diff --git a/Train.ipynb b/Train.ipynb index f3ed067..2d01740 100644 --- a/Train.ipynb +++ b/Train.ipynb @@ -444,133 +444,6 @@ "source": [ "--------------------------------------------------" ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Save MinMaxScaler in path: ./scaler/minmax_scaler_x_repr.pkl\n" - ] - } - ], - "source": [ - "# load representation data\n", - "data_root_dir = './data/'\n", - "train_x, train_y, test_x, test_y = utils.load_data(data_root_dir, model_name='FC') # shape=(num_of_instance, embedding_dim)\n", - "\n", - "# split train data into train/valiation data\n", - "# train data를 랜덤으로 test_size=split_ratio에 대하여 train/validation set으로 분할\n", - "split_ratio = 0.2\n", - "train_x, valid_x, train_y, valid_y = train_test_split(train_x, train_y, test_size=split_ratio, shuffle=True)\n", - "\n", - "# normalization\n", - "scaler_x_path = './scaler/minmax_scaler_x_repr.pkl'\n", - "train_x, valid_x = utils.get_train_val_data(train_x, valid_x, scaler_x_path)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Start training model: FC\n", - "\n", - "Epoch 1/150\n", - "train Loss: 1.7845 Acc: 0.1682\n", - "val Loss: 1.7542 Acc: 0.2345\n", - "\n", - "Epoch 10/150\n", - "train Loss: 1.2704 Acc: 0.6596\n", - "val Loss: 1.2287 Acc: 0.6737\n", - "\n", - "Epoch 20/150\n", - "train Loss: 0.8235 Acc: 0.7495\n", - "val Loss: 0.7868 Acc: 0.8389\n", - "\n", - "Epoch 30/150\n", - "train Loss: 0.6276 Acc: 0.8051\n", - "val Loss: 0.5940 Acc: 0.8742\n", - "\n", - "Epoch 40/150\n", - "train Loss: 0.5202 Acc: 0.8373\n", - "val Loss: 0.4832 Acc: 0.8926\n", - "\n", - "Epoch 50/150\n", - "train Loss: 0.4367 Acc: 0.8708\n", - "val Loss: 0.4038 Acc: 0.9028\n", - "\n", - "Epoch 60/150\n", - "train Loss: 0.3723 Acc: 0.8912\n", - "val Loss: 0.3447 Acc: 0.9164\n", - "\n", - "Epoch 70/150\n", - "train Loss: 0.3287 Acc: 0.8978\n", - "val Loss: 0.2992 Acc: 0.9211\n", - "\n", - "Epoch 80/150\n", - "train Loss: 0.2944 Acc: 0.9112\n", - "val Loss: 0.2645 Acc: 0.9259\n", - "\n", - "Epoch 90/150\n", - "train Loss: 0.2663 Acc: 0.9170\n", - "val Loss: 0.2383 Acc: 0.9320\n", - "\n", - "Epoch 100/150\n", - "train Loss: 0.2400 Acc: 0.9267\n", - "val Loss: 0.2173 Acc: 0.9334\n", - "\n", - "Epoch 110/150\n", - "train Loss: 0.2243 Acc: 0.9286\n", - "val Loss: 0.2009 Acc: 0.9368\n", - "\n", - "Epoch 120/150\n", - "train Loss: 0.2131 Acc: 0.9289\n", - "val Loss: 0.1885 Acc: 0.9402\n", - "\n", - "Epoch 130/150\n", - "train Loss: 0.2020 Acc: 0.9303\n", - "val Loss: 0.1785 Acc: 0.9443\n", - "\n", - "Epoch 140/150\n", - "train Loss: 0.1910 Acc: 0.9335\n", - "val Loss: 0.1705 Acc: 0.9456\n", - "\n", - "Epoch 150/150\n", - "train Loss: 0.1821 Acc: 0.9362\n", - "val Loss: 0.1633 Acc: 0.9456\n", - "\n", - "Training complete in 0m 17s\n", - "Best val Acc: 0.947655\n" - ] - } - ], - "source": [ - "# Case 5. fully-connected layers (w/ data representation)\n", - "model_name = 'FC'\n", - "model_params = config.model_config[model_name]\n", - