghfu59JsJjAcA5d13wWH4WPK/Hp1x8GnAUsBuwN34vJfgY7AZgV2AU/jPl2rSbPgM4JxhvD+AbWZ6bUDV8znSJuVsBdBE559YDBwMOH8w1mc8op2YuVwBXOudagonsDeBYM9sluO5/OOeag8n4f/Av+NCzzrn7nXOJILv9onPuH8651iBj8Rt8EAh+Ul/gnLvbOdcCXAlkqyE7DvjQOfeL4L43OOf+mWG7AfjX0Ac5PjWpWoC9zKyvc26Nc+6lDrY9E/iec26Fc64JXw6T+ny0AD8MHt/t+MnzqmD8rwGv4Scv8LsBv+OcWxbUZV0GnGLtM6mXOec2BaUYLfjAefdgb8KLwf83k/74zFFoJTAVP0nuj5+sOvsQvdE591rwv2xJu+w0/GvmPefcauDH4QXBa+toYHYw9hXAL4HTU56jXYHhwf/2KTL7DPAX59wjwf1fjt+VfFDKNlcHY8j2RSIck+En4//nnFvtnNsA/ChtTDsDuwbvgyedcw7/hbAe//qoc84tdc4tTrnpDfgvNSLF1tHccwtwjPmSPYLz20oMnHPXB3NQOM/sY2ZRXreD2PG5Ncp7Par7gnmvGbgPaHbO3eyciwN34IMo8HPdEOfc95xz25xzb+M//05Pua12n13BWHc3s8HOuY3OuX9kGUN/2s+tuY7to0Bv4CfB2P4PX2Y5M+W2/uicezr44jIpwmOJ4mrn3PvBfP1n/BcxnHOrnHP3OOc2B/PiD0l+ZoducM69GTxPd4bXzaCaPmc24P+XVU0BdJE55xY65852zo3EZ1iH44PX0L+CYCH0TrDNcCAMNlIvG5Hy93up92VmY4NdQB8Gu8Z+hA8iCW6vbfvgPttdP8Uu+Ax1Z9YACXzwk6+T8cH9O8EunwM72HY47b8lh89VaFUwYUIyO7w85fIt+MkT/Jv7vmA33lr8N+I4PgMaSn1+fg/8L3C7+V24PwuyGZmswU9eAAQfCC8Ek9RyfFb1EykfuJlk+99A2v+S9s/JrkAd8EHKY/sNPnsBcBG+dOe5YPfl5zu4j7bbDT5M3qOD118HhgC9gBdTxvRwcD74MqBFwF/N7G0zuzi4z0X4DPhlwAozu93MUv/ffYB1EccgsiOyzj3O7x17GjjZzPrjA4tboW03+E/Ml4qtJ7kHJcpu+FXs2Nwa9b0eVfpc2tHcOjx8rwfv92+TfW4FOBe/h+p18+Vxx2UZQ7u5NY+xDQfec+2z+h19rkZ5LFGkJqs2h+Mxs15m9hszeyd4fTwB9Lf2tdcZr5uuyj5n+gBrO7jvqqAAuoScc68DN+ID6dCIIEMXGgW8H5wGBuUUqZf9K/Um0+7iv4HXgT2c3xX2bZJ1zh/gA2OgLSu4C5m9R4RFKs65zfhdZSd3sNkmfPAU3m+71kPOueedcyfg33j3k9x1l/7YwD8nu6b8HT5X+XgPONo51z/l1OCcy/j8BpnR7zrn9sJnYY8j+wK2Vwjq37MIb9cibJNJu/8l/nkIvYffhTk45XH1dc5NCB7Hh865LzrnhuOz8L+2zKvx2z3XKa+Xjl5/2azEf4hNSBlTP+dc72BMG5xz/+6cGwMcD3w9LFVyzv3BOXdwMBaHLwUJjcfvWhUpts7mnpvwZRyn4rOr4fvkDHy5wsfxe0tGB+d39N4P/Q040bIv7toU/OyVcl7b/JrDez28razzdI7eA5akza19nHPHpGzTbu5wzr3lnJuJ/xz4KXC3Ze408gq+VjffhcvvA7ukPacdfa5GeSxkuW4U/w6MAw4IPrPD8poor4/OVPLnTJeYuxVAF5GZ7Wlm/27BooCgLGMmkLp7aihwofmFJ6fiX1gPOufew9df/dj8Ara98d/SO9ol0wdYD2w0sz3x3TBCfwEmmNlJweRzISmTbZoHgJ3MbLb5xTN9zOyALNtehF8E8k0zGxQ8zn3M7Pbg8nnB/U42v3DispTnp4f5/tP9gt1H6/FZYPAZhEFpuzpvA/7TzIYEtV3/hd99mo85wA/NbNdgLEPM7IRsG5vZDDObFGQG1uN3UcWzbP4gKbvhzOwAMxtnfuHiIOBq4DHnXL7Z0zvxr5mR5uvqLw4vcM59gK89+4WZ9Q3u8yNmdmgwllMtuUhlDX4CzfQ47sSXEh0RZNr/HT9hPpPrYINsz2+BX1rQds7MRlhQR2hmx5lfdGIkXwPx4Dk73PxirWZ8EJ461kPx9aUihVQXzLnhqZbO5577gf2Ar+FrokN98O+bVfgA9Uc5jOMKoC9wU8o8NcLMrjCzvZ0vJfkXvp1jTZDla0t8dPJeXw6E60Ggg3k6D88B680vAO4ZjG2iddC+1cw+a2ZDgrlibXD2dvOS8wvQ3sLXoOfjn/gvCxcFn7mH4b+0355l+1wfS/rz2pk++Hltrfm1T5fmcN12quVzxsxG4LuSZSvTqRoKoItrA36R4D/Nr+j9BzAfH4yE/olfYLISX/90inNuVXDZTHzG4n18XdelzrlHOri/b+AzHhvwAUvqyteV+OzIT/CT+R743Y7bCcpGjsRPLB/iJ6wZWbZ9Bjg8OL1tZqvxPXofDC5/E/gePpvyFpBeC3UWsNT87qvzCRbjBNn624LbXGt+1/0PgBfwWYhX8YtE8u25eRXwJ3zZwAb8/ybblwTwXzbuxgd4C/FdNrIF7zfjayJ7Bn+PwZcsbMD//7fSvuYuV7/Fl5PMwz8H96Zd/jn8YpMF+MnrbpK7gqfiX48b8Y//a865Jel34Jx7A/+/uAb/2jweON45ty3PMf8HvkzjH8H/+m/4zAv41+LfgI34PRq/ds49hq9//klw/x/iv2x+GyD4kD8Gn/kTKaQH8UFNeLqMTuaeoD71HvwisdT34834Xd//wr8fIwcNQd3pQfgv6/8M5qm/48uWFgWbfRH4Jn5On0D7L7gdvdcvwwfma83stAjzdGRBGd3x+FrdJfj37//Q8XqFo4DXgrFeBZzufD1zJr+h/dqXXMa2DfgUvsxmJfBr4HPB502m7XN9LL/Dr9lYa2b3RxjSlfi1JSvxr42HIz6UTKrlc+YMfOeugrfzLTVrX34rpWRmZwNfCHZRSxdiZj8CVjjnriz3WLoiM/sqsItz7qJyj0UEwMz+CxjrnPtspxtL3oI9Ui8DRwSZUKkSwf9uHnBIsPCwqimALiMF0CIi1S/Y/f4ycJZz7onOtheR6qcSDhERkTyZP8DVe8BDCp5Fug9loEVEREREcqAMtIiIiIhIDhRAi4iIiIjkIN9m5GUzePBgN3r06HIPQ0QkLy+++OJK59yQzrfsGjRni0g1yzZnV10APXr0aF544YVyD0NEJC9m9k7nW3UdmrNFpJplm7NVwiEiIiIikgMF0CIiIiIiOVAALSIiIiKSg6qrgRYRkerW0tLCsmXLaG5uLvdQuqSGhgZGjhxJXV1duYci0mUpgBYRkZJatmwZffr0YfTo0ZhZuYfTpTjnWLVqFcuWLWO33XYr93BEuiyVcIiISEk1NzczaNAgBc9FYGYMGjRI2X2RIlMALSIiJafguXj03IoUnwJoERHpMj788ENOP/10PvKRj7DXXntxzDHH8Oabb5Z7WCLSxSiAFhGRLsE5x4knnshhhx3G4sWLWbBgAT/60Y9Yvnx5uYcmIl2MAmgREekSHn30Uerq6jj//PPbzps8eTIHH3ww3/zmN5k4cSKTJk3ijjvuAOCxxx7j0EMP5bTTTmPs2LFcfPHF3HrrrUybNo1JkyaxePFiAM4++2zOP/98pk+fztixY3nggQcAWLp0KdOnT2e//fZjv/3245lnnmm73cMOO4xTTjmFPffckzPPPBPnHH//+9858cQT28b2yCOPcNJJJ5Xq6RGRAlIXDhER6RLmz5/P/vvvv9359957L3PnzmXevHmsXLmSqVOncsghhwAwb948Fi5cyMCBAxkzZgxf+MIXeO6557jqqqu45ppruPLKKwEfLD/++OMsXryYGTNmsGjRIoYOHcojjzxCQ0MDb731FjNnzmw7bPnLL7/Ma6+9xvDhw/nYxz7G008/zeGHH85XvvIVmpqaGDJkCDfccAPnnHNOyZ4fESkcZaBFRAQAM/uamc03s9fMbHaGy83MrjazRWb2ipntV4Zh5uypp55i5syZ1NTUMGzYMA499FCef/55AKZOncrOO+9MfX09H/nIR/jEJz4BwKRJk1i6dGnbbZx22mnEYjH22GMPxowZw+uvv05LSwtf/OIXmTRpEqeeeioLFixo237atGmMHDmSWCzG5MmTWbp0KWbGWWedxS233MLatWt59tlnOfroo0v6XIhIYSgDLSIimNlE4IvANGAb8LCZ/cU591bKZkcDewSnA4D/Dn5WhAkTJnD33Xdvd75zLut16uvr236PxWJtf8diMVpbW9suS+9sYWb88pe/ZNiwYcybN49EIkFDQ0PG262pqWm7rXPOOYfjjz+ehoYGTj31VGpr9TEsUo2UgRYREYDxwD+cc5udc63A48CJaducANzsvH8A/c1s51IPNJvDDz+crVu38tvf/rbtvOeff54BAwZwxx13EI/HaWpq4oknnmDatGk53fZdd91FIpFg8eLFvP3224wbN45169ax8847E4vF+P3vf088Hu/0doYPH87w4cP5wQ9+wNlnn53rQxSRCqGvviIiAjAf+KGZDQK2AMcAL6RtMwJ4L+XvZcF5H5RkhJ0wM+677z5mz57NT37yExoaGhg9ejRXXnklGzduZJ999sHM+NnPfsZOO+3E66+/Hvm2x40bx6GHHsry5cuZM2cODQ0NfPnLX+bkk0/mrrvuYsaMGTQ2Nka6rTPPPJOmpib22muvfB+qiJSZdbRrqxJNmTLFhYs0RESqjZm96JybUu5xZGJm5wJfATYCC4Atzrn/l3L5X4AfO+eeCv7+O3CRc+7FtNs5DzgPYNSoUfu/88477e5n4cKFjB8/vpgPpaDOPvtsjjvuOE455ZSC3N4FF1zAvvvuy7nnnluQ28uk2p5jkUqVbc5WCYeIiADgnPudc24/59whwGrgrbRNlgG7pPw9Eng/w+1c55yb4pybMmTIkOINuArtv//+vPLKK3z2s58t91BEZAd0oxKOjUAc/53BOvgZ/i4i0r2Y2VDn3AozGwWcBByYtsmfgAvM7Hb84sF1zrmKKN8ophtvvLFgt/Xiiy92vpHkoBVoBnqhz24ppW4UQD8PbM1ymQEu7acBNfg3ZE2W32P4pzCWcl5tys+OAvX0gL2jnyIiJXFPUAPdAnzFObfGzM4HcM7NAR7E10YvAjYDamIsZbQGeAX/UqwBBgNDgH5AY3CeSHEULYA2s12Am4GdgARwnXPuqrRt9gRuAPYDvuOcu7xY4/HfUgcR/RtqAh9Mh6dEymlrhsvS/yb4PZNMAXtH24YBupE5YM90fk3aKZeAvaNgX0S6Kufc9AznzUn53eFrpEXKqBX/He5toC8wFP+5uwFoIvm5OiC4rB/Qh26VM5SiK+arqRX4d+fcS2bWB3jRzB5xzi1I2WY1cCHw6SKOI0+VsivIZTgl8OUorfhgPgzYMwXyLuV2ogTsHUnPymcK2DvK0temnJdvAK9gXkSk+1oLzMOXbQwh+VkdA3oHJ/CfcVuAN0l+RvYFhgH98QF1j1IMWLqoogXQQV3cB8HvG8xsIb7d0YKUbVYAK8zs2GKNo/pVUrCYnmEPA/QwmE8N2LMF81ED986y9GEwnx7IZyurSc3Sp16eKVBPzdzXptyOiIiURys+47wYHyQP7mR7w9dF9wr+dviE09v4zyzwZR5DgYHBbfYs7JClSyvJ/gwzGw3sC/yzFPcnxVJJiyzTM+zZgvlsQX96MJ8pQHcpvxtQB9Tjsxapv4d/pwfdqb+LSCWpqalh0qRJtLa2Mn78eG666SYWLFjAzTffzNVXX531ekuXLuW4445j/vz5Hd7+m2++yezZs3nzzTepq6tj0qRJXHPNNQwbNizj9o899hiXX345DzzwwA49rq5pLb7WeQs+cM7nM8iAhuAU2oZvLLMk+LseH1APxgfUvaicBJZUmqIH0GbWG7gHmO2cW5/nbaT2FC3g6KR6hZniUgnr3+P4SXxT8Huc9oF8JmHwnRpspwbfPeg4+NYELlJoPXv2ZO7cuYA/sMmcOXP4+te/zpQpO96iu7m5mWOPPZYrrriC448/HoBHH32UpqamrAG0ZBLHZ4zfwpdcdJZ1zlU4/4ZageUkjxVUR3JhYh98xroSEkhSCYoaQJtZHT54vtU5d2++t+Ocuw64DvyBVAo0PJEcpJaH5CrMjCfwzQ22kAzIW+m8rKWWZABen/Z7DzIH3eHvmuxFOjN9+nReeeWVdlngyy67jHfffZe3336bd999l9mzZ3PhhRe2u97bb7/NySefzHXXXcfUqVPbzv/DH/7AgQce2BY8A8yYMQPwGeyzzjqLTZs2AXDttddy0EEHAbB+/XpOPPFE3njjDQ455BB+/etfE4t11/fwOnyt82ba1zoXUy1+wWGoFZ/9Djs1xkgG1H3xWWrtYeyuitmFw4DfAQudc1cU635EKl9Yf52vMPMdZ/vMd1jLl15yEv4eo/PgO1sAruy3lMCid2Hj5sLeZu9esHu0vZWtra089NBDHHXUUdtd9vrrr/Poo4+yYcMGxo0bx5e+9KW2y9544w1OP/10brjhBiZPntzuevPnz2f//ffPeH9Dhw7lkUceoaGhgbfeeouZM2cSHl33ueeeY8GCBey6664cddRR3HvvvQU7+mH1CLPOi/AZ33IeiKeW9gsTE/hjSqR2+uiPX5jYL9iuruSjlPIoZgb6Y8BZwKtmNjc479vAKPCtkcxsJ+AF/Fe5hJnNBvbKt9RDpGsKs9/5TMxh9juOX7UeBuBh8N1Z9jssOemRdgqD8Y6y3wq+pXJt2bKlLfCdPn065557Ls8880y7bY499ljq6+upr69n6NChLF++HICmpiZOOOEE7rnnHiZMmJDT/ba0tHDBBRcwd+5campqePPNN9sumzZtGmPGjAFg5syZPPXUU90sgF6Pr3XeSP61zsUUwwf1jcHfDj+vvoGfUw1f6jEM30KvN36ulK6omF04nqKTT1Dn3If4Q8EWWZRAQaQrCrPf+ZaepLdMTA2+E9mvCvhAOr3mO/y9nuw13+FJuoWImeJCS62Bzqa+Phn81NTU0NraCkC/fv3YZZddePrppzMG0BMmTODxxx/PeJu//OUvGTZsGPPmzSORSNDQkFzU5nfckvXvrisOLMUHor2JnnX+G/Ab/DEe9gX2AfYm2Xmj2AzfuSO1e0cz/rG8RbITyBCSCxPV6aOr6CZdxY8HHsZ/eIdZs7q0v3t0cnldyjbZLu/oFHUb7TaXSpHa0i8fqXXem/FZpdaU8zOVnKS2Lcy06LIOv4o+fK9kC8D1HpLi6dGjB/fffz+f/OQn6d27N2eccUa7y8844wx+/OMf85e//IVjj/VdWh9++GFGjBjBunXrGDlyJLFYjJtuuol4PN52veeee44lS5aw6667cscdd3DeeeeV9HGVx3rg1eDnYKLNN2uAn+ID6D3wB1D5HX5eqQHG4YPpfYHJ+DZ1pZKp08f7+KAakp0+hqBOH9WtmwTQZ+DfQDX4D/CWDKfU85vxH/Yt+Bd/puu0kqw/LaSwY0N6YJ8pAO8sKM/1i0KULwsK9CWqQiy8jOPfg1uIXnoSZt1Ty0/CkpMwEO8o+K603cZSiRobG3nggQc48sgjaWxs5IQTTmi7rGfPnjzwwAPMnj2b2bNnU1dXx957781VV13Fl7/8ZU4++WTuuusuZsyYQWNjY9v1DjzwQC6++GJeffVVDjnkEE488cRyPLQSiQPv4LPOvfBBZRR/B36C/4z+Cr5StDb4+1XgZWAucC9wW3CdUfhgOgyoR1C6z69MnT6a8O3zHO07ffRFnT6qh/kjs1aPKVOmuHDBRW4ewRf7F/KFGe7a7iwgz3bKFphv6+TybIF9tvvsbFd7PsIMYa7Z+M6C9s6+KETZJvWkUoDuKTXYTv+9swP6xNi+5ju19jsMthvJZ3esmb3onNvxXmlVItOcvXDhQsaPH1+mEXUPlf0cb8DXOq/Hl19EmafX4rPOjwDjgUuB3TvYfhuwEB9Mh6cNwWWDSZZ87BvcTrk+K8LWqM0kM+iD8AF1uDBRn2PllG3O7iYZ6GIJM1aVvkggTrSAPN9tOvuysAU/UWb6kpD6dzG+zIWL76KW5fQgueq6T8qpd9rP8HetuK5M4Xszn/9PZz2/wb9uR+HrLUUkmgTJWudcss6PAj/Gf458CZhF5+FLD3yAvE+wfQLf3WMuySz1I8G2jcF2k/EB9V6U7nO9hu07fWwCVpL8TByAf676o8+dyqEAuluolkVZmQL9jkpo8snwd3T5Fnxt3dv4TMVGOs/eN5A9wA4b7/dh+2A83K7Sv3x1R1FKT6K8NkQkaQO+xGIduWWdfw78L7An8Gs6zjp3JBZcd3cg7GzyAclgem5w++AD1L1Ilnzsg5+vSyFbp4+3SM45ffAB9QD0OVI+CqClglRaoO/wi9/CYHpDhN/X4o9iFZ7XWZ18DzIH4OmZ7kzBeW98AK9adBGpVAngXWABPiiMmnV+DJ91XgucD5xN4UOWnYPTMcHfa/EHb5kbnH4P3IifY3fHB9OT8YF11Mexo7J1+ngHWIz/nAqz+YPwnw36XCgFBdAiWRntMwG5cvjWbxvSThtpH3inBuIb8VmRjSTLXjpSQ/bsdrZAPPV3rQAXkWIJF/atwQd3UUKOdcDlwEPAWOCa4Gcp9AcODU7gA9X5JMs+HgDuCi4bTjKYngyMpnRzabZOH+8Ef/fA11CHnT4aSzi27kMBtEjRGMmJLt+jaYUBeLagO9N5K1P+bu7k9mNkz3pHqQPXinERSZfA74lbgM+cDot4vSeAH+IzwecBn6e8YUoDMCU4gS/7e5NkQP0s8GBwWT/aB9R7UrqxZ+r0sRL4V/B3DX7h5FCSc7jm7R2lAFqkooUHHRmc5/VbaJ/d7qgMJfz5LsngfFMntx9m6TsqP0kPxFPP742mIZGuZBM+a7sa3z42yvt7PfAL4C/4vs5X43s5V5pafG30Xvj2uA4/X76ML/14GQgPoNMATCIZVE+kdAd4qcW3xAvF8c/xCvyYY/j/zdBgO83D+dAzJtKl1eEXmgzI8/qt+A/EKKUn4Xkf4he8bAiu21l3lV5ELz/JlBXXinTJjXOO6dOn853vfIejjz4agDvvvJPrr7+ehx9+uN22jz32GJdffjkPPPAAN954Iy+88ALXXnttwcby3HPP8Y1vfIPly5djZhx88MFcffXV9OqVOdgqxhgKI8w6LyR5sJAonsJnnVcDXwDOJfp72uHLQ+L4oLAXpa3/NWDX4PTp4LwmksH0y8D/BOMMD/ASZqgnk/+8nKtMnT624P9X4YGr+tG+00eP7W5F2lMALSIdqMVPrP3yvH6C5ELMjoLu1AB9JbAk5fLOul3UE60OPFtJilawdzdmxpw5czj11FOZMWMG8Xic73znO9sFz8W2fPlyTj31VG6//XYOPPBAnHPcc889bNiwIWsAXZnyyTpvAK4A/oxfoPdLfNlDVFvxwfMuwEh82ccKYBXJfsrh4rtS1v8OAT4enMDPY6+QzFLfBdwaXLYr7QPqUh3gJfyyEb7GwvU6i/BfRgw/Pw7F/z/DBeuSSgG0iBRRWGPdG7/aPVcOnynpKPjO1AllWcp5rZ3cRx3ZA+xs59UAH8nj8UilmDhxIscffzw//elP2bRpE5/97Gf54Q9/yKuvvkprayuXXXZZu6MLpnvnnXf4/Oc/T1NTE0OGDOGGG25gxIgR7LHHHixevJh169YxcOBAHnvsMQ455BCmT5/ODTfcwO67J9uw/epXv2LWrFkceOCBgA/sTznFt1h77rnnmD17Nlu2bKFnz57ccMMNjBvnyxree+89jjrqKJYsWcIZZ5zBpZdeWsRnqiMO/15bgM9YRs06P43POq/C1zl/gegZzzDrbMDUlPscCIzBv9834hcjhgF1mGUNA+pS1v/2Bg4KTuAX/C0g2enj78D9wWVDaN/p4yOUpjNV6nqd0FZ8ecrilMuH4ReD9qb0X0wqTzcLoDfg3zjhP93STlHOg+7+ohEpHSOZKYm6EClVmFlJz3Z3tjDzw5S/t2a57S8D0/MYk7Q3Gx9IFNJk4MpOt7r00kvZb7/96NGjB8cddxyHH344119/PWvXrmXatGl8/OMfz3rdCy64gM997nPMmjWL66+/ngsvvJD777+fsWPHsmDBApYsWcL+++/Pk08+yQEHHMCyZcvaBc8A8+fPZ9asWRlvf8899+SJJ56gtraWv/3tb3z729/mnnvuAXxwPX/+fHr16sXUqVM59thjmTKl1Ae33Ay8hi9ZiNphYyM+6/wnfLB7Ob6eOKqt+C/II/DZ6kx7j2rxZQj98RneOMmuRk34PVxhyUcDPhAsZfvUHiSDZEge4CUs+ZhL8gAvvfEHawoPQz6e0u0xC9ffhFrwHaKWplweHoI8XFDevWKjbhRA745/wzuSRxpLpPydfn6mbcLfC3HEvGwvtPTb3pFgX18KpLtLzazkuxAzDMBTs99N+EVBUs0aGxv5zGc+Q+/evbnzzjv585//zOWXXw5Ac3Mz7777btbrPvvss9x7770AnHXWWVx00UUATJ8+nSeeeIIlS5bwrW99i9/+9rcceuihTJ06NaexrVu3jlmzZvHWW29hZrS0JFtaHnnkkQwaNAiAk046iaeeeqqEAbTDd3eYjw8Go36xfRb4Af69cw7wRXKrs10T/Nw/h/sEHxyHZWi7kDzSX7iobiU+ax3OFT0pbWiUeoCXU/HPb/oBXp4Jtu1B8gAv4VEWS3WAlzral/K14kt23sePuRb/RWoYyYC6ko7rUHjdKIDerYC35bKcOros31O2oD6sC83l/GJ9Kegs+C7HlwJ9IZBCCTMxg1LO20j+deHS3pVlvfdYLEYsFmurPw7LJELLly+PdDtmfs6ZPn06c+bM4f333+d73/seP//5z9vKONJNmDCBF198MWOpyCWXXMKMGTO47777WLp0KYcddth295Xt7+IJs84riV7rvBH/P74f/zl8Pbl9+dyGD9RGUJgMbIxkSdYI/OdTuFC6KTiFX1bq8Xu/ShkqGb7H9HDg2OC8tSSD6ZeBm0nWKu+BD6TDLHW+LVNzVUvyeSQYT/gcJkh2+hhCcmFi1wo5u9ajKZmuGKAV+4tAR18K0oP5zn4v1peC8H/q0s4z/Dfp8BDPNSk/a+h6rwWR7ueTn/wk11xzDddccw1mxssvv8y+++6bdfuDDjqI22+/nbPOOotbb72Vgw8+GIADDjiAz33uc4wZM4aGhgYmT57Mb37zGx544IHtbuOCCy5g2rRpHHvssRxwwAEA3HLLLXz84x9n3bp1jBgxAvCdN1I98sgjrF69mp49e3L//fdz/fXXF+hZyCbMOr+Gz0RGrXX+B/B9fFA1C9/bOZcAeE1w32HWuRhzbbhgLlynkbruYiU+S90cbFeHz6yWuvNPf+Cw4EQwvvkks9SpB3gZQft+1LtSms+oTJ0+mvF9s8NgP+z0MYCu0OlDAbQEuuKXAsg/wI/jd1HF8dmIbcHPrSm/bw5+ZgvWU5/P1KA7NfgOg3IRKadLLrmE2bNns/fee+OcY/To0RmD3tDVV1/N5z//eX7+85+3LSIEqK+vZ5ddduGjH/0o4DPSt912G5MmTdruNoYNG8btt9/ON77xDVasWEEsFuOQQw7hpJNO4qKLLmLWrFlcccUVHH744e2ud/DBB3PWWWexaNEizjjjjCKXb2zBB84riF7rvAmfdb4Pf4S+fLLOa/AB7XhK2wEifd3FBPxzEHYIWoHPCDt8ANiT0nfy6YlfQBmWBYUHeAkD6mfwPbXBB6uTSWapx1Ga0C9bp4+38Z+rjvadPsJDkFcPc64Q9bylM2XKFPfCCy+UexgiKcKAO/XUmvb7tgynluAUTiapUrPhRvvsd6ZgXEorLOGYnPM1zexF51ypV3yVTaY5e+HChYwfP75MI+oedvw5dvj61tfwc0z/iNd7Dp91Xg6cCfwbuQVGa/Fz6iSKl3XeUc34OWAVPru+MTi/hmQv6nJy+MN6zyVZ9hEelbAn2x/gpWepBxjYiv9yEiaiUjt99KFSOn1km7OVgRbZYWFwm+9uPUf24DtTAJ6aEQ9PmQLw1POyBd/h7+WfpESkUmzBt1pbjs8ORpnbNuGPIHgPMAp/AJG9c7jPFnytczmyzrlKXZg8Dj8fb8BnzZfjs9Rh4qPUB3chuK/RwenTwXlNJIPpucBvSR7gZU/a96PuX6JxZur08SG+fR74190Q/PMcLkysnD22CqBFys7wb8V8346Zyk7ST9vw3/bTg+/m4O/0um8ynJct+60yFJGuIewAMR//3o7a7eIF4HvBdT8LnE9+Wed9gZ2ovi/0PfBZ00H4bhot+Kz0Girj4C7gA9EjgxPB+OaRzFLfCdwSXLYbyWB6Mn5BYynG21GnD/CfM2HrvPAQ5OXbA6sAWqTqpQa3+S7KSJA9+A4D8PTs9zZ8pmobye4vmYLv1DFmyn6rDEWk/JrxWecPiZ513gxcg1/ANgqf1Zycw32GWedh+PZs5SolKLQ6fO3xACrz4C7gg8+PBSfwCZaFJLPUj+Br2MHXKU+m/QFeSjHe9E4fCZKdPsLnb0Awvn74x1S6BZ4KoEUEPxnuyIroTHXgqSUoqWUoLSm/h1nxeMptZVuQmSnoTv1ZbVmr7s05V8L2a91LbmubHL7s4FX8+yhq1vlFfNb5feAM/IGFcs06x/FB2c507fdvpR/cBXwpxeTgdHYwntQDvLwM/DXYtg/JA7xMxn/5KUVHjdQj20KyY8obJD83+tK+00fxFngqgBaRAih0HXimevBsCzHDRSjh7aRL7ROenv1ODcK78gd4ZWloaGDVqlUMGjRIQXSBOedYtWoVDQ1RgtlmfNbxA6JnnbcA1wJ34A9Mch0+kIqqq2adcxHl4C5hUqEcB3cJx7hHcDqN5KLSl/GlHy/jD8kOPnieQDIA34dkkFtMqR1TINnpYwnwVsrlQ/HlNX0pZECtAFpEKsCO1oFDx8F32I5wa9rPsA68hWQZSqaxhbsLw4C7BR1IJX8jR45k2bJlNDU1lXsoXVJDQwMjR47sYIt8s84v4bPOy4CZwFfIL+u8D6Wrq60GlX5wF/D/qxHB6bjgvDUkg+nwAC83kDy64mSSB3jJ90iwuY4xXOAZ2obvQLIEvwhx+wMa5UsBtIh0EWFGOV+pZSiZ6sFTS0+20f7IhJKLuro6dtutkEeHlejCWtf38bu5o+x6bwZ+BdyOD3x/gz+4SVSt+LrfofhMZXfMOueiGg7uAv71cxjtD/DyKsks9Z/wixPBB96pnT5KdYCXHsEpgf8CVzgKoEVEgB0vQxGpdMuBV/CBS9Ss81zgu8B7+F35XyW3AHgtPoDeGx9EKeucu2o4uAvB/U4LTuD/76+T7PTxFP6oieBLhvYhmaUeS7WFpNU1WhEREcnRVnwg8y9yyzr/GrgNnwWdA+Ry/J/UrPNeJOtUpTDC7h1D8H2zw4O7rMYH1GEv6nIe3KUWf6CWifj2huEBXsKSj3nAo8G24QFewpKPiVR2L3AF0CIiIl3YCnzWGXwwGyUDPA+fdX4XOBWfdc4lAF6HL3lS1rl0Ug/uMpbKO7gLtD/Ay4nBeStof4CX60ge4GU87ftR9y/ROKNRAC0iItLlbMW393oPn3WOsku/GZ9pvhV/QJP/BqbmcJ/hgS8G48sMlHUun2o4uAv4L3WfCE7gg/7UA7zcQfIAL2PwZR9hLXV52x8qgBYREelSVuAXcyXwNbNRgoxXgcvwu9hPBi7EL06LKsw6TwRGRrxPKZ1qOLgL+E4kBwcn8F8EF5DMUv+V5AFehtH+AC9jKOWYFUCLiIh0CduAN/GlF/2JlnXeiu+qcQs+G/gr4IAc7jPMOg/CZ51zCbqlfDId3GUTPqCulIO7gH8Nh3XR5wRjWkyy5ONF4H+DbfvQfmHieIp5gBcF0CIiIlWvCV/rHCd6rfN8fK3zEnxN6tfI7QAY6/EB+AR81rkcGUspjBr8gUb6sv3BXcJe1OU+uAv4cY4NTp/BZ83/RbLk42V8tw/wwXd4gJd98IebLxwF0CIiIlUrzDq/g88mRulcsA2/WOtmfBeHa4GP5nCfYdZ5IL5lmbLOXU81HNwF/BfFkcEpPMDLapIHeJkL3IQP/icCny7YPSuAFhERqUqr8IFCK9FrnV/DZ53fxgcTs8kt67wBv9hwL3ymUlnn7qFaDu4C/ovdjOAEsBm/d2ZjQe9FAbSIiEhVaQHeApbiDykf5bDy24Df4rPOg4CrgYNyuM+wr/NAfD/oXIJu6Xqq5eAu4Mc4DR2JUEREpNtahc+mtRC91nkhvsPGYuB44Ov4XfNRbcAHRxNQ1lmyq4aDuxSOAmgREZGKF2adl+BrnftGvM7/ADfiM8dXkmwPFkWYdR6Ass6Su44O7rICn6l2lPfgLvlTAC0iIlLRwkVRLUSvdX4dn3VehF9c9XWiBd2hjfja0b3w3QuUdZYdle3gLmvxR0uslIO7RKMAWkREpCKl1zpHzTpfH5wGAL8Epudwn3F8INMPn63OpdRDJBepB3fZjco9uEtmCqBFREQqzhp81nkr0Wud38B32HgTOAb4BvllnccBo6mkYEW6g2o5uIunAFpERKRitOLLLt7GB79RMsCt+Izz7/DBxy+AQ3O4zzg+OFHWWSpJtoO7bMBnqMt7cBcF0CIiIhVhDb7DxlZ8J4MoGeC38LXObwBH47POUdrahcKs8574rF/5MnoiHUs9uMtwOj64Sw98L+rihbkKoEVERMoqPes8KOJ1bsR32egLXA4clsN9hrXOfYGPkVuph0glyPXgLoWlAFpERKRs1uJrnZuJnnVehM86vw58EvgmvnQjqjDrPBZf66yss3QFnR3cpbWg96YAWkREpORa8RnnRfhd0oMjXucm/BEF+wA/Aw7P4T7j+JZ4fVDWWbqH1IO7FJYCaBERkZJah886byZ61nkxvsPGAuBI4CJ8+6+oNuEzcXsAY1DWWWTHKIAWEREpiTg+6/wWPgscJSvWCvweuA6/KOonwMdzuM8Evta5EZ91zmWBoYhkowBaRESk6NbhO2zkknV+G1/rvAA4AvgP/CG5o9oUnHZHWWeRwlIALSIiUjSpWefeRKt1jgO3AL/B12/+GF+2EVVq1vkglHUWKTwF0CIiIkWxHp913ogPnKNkgJfis87zgRnAxURraxfajG/jFWad9TEvUgx6Z4mIiBRUHB8Iv4lvqRWl1jkO/AH4b3zW+YfAJ4h2CG9IZp174bPO/XMZsIjkSAG0iIhIwawHXg1+DiJ61vl7+Gz1Yfisc5RSj5CyziKlpneZiIjIDkvgA+E38FngoRGuEwduw2ed64Ef4A+MkkvWeTXQABxIbm3tRGRHKIAWERHZIRvIPev8Lr6v8zxgOvAdcss6bwnubww+86yPc5FSitJHJy9mtouZPWpmC83sNTP7WoZtzMyuNrNFZvaKme1XrPGIiIgUVgJYAjwJtOBrnTsLnhP4WueZ+O4c3wWuIHrwHNY6x/FZ5z1R8CxSesV817UC/+6ce8nM+gAvmtkjzrkFKdscjT8s0h7AAfj9WAcUcUwiIpKFmf0/4AuAw6dUz3HONadcfhjwR3zUCHCvc+57JR5mhdiIf4rWEr3Dxnv4WueX8Vnnb5PbIYa34PtJh1nnuhyuKyKFVLQA2jn3AfBB8PsGM1sIjMB3hA+dANzsnHPAP8ysv5ntHFxXRERKxMxGABcCeznntpjZncDpwI1pmz7pnDuu1OOrHAl8+cVCotc6J4A7gWvwQe9lwLFEr3V2+KxzD3zWOZeDqYhIMZRkv4+ZjQb2Bf6ZdtEI/Ffy0LLgvHYBtJmdB5wHMGrUqKKNU0Skm6sFeppZCz46fL/M46kwYdZ5Db7WOcpH6DJ81vkl/KG0v0O0oDvUjM8674ayziKVo2g10CEz6w3cA8x2zq1PvzjDVdx2Zzh3nXNuinNuypAhuezuEhGRKJxz/wIux6dXPwDWOef+mmHTA81snpk9ZGYTSjrIskkA7+BrnbcCw+g8eA6zzqfjO3P8F3Al0YPnMOu8DfgoMB4FzyKVo6gBtJnV4YPnW51z92bYZBmwS8rfI1HGQ0Sk5MxsAL6sbjdgONBoZp9N2+wlYFfn3D74eoT7s9zWeWb2gpm90NTUVMRRl8Im4Hl89eFAoE+E6/wL+BLwM/zO1zuATxG9ZKMZWI7/SDwYlWyIVJ5iduEw4HfAQufcFVk2+xPwuaAbx0fxGQ/VP4uIlN7HgSXOuSbnXAtwL/6Qdm2cc+udcxuD3x8E6sxsu/YRXWOvYVjr/CT+QCVDiZZ1vhufdX4d+E/gamCniPeZnnXeC2WdRSpTMWugPwacBbxqZnOD874NjAJwzs0BHgSOARbhZ6hzijgeERHJ7l3go2bWC9/u4QjghdQNzGwnYLlzzpnZNHwSZlXJR1p0m4D5+IOUDCTaR+X7wPfx2eoDgEuIHjhDstZ5NL4xlQJnkUpWzC4cT9HJ/qqg+8ZXijUGERGJxjn3TzO7G1+m0YrvtXadmZ0fXD4HOAX4kpm14oPs04N5vItw+MrCBfiOF1HqlR0+WX8V/iPvO8Cnya3Dxmr8x/E0cjuYioiUi7qvi4gIAM65S4FL086ek3L5tcC1JR1UyWwGXgOaiN5h4wN81vk5fPB7CbBzDvfZjO8jvSswFh+0i0g1UAAtIiLdmMMv+puPD2CHRbzO/fiuGg64GDiZ3LLOa/AHXzkAZZ1Fqo8CaBER6aY248s1VhA96/wh8APgH8BUfNZ5eA73uRUfPI8CxqGss0h1UgAtIiLdjMMv+puP/xiMmnX+I/BLfLeN/8BnnaM2swprnWvwgXcuB1MRkUqjAFpERLqRLfha51yyzsuBHwLPAPvjs84jc7jP1KzzWKA+h+uKSCVSAC0iIt1AmHV+DZ8Fjpp1/jNwBb4xyTeBU8kt67wGXxutrLNIV6IAWkREurgt+Frn5fi+zlF6LK/AZ52fBvbDH4o7n6zzLvhaZ2WdRboSBdAiItJFOfyiv1fJLev8F+ByoAX4BnAa+WWdp0S8TxGpNgqgRUSkC2rGZ50/wNc6R8k6NwE/wh++ezK+JfYuOdznNnzwPALYE2WdRbouBdAiItKFOHypxqv4rHGUw2k74EF81nkb8HXgM/isdVRrgtvZH1/rHLUntIhUIwXQIiLSRTQDC/FZ5wFE67G8Ep91fgLYG5913jWH+9yGb08XZp0bcriuiFQrBdAiIlLl0rPOUWudHwZ+jl/wNxuYSW5Z57X4ntD7B/eprLNId6EAWkREqthWfNb5X/gOG1GyzquAHwOPAZPwWefROdxnCz7rvDMwHmWdRbofBdAiIlKlwqwzRK91/ivwM3xru68BZ5Bf1nnf4D6VdRbpjhRAi4hIldkKvAEsI3qt82p81vlRYCI+67xbDvcZZp13AvZCWWeR7k0BtIiIVJEVwCv4bHLUbhePAD8FNgFfBc4kt4+/tSjrLCKpFECLiEgV2Aa8DryHzzpH6bG8BvgJ8Hd81vgyYEwO9xlmnYcF1++Zw3VFpCtTAC0iIhVuBb7WOU70bhd/w2edNwJfAc4i96xzHNgHGB7xPkWku1AALSIiFWob8CbwLtCfaFnntfjA+RF8h4xLgd1zuM9WfJeOocAElHUWkUwUQIuISAVaC7yEzwJHrXX+P3zJxnrgS8Ascs86t6Kss4h0RgG0iIhUoKX4AHZghG3X4g+I8r/AOOBXwB453Fdq1nkvoFcO1xWR7kgBtIiIVKhYhG0ew7enWwucD5xNbh9t6/CLBffGH45bWWcR6ZwCaBERqULrgMuBh4CxwDXBz6ha8R02BuNrnZV1FpHoFECLiEiVeRz4ET7rfB7weXLPOm/DH1BlJMo6i0iuFECLiEiVWI/POj+Ir3G+Gl/zHFVY6xxmnRsLPUAR6SYUQIuISBV4Evgh/uAoXwDOBepyuP56/CHAw6xzlPpqEZHMFECLiEgF2wD8AngA38/5SmDPHK4f1joPBKahrLOIFIICaBERqVD/wAfPq/F1zl8AeuRw/TDrvBewC8o6i0ihKIAWEZEKsw64DPgjMAYfRO+Vw/XDrPMAYCrQu8DjE5HuTgG0iIhUmB8BfwbOBL5CblnnDcAWlHUWkWJSAC0iIhXmP/EHNhlJ9OA57LAxAJiCss4iUkwKoEVEpML0wbeZWxdx+9Ss8yiUdRaRYlMALSIiVSqOzzr3B/bHB94iIsWnAFpERKrQRmATvqXdaJR1FpFSUgAtIiJVJMw69wWmo6yziJSDAmgREakSG4HN+MN37wrUlHc4ItJtKYAWEZEKl5p1/ljwU0SkfBRAi4hIBQuzzmPxtc7KOotI+SmAFhGRCrUWGIyyziJSaRRAi4hIBWrE94LeDWWdRaTSKIAWEZEKtEe5ByAikpUaZ4qIiIiI5EABtIiIiIhIDhRAi4iIiIjkQAG0iIiIiEgOFECLiIiIiORAAbSIiIiISA4UQIuIiIiI5EABtIiIiIhIDhRAi4iIiIjkQAG0iIiIiEgOFECLiIiIiORAAbSIiIiISA6KFkCb2fVmtsLM5me5fICZ3Wdmr5jZc2Y2sVhjEREREREplGJmoG8Ejurg8m8Dc51zewOfA64q4lhERERERAqiaAG0c+4JYHUHm+wF/D3Y9nVgtJkNK9Z4REREREQKoZw10POAkwDMbBqwKzCyjOMREREREelUOQPonwADzGwu8FXgZaA104Zmdp6ZvWBmLzQ1NZVwiCIiIiIi7dWW646dc+uBcwDMzIAlwSnTttcB1wFMmTLFlWqMIiIiIiLpypaBNrP+ZtYj+PMLwBNBUC0iIiIiUrGKloE2s9uAw4DBZrYMuBSoA3DOzQHGAzebWRxYAJxbrLGIiIiIiBRK0QJo59zMTi5/FtijWPcvIiIiIlIMOhKhiIiIiEgOFECLiIiIiORAAbSIiABgZv/PzF4zs/lmdpuZNaRdbmZ2tZktMrNXzGy/co1VRKScFECLiAhmNgK4EJjinJsI1ACnp212NH7tyh7AecB/l3SQIiIVQgG0iIiEaoGeZlYL9ALeT7v8BOBm5/0D6G9mO5d6kCIi5aYAWkREcM79C7gceBf4AFjnnPtr2mYjgPdS/l4WnCci0q0ogBYREcxsAD7DvBswHGg0s8+mb5bhqtsdHdbMzjOzF8zshaampsIPVkSkzBRAi4gIwMeBJc65JudcC3AvcFDaNsuAXVL+Hsn2ZR44565zzk1xzk0ZMmRI0QYsIlIuCqBFRAR86cZHzayXmRlwBLAwbZs/AZ8LunF8FF/m8UGpByoiUm5FOxKhiIhUD+fcP83sbuAloBV4GbjOzM4PLp8DPAgcAywCNgPnlGm4IiJlpQBaREQAcM5dClyadvaclMsd8JWSDkpEpAKphENEREREJAcKoEVEREREcqAAWkREREQkBwqgRURERERyoABaRERERCQHCqBFRERERHKgAFpEREREJAcKoEVEREREcqAAWkREREQkBwqgRURERERyoABaRERERCQHCqBFRERERHKQUwBtZjEz61uswYiISOFozhYRKY5OA2gz+4OZ9TWzRmAB8IaZfbP4QxMRkVxpzhYRKb4oGei9nHPrgU8DDwKjgLOKOSgREcmb5mwRkSKLEkDXmVkdfjL+o3OuBXBFHZWIiORLc7aISJFFCaB/AywFGoEnzGxXYH0xByUiInnTnC0iUmS1nW3gnLsauDrlrHfMbEbxhiQiIvnSnC0iUnxRFhEOM7PfmdlDwd97AbOKPjIREcmZ5mwRkeKLUsJxI/C/wPDg7zeB2UUaj4iI7Jgb0ZwtIlJUUQLowc65O4EEgHOuFYgXdVQiIpIvzdkiIkUWJYDeZGaDCFZxm9lHgXVFHZWIiORLc7aISJF1uogQ+DrwJ+AjZvY0MAQ4paijEhGRfGnOFhEpsihdOF4ys0OBcYABbwR9RUVEpMJozhYRKb6sAbSZnZTlorFmhnPu3iKNSUREcqQ5W0SkdDrKQB8f/BwKHAT8X/D3DOAxQJOxiEjl0JwtIlIiWQNo59w5AGb2ALCXc+6D4O+dgV+VZngiIhKF5mwRkdKJ0oVjdDgRB5YDY4s0HhER2TGas0VEiixKF47HzOx/gdvwbZFOBx4t6qhERCRfmrNFRIosSheOC4LFKdODs65zzt1X3GGJiEg+NGeLiBRflAx0uHpbC1BERKqA5mwRkeLqqI3dU865g81sA8ERrcKLAOec61v00YmISCSas0VESqejLhwHBz/7lG44IiKSD83ZIiKl02EXDjOLmdn8Ug1GRETypzlbRKQ0OgygnXMJYJ6ZjSrReEREJE+as0VESiPKIsKdgdfM7DlgU3imc+5TRRuViIjkS3O2iEiRRQmgv1v0UYiISKFozhYRKbIofaAfL8VARERkx2nOFhEpviiH8hYRERERkYACaBERERGRHGQNoM3s78HPn5ZuOCIikg/N2SIipdNRDfTOZnYo8Ckzux1/NKs2zrmXijoyERHJheZsEZES6SiA/i/gYmAkcEXaZQ44vFiDEhGRnGnOFhEpkY4O5X03cLeZXeKc+36uN2xm1wPHASuccxMzXN4PuAUYFYzjcufcDbnej4iI7PicLSIi0UVpY/d9M/sUcEhw1mPOuQci3PaNwLXAzVku/wqwwDl3vJkNAd4ws1udc9si3LaIiGSwA3O2iIhE1GkXDjP7MfA1YEFw+lpwXoecc08AqzvaBOhjZgb0DrZtjTJoERHJLN85W0REootyJMJjgcnOuQSAmd0EvAx8awfv+1rgT8D7QB/gM+F9pDOz84DzAEaNGrWDdysi0qUVa84WEZFA1D7Q/VN+71eg+/4kMBcYDkwGrjWzvpk2dM5d55yb4pybMmTIkALdvYhIl9U/5fdCzdkiIhKIkoH+MfCymT2Kb4t0CIXJZJwD/MQ554BFZrYE2BN4rgC3LSLSXRVrzhYRkUCURYS3mdljwFT8ZPwfzrkPC3Df7wJHAE+a2TBgHPB2AW5XRKTbKuKcLSIigSgZaJxzH+DrlSMzs9uAw4DBZrYMuBSoC25vDvB94EYze5XkJL8yl/sQEZHt5TNni4hIdJEC6Hw452Z2cvn7wCeKdf8iIiIiIsUQdRGhiIiIiIjQSQBtZjEzm1+qwYiISP40Z4uIlEaHAXTQR3Seman5sohIhdOcLSJSGlFqoHcGXjOz54BN4ZnOuU8VbVQiIpIvzdkiIkUWJYD+btFHISIihaI5W0SkyKL0gX7czHYF9nDO/c3MegE1xR+aiIjkSnO2iEjxddqFw8y+CNwN/CY4awRwfxHHJCIiedKcLSJSfFHa2H0F+BiwHsA59xYwtJiDEhGRvGnOFhEpsigB9Fbn3LbwDzOrBVzxhiQiIjtAc7aISJFFCaAfN7NvAz3N7EjgLuDPxR2WiIjkSXO2iEiRRQmgLwaagFeBfwMeBP6zmIMSEZG8ac4WESmyKF04EmZ2E/BP/G7AN5xz2h0oIlKB8p2zzWwccEfKWWOA/3LOXZmyzWHAH4ElwVn3Oue+V5iRi4hUj04DaDM7FpgDLAYM2M3M/s0591CxByciIrnJd852zr0BTA5uowb4F3Bfhk2fdM4dV9BBi4hUmSgHUvkFMMM5twjAzD4C/AVQAC0iUnkKMWcfASx2zr1ThPGJiFS9KDXQK8KJOPA2sKJI4xERkR1TiDn7dOC2LJcdaGbzzOwhM5uQ1whFRKpc1gy0mZ0U/PqamT0I3ImvpzsVeL4EYxMRkYgKNWebWQ/gU8C3Mlz8ErCrc26jmR2DP0DLHhlu4zzgPIBRo0bl8ChERKpDRyUcx6f8vhw4NPi9CRhQtBGJiEg+CjVnHw285Jxbnn6Bc259yu8PmtmvzWywc25l2nbXAdcBTJkyRYvORaTLyRpAO+fOKeVAREQkfwWcs2eSpXzDzHYCljvnnJlNw5cBrirQ/YqIVI0oXTh2A74KjE7d3jn3qeINS0RE8rEjc7aZ9QKOxPePDs87P7j+HOAU4Etm1gpsAU5XW1MR6Y6idOG4H/gd/khWiaKORkREdtT95DlnO+c2A4PSzpuT8vu1wLU7PkQRkeoWJYBuds5dXfSRiIhIIWjOFhEpsigB9FVmdinwV2BreKZz7qWijUpERPKlOVtEpMiiBNCTgLOAw0nuDnTB3yIiUlk0Z4uIFFmUAPpEYIxzbluxByMiIjtMc7aISJFFORLhPKB/kcchIiKFoTlbRKTIomSghwGvm9nztK+nUxs7EZHKozlbRKTIogTQlxZ9FCIiUiias0VEiqzTANo593gpBiIiIjtOc7aISPFFORLhBvwKboAeQB2wyTnXt5gDExGR3GnOFhEpvigZ6D6pf5vZp4FpxRqQiIjkT3O2iEjxRenC0Y5z7n7UT1REpCpozhYRKbwoJRwnpfwZA6aQ3D0oIiIVRHO2iEjxRenCcXzK763AUuCEooxGRER2lOZsEZEii1IDfU4pBiIiIjtOc7aISPFlDaDN7L86uJ5zzn2/COMREZE8aM4WESmdjjLQmzKc1wicCwwCNBmLiFQOzdkiIiWSNYB2zv0i/N3M+gBfA84Bbgd+ke16IiJSepqzRURKp8MaaDMbCHwdOBO4CdjPObemFAMTEZHcaM4WESmNjmqgfw6cBFwHTHLObSzZqEREJCeas0VESqejA6n8OzAc+E/gfTNbH5w2mNn60gxPREQi0pwtIlIiHdVA53yUQhERKQ/N2SIipaMJV0REREQkBwqgRURERERyoABaRERERCQHCqBFRERERHKgAFpEREREJAcKoEVEREREcqAAWkREREQkBwqgRURERERyoABaRERERCQHCqBFRERERHKgAFpEREREJAcKoEVEREREclC0ANrMrjezFWY2P8vl3zSzucFpvpnFzWxgscYjIiIiIlIIxcxA3wgcle1C59zPnXOTnXOTgW8BjzvnVhdxPCIiIiIiO6xoAbRz7gkgakA8E7itWGMRERERESmUstdAm1kvfKb6nnKPRURERESkM2UPoIHjgac7Kt8ws/PM7AUze6GpqamEQxMRERERaa8SAujT6aR8wzl3nXNuinNuypAhQ0o0LBERERGR7ZU1gDazfsChwB/LOQ4RERERkahqi3XDZnYbcBgw2MyWAZcCdQDOuTnBZicCf3XObSrWOERERERECqloAbRzbmaEbW7Et7sTEREREakKlVADLSIiIiJSNRRAi4iIiIjkQAG0iIiIiEgOFECLiIiIiORAAbSIiIiISA4UQIuIiIiI5EABtIiIiIhIDhRAi4iIiIjkQAG0iIiIiEgOFECLiIiIiORAAbSIiIiISA4UQIuIiIiI5EABtIiIiIhIDhRAi4iIiIjkQAG0iIiIiEgOFECLiIiIiORAAbSIiIiISA4UQIuIiIiI5EABtIiIiIhIDhRAi4iIiIjkQAG0iIiIiEgOFECLiAhmNs7M5qac1pvZ7LRtzMyuNrNFZvaKme1XpuGKiJRVbbkHICIi5eecewOYDGBmNcC/gPvSNjsa2CM4HQD8d/BTRKRbUQZaRETSHQEsds69k3b+CcDNzvsH0N/Mdi798EREyksBtIiIpDsduC3D+SOA91L+XhacJyLSrSiAFhGRNmbWA/gUcFemizOc5zLcxnlm9oKZvdDU1FToIYqIlJ0CaBERSXU08JJzbnmGy5YBu6T8PRJ4P30j59x1zrkpzrkpQ4YMKdIwRUTKRwG0iIikmknm8g2APwGfC7pxfBRY55z7oHRDExGpDOrCISIiAJhZL+BI4N9SzjsfwDk3B3gQOAZYBGwGzinDMEVEyk4BtIiIAOCc2wwMSjtvTsrvDvhKqcclIlJpVMIhIiIiIpIDBdAiIiIiIjlQAC0iIiIikgMF0CIiIiIiOVAALSIiIiKSAwXQIiIiIiI5UAAtIiIiIpIDBdAiIiIiIjlQAC0iIiIikgMF0CIiIiIiOVAALSIiIiKSAwXQIiIiIiI5UAAtIiIiIpIDBdAiIiIiIjlQAC0iIiIikgMF0CIiIiIiOVAALSIiIiKSAwXQIiIiIiI5UAAtIiIiIpIDBdAiIiIiIjlQAC0iIiIikgMF0CIiIiIiOVAALSIiIiKSAwXQIiIiIiI5KFoAbWbXm9kKM5vfwTaHmdlcM3vNzB4v1lhERERERAqlmBnoG4Gjsl1oZv2BXwOfcs5NAE4t4lhEommNQ0srxOOQSIBz5R6RiIiIVJjaYt2wc+4JMxvdwSZnAPc6594Ntl9RrLGIdMg5HzhvafbBsxk4wAAcxGIQq4GamD/FYn6bmAU/VQklIiLSnRQtgI5gLFBnZo8BfYCrnHM3Z9rQzM4DzgMYNWpUyQYoXZxzPmDe3OwzzjUx6FG3/TYOn42Ox5MZaQdYSnY6VuMD6dogwI7F2gfYZqV6VCIiIlJk5Qyga4H9gSOAnsCzZvYP59yb6Rs6564DrgOYMmWK9qnLjnEOtrX4jHPcZQ6cQ2ZBJrqDANg5f0rEYWtqkO381RxBMJ0eYMeS54fBtoiIiFS8cgbQy4CVzrlNwCYzewLYB9gugBYpiEQiCJy3+t9ra6BHzY7frkUIfsMguzUOrjWZ2TbABdeN4YPqsEykpmb7AFtBtoiISNmVM4D+I3CtmdUCPYADgF+WcTzSVSUSsHWbD5zBB6a1BQicc5FPkJ1wyeuGwbbZ9gF2ek22gmwREZGiKloAbWa3AYcBg81sGXApUAfgnJvjnFtoZg8DrwAJ4H+cc1lb3onkLB6H5m3QvBUwqKup7OAylyC7pdVn053bftGjhVnslIWP6QF2JT8PIiIiFa6YXThmRtjm58DPizUG6aZa4z5o3rrNB4p1tdEC03UbYf1GqK2FHrW+Ljo8VUqnjTD47Wg4zvnsdbwFtqWWiqDOIiIiIgVQzhIOkcJqbfVlGttafCAYJXBOOFizDpav8tnqWMyXfKSrrYG6uu0D6/BUW0HZbTOo6WzRI+osIiIikicF0FLdnAsC52ZoSfgAL1tHjVTxOKxcCytW+3KInvUwejgM6Osv39YKLS0+GE89bW2BDZu3D7LNksF1XXqAXVuBWWxQZxEREZH8KICW6tTWim5rSg/nCC/nllZoWg1NayCegN69YNTO0LexfbBXX+dP2e47nkgG1S1BYB3WJW/Y5H9PV1vTPrCuq63sLLY6i4hIpQnnnXC+CdeB1GivmJSWAmipLs4lO2q0taKLkHHeug2Wr4ZVa/1t9OsDOw2Cxp65j8HM329tDfRqyLxNwqVksFuTgfa2Fl+fvX5jsstG6u2mZ63bZbRrKyeLDeosIiL5yxQIt+35cuAS/mfq7y5Bcs+ZS/4e7hGrxGSEdFkKoKU6JBI+y7ul2U+wtTVQGyFw3tzs65vXrPdz7cB+MGwQNNQXd7wxg/oe/pRJehY7/bR+a7QsdnqwXVNhHxw5BdnqLCJSdfINhJ0l39+p5WTh+z/8ck3we00M6CDL7BxsC7outZXU9fBzZiUlHqTLUAAtlS2egK1b/QI/iJZZcA42boYPV/lyilgMhg70pyjZ6lKIlMVOJMtCtqVls7ds9V1Dwtrk1NvNFFinlo1U2odJavCbrT13ITqLKMgWya4ggTAks8J5BsL5MvMdlML7bonD1k3+77qgJK8S5z+pWgqgpTLFU1rRYdED57UbfMZ5c7O/zvAhMHhA6Q+cUgixWIQsdrx9YJ16WtfsSyfS1dVuX3+dGnRXWhYb1FlEJKpcAuFEIrisggLhQggTFNQkF0NvavUPrTaYV+uCuU4kTwqgpbK0taJr9ZN0bZRWdAlYvc7XOG/d5jMNu+wEg/p17WxDmHGprYVeWbZJJLJ0FGnNnsVOrSWsy1AqUlfnt6kk6iwiXU2pAuFYBQfChWDmA+UwVk4kYFOz/2IdSwumu+pzIEWhAFrKL1xktqXZlyzEYtGOGhiP+24aK1b76/dsgN1GQP8++U2ECdc+e5m+678aJ9dYDBp6+FMm4XPf1lEkLZO9uYMsdrZuIj3qKnNF/I52FiGoyw47i9TXZ39eRaD9l7RMwXBngTCk7EHp5oFwocRi0CNIrCQSPpGweasWIUrOFEBL+YSHpN7cnNKKLkKNcksLrFjjg+dEAvo0+oWBfXrlGTgnfMAUi/l65JqYr71OBKfWoCwAl8zupHaQqOZOEeGRGutqs3ckCbPYqYF1mNHevMVftl0WO7Z9DXZ6NrsSn6+oQXY8Dq0tgALobiFyIJyABAqEq0W4hwm0CFFypgBaSq+th3MzxF30wLl5m69vXr3O30b/oBVdrzxa0YEPguIJv+uudy8/hvBDK9Nwwg/FhEt20YgnfElAPJH8UDXXPsDublns1DKRlohZ7PQSkfq6yq1PrNb/o+QYCKe819sFwtCuc4QC4a4h6yLEIMmgRYiSRgG0lE4ikewg0dbDOUKQtGmLD5zXbvCT3KB+MHRQfrvPw8A3kfBlIo2N0eqsITlxdtQpIvVDOLyfMNCOB23pum0WuyXzgsfNW/z/NmMWu4PDp0c5VLt0TYUIhCHICqcHwin19AqEuyctQpQIFEBL8SUSyYOfgJ90OuuK4ZxvQbd8lT90dk3Ml2kMHegnrly11bU6H3z17JXMNhRK+OEbA6jZPou93SKgMIsdTwbaXTqLXZ+9/3ZbH+gM3US2tfhFP/EMWewetRkOnZ4SdOsDrnq1tvosoAJhKSctQpQsFEBL8cTjvuyieSt+N1jEVnRr1vvAectWPzGNGAqD++cXDKUGzg3Boq9yBVVR+x07lxIwpNRhJ7p6Fjso38iWxQ4PPNPSsn02e9MW/7pJF5YH1dVlzmYri125mrf6gyfFYgqEpXJoEaIEFEBL4bWm9HAOd+9HaUW3aq1vRbetxX+rH7UzDOybX81ZmNEF6Fnvb68aatfasthZxrrDWexYSq1mlamJ+f9lzw6y2G1dRDK07tu0OfmaSJWatc6Uza6pgtdNV1UT014EqVxahNitKYCWwmnr4dziv41HCZxbg1Z0TUErul4NMHIo9Mu3FV1aR40edV1r8srlqH0uWxY7KIVIz2JX+xH7Uo/CmE08nqWjSCts3ALbOshitwuqa6BvL+jdWLzHIyLVQ4sQux0F0LJjwtrVLc3QkkjuxurMthbfv3nlWh/U9Q1a0fXOsxVdRx01upu2o/btQBY74VIy2Ja83dTa0mp8fmtqoGdNxCx2hkWPG1Oy2MOHwKABpRu7iFQHLULsFhRAS37aWtFtTenhHOHltGWrr29es85PJgP6+sC5V0N+Y2jrqFELjb1UexbFDmexgy8r4YFFjOTCre6Sxd6y1WeUREQ6okWIXZYCaMmNc8mOGm2t6CIEEhs3+8B53UY/SQwe4Dtq1OfZiq417oO3+lpoKEJHje4unyx2azxZIhKP+wNKdNksdn3nnWRERNJpEWKXoahDokkk/Ir4Lc0+WKqtgdpOAmfnYP1GHzhv3OIDj50Gw5AB+beiawmOCFjujhrdXaYsdvoXqUxZ7PSDz3TFLLaISBRahFjVFEBLx+IJ2LrVt6NzRG9FtzpoRdcctKIbOQwG9c+vo0FqR41eDX7XuSaUyhc1ix1msBNpddhdOYstIpJKixCrjgJoySye0ooOi7ZLKR60oluxyi+8aqiHXXeGgf3yXBgYBFFdtaNGd9fuwDNZhIF1GGgriy0iXZ0WIVYFBdDSXmoruvAbcaet6FphxRrfji4e9wfC2GUn6NtbHTVkx4QLcLLJKYttbQerSwbvCrBFpIJpEWLFUgAtyQVgW5p9C69YLFoP560tPtu8aq0PYPr1Traiy2cM8bi/HXXUkKh2NIsdjycPCx1msGH7DLZehyJSCbQIsWIogO7Owp63m5tTWtFF6KixpdnXN68ODjoxsJ8PnLP11u1sDO06ajSou4EUVkGy2C4IsINAO+H0OhWR8tIixLJSAN0dtfVwboa4ixY4O+c7aSxfCes3+W+7Qwf6U5SgO9PttQRHxGvooY4aUj75ZrH1oSQilUKLEEtOAXR3kkgkD37S1sO5k6DVOd+7efkq2LTFX2fnwTBkYH4ZuPBQ22bqqCHVo7MstohIpdAixJJQAN0dJBLJg5+Af9N0FvwmnD9a4Ier/HV71MEuQSu6fALesOY0Zn6RYX0P1WiJiIgUkxYhFo0C6K4sHvf9m5u34nfjRGlFF4eVa2HFal8f3bMeRg/3h9ze0Y4afXpFW5woIiKSSTzuP5taWn271NZWHwQ29szvAF3djRYhFoxebV1Ra9jDucUveIoStLa0+qB55Rof8PbuBaN2hr6Nub+R2nXUqFNHDRER6Vi4qL2l1Zcahr+3tCSD5ZZWH/Rl06POlwY29vSnXg0qEeyIFiHuEAXQXUlqD+dYxIzz1m2+vnnVOv8G6t/Hd9Ro7Jn7/YcdNXD+jddQr04FIlXEzPoD/wNMxFdMft4592zK5YcBfwSWBGfd65z7XmlHKVUlTKiEAfB2QXHwe2t8++saPglTV+v3hvZt9EFyXW3yVFvj97Ru2uJPm5th7YbkbfSsTwmoe/oF60rmbE+LEHOmALraORcEzs3QkkjuhunM5qAV3Zr1/o0zsB8MG+iD3nzG0BL3k11DD787TYsTRKrRVcDDzrlTzKwHkKmp+5POueNKPC6pRInE9oFwpixy2F89VW1NMgjuFZRf9AgD47pkcBwl2O1d2/74Ay2tKQH1Ft9ydeVaf1lNzN9faqZapR/taRFiJHrVVKu2VnRbU3o4d/LvdA42bPaB84ZN/pvksEEwZEB+rejCjhrhobbVUUOkaplZX+AQ4GwA59w2YFs5xyRlEiZmUksn0kspWlp8uV+6mCUD4DA4Tc8aFzuTWVfr96b275N8PM3bfDAdBtbLVyW3V+lHdlqEmJUC6GrjXLKjRlsrugg9nNdu8BPG5mZ/neFDYPCA/Eoswo4aNebrm+t1qG2RLmAM0ATcYGb7AC8CX3PObUrb7kAzmwe8D3zDOfdaiccp+Qr7macHxZmyyJmEwW99nc/49kgNioMguSZWeZ8HZr6Uo2e97yQF/nnY3Nw+U92u9KMBGhtU+pFOixDbKICuFomEXxS4pdlPgrU1UNtJ4JxIwOp1sHy1D7rr62DUTr5cI59v163xZNCujhoiXU0tsB/wVefcP83sKuBi4JKUbV4CdnXObTSzY4D7gT3Sb8jMzgPOAxg1alSxxy3gF223pi/Ay7AgL5GhnKImlgyCG+pTyinSMsddab6PxfyXgFxLPxobgp8q/ejuixC7+X+/CsQTsHWr3/3kiN6KrmmN76rRGve7o3Yb4Xdn7UhHjR510KCOGiJd1DJgmXPun8Hfd+MD6DbOufUpvz9oZr82s8HOuZVp210HXAcwZcqUDBGbRLbdIrwsWeOMi/AsGfz2rId+vdNKKVKyxhKt9OPDtNKPxpR66u5c+tENFyEqgK5U8bAV3TbAogWtLS2wYo0PnhMJ6NMIOw3y37DzCZzDjhr1PaBeHTVEujLn3Idm9p6ZjXPOvQEcASxI3cbMdgKWO+ecmU3DHwB9VYabkyjayik6yhp3tgivLpkNTQ2Ke3TPutSCylT6EU/4PcFhQL1ps1+MH0ot/eiuBw3rJosQFUBXmtRWdOE3us7efM1bfZnG6qAV3YC+vqNGrzxa0SWCbAcEHTXqlZ0Q6T6+CtwadOB4GzjHzM4HcM7NAU4BvmRmrcAW4HTnMkV33VxqT+OMC/ByWIS33QK8MJPXzYKySlGTqfSjxS+s66z0I6yn7k6lH114EWI3+i9WsDDbu6XZT6yxWLR6s3Al8doNfttB/XxXjfoeuY8hvaNGD3XUEOlunHNzgSlpZ89Jufxa4NpSjqmitFuE18ECvE4X4fVIriNJzxrHKnARnnSsrg76121f+hEG1Cr9SOpCixAVQJdTmKXY3JzSii5CR40Nm/ybceNmf51hg2DowPy+1cYTyfvu3cvffxW8cGXHtbS0sGzZMpqbm8s9lC6poaGBkSNHUleXR4tIKb2E67yUosNFeCkH/EgNisPAOMreROkaUks/6O/PSy/92JhW+tGroX2mujuUflT5IkQF0OXQ1sO5GeIueuC8Zr3POG/Z6iflEUNhcP/c64ic82/mhPP1SH0bNbl3Q8uWLaNPnz6MHj0a0/++oJxzrFq1imXLlrHbbruVezjdW7iHLzUIzrQgL+dFeHXJNm4V+gEvFaSz0o9NW3wZ5so1ye27U+lHFS5C7ML/jQqUSCQPftLWw7mT4DeRgFVrfY3zthb/rXTXnWFAv9xr4NI7avSsr8q6IymM5uZmBc9FYmYMGjSIpqamcg+la4snMnSmSM8a57IILy1rrPlRiinf0o+w7KOrln5UySJEBdClkEgkD34C/p/eWUeL1qAVXVPQiq6xJ4wc5jMgeXXUCGry6nv4Pp9VvvpVCkPBc/Houd0B4V665q1+L127rHFKwJxxEV4sGQT37pkWFKf8rv+PVJpspR+bm5MBdXcr/eh0EWJ92Q7gowC6mOJx/22yeSt+N0SEbMa2Ft+/eeUanynu2wjDBvsPglxfHO06atSro4aUxIcffsjs2bN5/vnnqa+vZ/To0Vx55ZWMHTu23EOTavHO+/DOB9ufHwa/DfW+TWf6ArwKyEqJFFRNzC847ZNS+rGtJQiomzso/Ug56EtXKv3YbhFiM2ymLIsQu9CzWkFawx7OLWBEy3Zs2errm1ev838P7OsXB/ZsyP3+1VFDysQ5x4knnsisWbO4/fbbAZg7dy7Lly9XAC3RDezvs9CxmG+nWVc9K/NFii4MFPv39X8752OO1FZ6H65sv31XLP0o8yLELvAMVpDWVt8hY90Gv4uxrqbz4HnjZlj8Hix82++WGTIAJnwERo/IPXiOx/03U4dfqNC/j8/UdIU3ilSFRx99lLq6Os4///y28yZPnszBBx/MN7/5TSZOnMikSZO44447AHjsscc49NBDOe200xg7diwXX3wxt956K9OmTWPSpEksXrwYgLPPPpvzzz+f6dOnM3bsWB544AEAli5dyvTp09lvv/3Yb7/9eOaZZ9pu97DDDuOUU05hzz335Mwzz8Q5x9///ndOPPHEtrE98sgjnHTSSaV6eiSqvo1+LuzXO5lBU/AskpmZjxcG9/drpMaPgX3GwR6jfLOBXg0+1li2HN58B+a9Aa8vgfc+hFXrfNBZ7e3cw0WIYQa6Je7jsTUbYP0mX0abyFDytQOUgd5RYX3xlmZoSSR3I3R2nfUb/eKATVv8LsedBsPQAclVqLncfzzhXxh1NdCojhpSPvPnz2f//fff7vx7772XuXPnMm/ePFauXMnUqVM55JBDAJg3bx4LFy5k4MCBjBkzhi984Qs899xzXHXVVVxzzTVceeWVgA+WH3/8cRYvXsyMGTNYtGgRQ4cO5ZFHHqGhoYG33nqLmTNn8sILLwDw8ssv89prrzF8+HA+9rGP8fTTT3P44Yfzla98haamJoYMGcINN9zAOeecU7LnR0SkJGpivsypT2PyvPTSj1Vr/VqrcPvU0o/GnrnHI5Ui2yLEWCy5YLMAqvTZqQBtrei2pvRw7uTpdM6XaCxf7b/x9aj1CwMH9c+9NjlszeTCjhq9qvfFLl3eU089xcyZM6mpqWHYsGEceuihPP/88/Tt25epU6ey8847A/CRj3yET3ziEwBMmjSJRx99tO02TjvtNGKxGHvssQdjxozh9ddfZ7fdduOCCy5g7ty51NTU8Oabb7ZtP23aNEaOHAn4LPjSpUs5+OCDOeuss7jllls455xzePbZZ7n55ptL+EyIiJRJ1tKPIKjuqPSjsadf3Fhte7TDRYixlDVhBaKIK1fOJTtqtLWi6yTjHA9a0a1Y5VeSN9TDrsN9nXNeHTWCwLmh3tcHatGMVIgJEyZw9913b3d+R0d7rq+vb/s9Fou1/R2LxWgNu8ewfVcLM+OXv/wlw4YNY968eSQSCRoakmVPqbdbU1PTdlvnnHMOxx9/PA0NDZx66qnU6ouniHRHYelHzwYYHJwXTySz1JvTun4YftuwL3VjQ9fr+pGDKvsqUUbhISfXrPff1sJSjY6+jbW2wvtNMH+Rrz3qUQcfGQnjd/OH3c7lRZdwyWb/DT1gQF//IlbwLBXk8MMPZ+vWrfz2t79tO+/5559nwIAB3HHHHcTjcZqamnjiiSeYNm1aTrd91113kUgkWLx4MW+//Tbjxo1j3bp17LzzzsRiMX7/+98Tj5BhGD58OMOHD+cHP/gBZ599dq4PUUSk6wpLP3YaBGNGwqQ9YOLusNsIGDrIxzyr1vpOOQvehlfehEXv+lhn3cZky9xuQKmXzsQTsHWrb0fniNaKbuu2oBXdWp8p7tfbd9RIPQJRVOqoIVXEzLjvvvuYPXs2P/nJT2hoaGhrY7dx40b22WcfzIyf/exn7LTTTrz++uuRb3vcuHEceuihLF++nDlz5tDQ0MCXv/xlTj75ZO666y5mzJhBY2Nj5zcEnHnmmTQ1NbHXXnvl+1BFRLqHsPRjQJbSj01bYH1K6Ud9XUo9dZWWfkRgHe1arURTpkxx4SKhooqHrei2ARathdLmZt+Kbs16v6tjQL+gFV19x9fLdv/xhM8w96z3L95uuptEimPhwoWMHz++3MOI5Oyzz+a4447jlFNOKcjtXXDBBey7776ce+65Bbm9bDI9x2b2onNuSlHvuILkPWdv3OSTB9rLJlL52ko/Uso/WoJs9HalHz19kF3KmCY8EvOAfjlfNducrQx0utZWX6qxrSXZFqWjf7JzvkZo+SrfKiUWg6ED/amz2uhMt9XWUaMWGnup96lIge2///40Njbyi1/8otxDEZEd4VxwwpdV6rOyfLJ1/di0xScXt+v6UZM80EvY+aPK1qMUbbRmdj1wHLDCOTcxw+WHAX8ElgRn3euc+16xxtOhcGHelmb/jSk8FGxngfO6Db4V3eZmH+juPMT3Lu3sMN3Z7t/hO3Ooo4ZIOzfeeGPBbuvFF18s2G2JSBGFAXLCJfsUO/xhnJ35oLkm5jOc8YTfzhxgwYF4DCym4LpcMpV+bNnaPlNdxaUfxYzSbgSuBTrqEfWkc+64Io6hYy5YmLe5OaUVXSdZ40QCVq/3Geet2/z2uwSt6HL9Rzvnm32jjhoiItLNdBog4z8T62r8z5qUYDgW2z4ods5/RifCvblxaE34z3fn/I274Dox/PUtCMAVYBefWfJIiIMH+PPi8WSGelNzWtcP80F0OUs/OlC0ANo594SZjS7W7e+Qth7OzRB30QLneNwvClyx2gfdPeth9HD/zSrXf2Yi4d/c4F9I9VoYKCIiXUyhA+TOhD1/a4D0j/TU4Do8AFq4SD8elIHgkvcZjsOUvS6qmprspR9h+UeFln6Uu07gQDObB7wPfMM591pR7y2RSB78pK2HcycZ35bWoKPGGh/09unlD5XZpzG/wFkdNUREpCvIJ0C2oPQinwB5R6QG19A+adb2OFKy1/HWIHvd6h9LWBoS3lZMwXXRVEnpRzkD6JeAXZ1zG83sGOB+YI9MG5rZecB5AKNGjcrv3pq3+m8y4N9EndUpb93myzRWrfP/vP59fEeNxp6533dqR43evdRRQ0REKl96gBw27UoNkGMVEiDvCEvJercJumelPgfh3uN43J9agxLMsOa67XYUXBdUp6Uf6Qd8SSn9CMs/OjtSdB7Klv50zq13zm0Mfn8QqDOzwVm2vc45N8U5N2XIkCH53eGWYKFfXa1/cWezeQu8vQxeW+yD54H9YK8xvqF4LsFzuDBwW4t/U/bt7ftBd+Oj9oikq6mpYfLkyUycOJFTTz2VzZs388ILL3DhhRd2eL2lS5cyceJ2a5O38+abb3LMMcew++67M378eE477TSWL1+edfvHHnuM444r37IMkZIKs67xuN/bui04tbT4n/E4YP5zs2eD3wPbtxH69fFH0h3Qz3+u9e6VbLdaV+uD6a7yORcG1uFRh3vW+8fbr4/PkPbv6z/f+zb6AK8uSJDFg8//ba3+uW1pCcpFEslsveQvLP3YaTB8ZBd/sJfwgC9DBiQP+LL0fViwGF5dBP9aUdAhlC0DbWY7Acudc87MpuGD+VVlGYxzsCFoRbchaEU3bBAMHeDfDLneVthRo74WGhpz78oh0k307NmTuXPnAv7gJnPmzOHrX/86U6bseJvk5uZmjj32WK644gqOP/54AB599FGampoYNmzYDt++SMVra/MWZpGD8y2l9Vss5mtIqzmDXC5tGWeAmu3rrhOJ5HMfj6fUXKtjSMGZdVz6sXFLwWOxomWgzew24FlgnJktM7Nzzex8Mzs/2OQUYH5QA301cLor9VFdnPMp/zeW+kNRbmmG4UNg0u4wYmhuwbNzwTfNuM8y9+8NvRU8i0Q1ffp0Fi1a1C4LfNlll/H5z3+eww47jDFjxnD11Vdvd723336bfffdl+eff77d+X/4wx848MAD24JngBkzZjBx4kSWLl3K9OnT2W+//dhvv/145pln2rZZv349J554InvttRfnn38+iUSiSI9YZAdlyiCH2c5tLUEGGR8gb5dB7hdkkPt07QxyOcViQQ14re+01aunz1YP6Osz+P36+Cxq714+bojFfHDdkrIXIPyfxuPta82lc2Hpx+ABfu3asEEFvfliduGY2cnl1+Lb3JVeIuHLM1asgq0t/oU7aic/oeRaeB5+owz/UeqoIdVo0bu+hqyQeveC3aOtWWhtbeWhhx7iqKOO2u6y119/nUcffZQNGzYwbtw4vvSlL7Vd9sYbb3D66adzww03MHny5HbXmz9/Pvvvv3/G+xs6dCiPPPIIDQ0NvPXWW8ycOZPwaHnPPfccCxYsYNddd+Woo47i3nvvLdgREEVykimDbODbsaEMcjVLX9SYKmvHkLAln6GOIeVX7i4cpdUa9zUxK1b733s1wG5D/QLBXF908WAxQcyC3oSqbRbJ1ZYtW9oC3+nTp3Puuee2ywYDHHvssdTX11NfX8/QoUPbapibmpo44YQTuOeee5gwYUJO99vS0sIFF1zA3Llzqamp4c0332y7bNq0aYwZMwaAmTNn8tRTTymAluJQgCyZ7EjHEILgWh1Diq57BNBbt8EHK33WOZEICs8H+QxZzoFzakeNnuqoIV1DxExxoaXWQGdTX1/f9ntNTQ2tra0A9OvXj1122YWnn346YwA9YcIEHn/88Yy3+ctf/pJhw4Yxb948EokEDQ0NbZdZ2vs5/W+RyCIHyDVQU6sAWTqXb8eQ8GAyqdlrBdc7pHsE0AsWw/pNPtO802Cfec6Fc8n6o7o6aOzlJzy94ETKpkePHtx///188pOfpHfv3pxxxhntLj/jjDP48Y9/zF/+8heOPfZYAB5++GFGjBjBunXrGDlyJLFYjJtuuol4WCuKL+FYsmQJu+66K3fccQfnnXdeSR+XVJFsAXJ4UI6OAuTtgiCRHZS+qDFdW1lIIrkXPQyuE8GL1wgWNaa9VmU73SOA3n2U7xPYqyG3F0K7jhp1fhGAFgWKVIzGxkYeeOABjjzySBobGznhhBPaLuvZsycPPPAAs2fPZvbs2dTV1bH33ntz1VVX8eUvf5mTTz6Zu+66ixkzZtDYmDwK1oEHHsjFF1/Mq6++yiGHHMKJJ55YjocmlSCXADlWk0ysKECWShSL5dgxJJEMrrfrGKK9JFbqxhc7asqUKS5c7JOTNeuiryx2znfTAOjZw9c31yhwlq5l4cKFjB8/vtzD6NIyPcdm9qJzbsf79FWJvOfsjZt8AqOYc29nAbKZzxrXxJK1yAqQpbtJrbkOu760JiARZq7D0hD8+6cSFzWGlQQD+uV81WxzdvfIQEeVfqhtddQQEaleUQPk2hoFyCLZdNoxxCUz2O06hrR26Y4hCqAhWQtUY76+uV4LA0VEKl5HAXK4yzmmAFmkaMx87FQTvJdy7hiSdltVtKixewfQrUGdT22NbzBfV1sV/zQRkW7B0b420wWZLAXIIpUvl44hbUdpzNQxhPZHaayQOK37BdCpHTV61EGDOmqIiFQci4ELdgGHAXJN8FMBskh1K2jHECvLYdC7VwAd9I+lRw911BARqWS9GvxBqkSk+yl0x5AiBNbdJ4CuCVoM1dcna3VERKQyaa+giGQS7nmqwZfepuqoY0iBO/p0n0iyb2/o1VPBs0gFcM5x8MEH89BDD7Wdd+edd3LUUUdtt+1jjz3GcccdB8CNN97IBRdcUNCxPPfccxxyyCGMGzeOPffcky984Qts3rw56/bFGIOIiBRA2DGkrta3IO7VE/o2Qv++Pg4soO6TgRaRimFmzJkzh1NPPZUZM2YQj8f5zne+w8MPP1zScSxfvpxTTz2V22+/nQMPPBDnHPfccw8bNmygV69eJR2LiIhUD6VjRaQsJk6cyPHHH89Pf/pTvvvd7/LZz36WH/7wh0ydOpV9992XP/7xjx1e/5133uGII45g77335ogjjuDdd98lHo8zZswYnHOsXbuWWCzGE088AcD06dNZtGhRu9v41a9+xaxZszjwwAMBH9ifcsopDBs2jOeee46DDjqIfffdl4MOOog33nij7XrvvfceRx11FOPGjeO73/1ugZ8ZERGpdMpAiwgwG5hb4NucDFzZ4RaXXnop++23Hz169OC4447j8MMP5/rrr2ft2rVMmzaNj3/841mve8EFF/C5z32OWbNmcf3113PhhRdy//33M3bsWBYsWMCSJUvYf//9efLJJznggANYtmwZu+++e7vbmD9/PrNmzcp4+3vuuSdPPPEEtbW1/O1vf+Pb3/4299xzD+DLPubPn0+vXr2YOnUqxx57LFOmdJuDC4qIdHsKoEWkbBobG/nMZz5D7969ufPOO/nzn//M5ZdfDkBzczPvvvtu1us+++yz3HvvvQCcddZZXHTRRYDPND/xxBMsWbKEb33rW/z2t7/l0EMPZerUqTmNbd26dcyaNYu33noLM6OlpaXtsiOPPJJBgwYBcNJJJ/HUU08pgBYR6UYUQIsInWWKiykWixGLxdrqj8eNG9fu8uXLl0e6HQu6NkyfPp05c+bw/vvv873vfY+f//znPPbYYxxyyCHbXWfChAm8+OKLnHDCCdtddskllzBjxgzuu+8+li5dymGHHbbdfWX7W0REujbVQItIRfjkJz/JNddcg3MOgJdffrnD7Q866CBuv/12AG699VYOPvhgAA444ACeeeYZYrEYDQ0NTJ48md/85jdMnz59u9u44IILuOmmm/jnP//Zdt4tt9zChx9+yLp16xgxYgTgO2+keuSRR1i9ejVbtmzh/vvv52Mf+1jej1tERKqPAmgRqQiXXHIJLS0t7L333kycOJFLLrmkw+2vvvpqbrjhBvbee29+//vfc9VVVwFQX1/PLrvswkc/+lHAZ6Q3bNjApEmTtruNYcOGcfvtt/ONb3yDcePGMX78eJ588kn69u3LRRddxLe+9S0+9rGPEY/H213v4IMP5qyzzmLy5MmcfPLJKt8QEelmLMz2VIspU6a4F154odzDEKl6CxcuZPz48eUeRpeW6Tk2sxedc90m4tacLSLVLNucrQy0iIiIiEgOFECLiIiIiORAAbSIiIiISA4UQIt0Y9W2BqKa6LkVEem6FECLdFMNDQ2sWrVKgV4ROOdYtWoVDQ0N5R6KiIgUgQ6kItJNjRw5kmXLltHU1FTuoXRJDQ0NjBw5stzDEBGRIlAALdJN1dXVsdtuu5V7GCIiIlVHJRwiIiIiIjlQAC0iIiIikgMF0CIiIiIiOai6Q3mbWRPwTh5XHQysLPBwpOvR60Siyve1sqtzbkihB1OpNGdLCei1IlEUdM6uugA6X2b2QqZjmYuk0utEotJrpbj0/EpUeq1IFIV+naiEQ0REREQkBwqgRURERERy0J0C6OvKPQCpCnqdSFR6rRSXnl+JSq8ViaKgr5NuUwMtIiIiIlII3SkDLSIiIiKyw6o2gDazXczsUTNbaGavmdnXgvMHmtkjZvZW8HNAcP6gYPuNZnZt2m31MLPrzOxNM3vdzE4ux2OSwivU68TM+pjZ3JTTSjO7skwPS4qgwHPKTDN71cxeMbOHzWxwOR5TJdGcLVFp3pYoyj1nV20Jh5ntDOzsnHvJzPoALwKfBs4GVjvnfmJmFwMDnHP/YWaNwL7ARGCic+6ClNv6LlDjnPtPM4sBA51z6inZBRTydZJ2uy8C/88590QpHocUX6FeK2ZWC7wP7OWcW2lmPwM2O+cuK/mDqiCasyUqzdsSRbnn7KrNQDvnPnDOvRT8vgFYCIwATgBuCja7Cf9k4pzb5Jx7CmjOcHOfB34cbJfQRNx1FPh1AoCZ7QEMBZ4s3sil1Ar4WrHg1GhmBvTFT87dmuZsiUrztkRR7jm7agPoVGY2Gv+t4p/AMOfcB+CfXPwbpqPr9g9+/b6ZvWRmd5nZsCIOV8pkR14naWYCd7hq3X0jndqR14pzrgX4EvAqQVYD+F0xx1ttNGdLVJq3JYpyzNlVH0CbWW/gHmC2c259HjdRC4wEnnbO7Qc8C1xewCFKBSjA6yTV6cBtOz4qqUQ7+loxszr8ZLwvMBx4BfhWQQdZxTRnS1SatyWKcs3ZVR1ABw/6HuBW59y9wdnLg7qYsD5mRSc3swrYDNwX/H0XsF8RhitlUqDXSXhb+wC1zrkXizJYKasCvVYmAzjnFgfZrjuBg4oz4uqiOVui0rwtUZRzzq7aADqoU/kdsNA5d0XKRX8CZgW/zwL+2NHtBE/Wn4HDgrOOABYUdLBSNoV6naSYibIYXVIBXyv/AvYysyHB30fia/O6Nc3ZEpXmbYmi3HN2NXfhOBi/GOBVIBGc/W18/cudwCjgXeBU59zq4DpL8cXhPYC1wCeccwvMbFfg90B/oAk4xzn3bqkeixRPIV8nwWVvA8c4514v3aOQUijwnHI+8DWgBXgHONs5t6pkD6YCac6WqDRvSxTlnrOrNoAWERERESmHqi3hEBEREREpBwXQIiIiIiI5UAAtIiIiIpIDBdAiIiIiIjlQAC0iIiIikgMF0NItmPeUmR2dct5pZvZwOcclIiLb05wtlU5t7KTbMLOJ+KOW7QvUAHOBo5xzi/O4rRrnXLywIxQRkZDmbKlkCqClWzGznwGbgMbg567AJKAWuMw590czG40/SENjcLULnHPPmNlhwKXAB8Bk59xepR29iEj3ojlbKpUCaOlWzKwReAnYBjwAvOacu8XM+gPP4TMdDkg455rNbA/gNufclGAy/gsw0Tm3pBzjFxHpTjRnS6WqLfcARErJObfJzO4ANgKnAceb2TeCixvwh/58H7jWzCYDcWBsyk08p4lYRKQ0NGdLpVIALd1RIjgZcLJz7o3UC83sMmA5sA9+oW1zysWbSjRGERHxNGdLxVEXDunO/hf4qpkZgJntG5zfD/jAOZcAzsIvXhERkfLSnC0VQwG0dGffB+qAV8xsfvA3wK+BWWb2D/yuQGUwRETKT3O2VAwtIhQRERERyYEy0CIiIiIiOVAALSIiIiKSAwXQIiIiIiI5UAAtIiIiIpIDBdAiIiIiIjlQAC0iIiIikgMF0CIiIiIiOVAALSIiIiKSg/8PCn1+gsfVVWMAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "retention_df = data.groupby(['Company',data['Date of Travel'].dt.year,'Customer ID'])[['Payment_Mode']].count().reset_index()\n",
+ "retention_df.columns = ['Company','Year','Customer ID', 'Number of rides']\n",
+ "display(retention_df)\n",
+ "\n",
+ "sporadic_customers = retention_df[retention_df['Number of rides'] <= 5]\n",
+ "loyal_customers = retention_df[retention_df['Number of rides'] > 5]\n",
+ "\n",
+ "fig, ax = plt.subplots(1,2)\n",
+ "\n",
+ "sns.lineplot(x = 'Year', y = 'Number of rides', data = sporadic_customers, hue = 'Company', palette = ['pink', 'yellow'], ax = ax[0])\n",
+ "sns.lineplot(x = 'Year', y = 'Number of rides', data = loyal_customers, hue = 'Company', palette = ['pink', 'yellow'], ax = ax[1])\n",
+ "ax[0].set_title('Sporadic Customers (5 rides or less)')\n",
+ "ax[1].set_title('Loyal Custumers (more than 5 rides)')\n",
+ "ax[0].set_xticks(sporadic_customers['Year'].unique())\n",
+ "ax[1].set_xticks(sporadic_customers['Year'].unique())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fd9167c8",
+ "metadata": {},
+ "source": [
+ "We categories the customers as sporadics and loyal based on the number of rides they take in each company every year (5 rides or less is consider a sporadic customer in our analysis), and we found that Yellow Cab is doing a better job than Pink Cab in customer retention."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "89c5e747",
+ "metadata": {},
+ "source": [
+ "## Recomendation\n",
+ "\n",
+ "Based on the questions previously analyzed and answered, we can conclude that **Yellow Cab** is a better option to invest than Pink Cab.\n",
+ "\n",
+ "**Profit through the years:** Yellow Cab has earned **8.3** times the earnings of Pink Cab in the period from 2016 to 2018.\n",
+ "\n",
+ "**User income profile:** In each economic group (Poor or near-poor, Lower-middle class, Middle class, Upper-middle class, Rich) Yellow Cab has more users than Pink Cab.\n",
+ "\n",
+ "**Users by city:** In the Top 5 cities with the largest number of users Yellow Cab has more presence than Pink Cab.\n",
+ "\n",
+ "**Volume of rides:** Yellow Cab has had **3.25** more trips than Pink Cab in the period from 2016 to 2018.\n",
+ "\n",
+ "**Customer retention:** We categories the customers as sporadics and loyal based on the number of rides they take in each company every year (5 rides or less is consider a sporadic customer in our analysis), and we found that Yellow Cab is doing a better job than Pink Cab in customer retention."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.7"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}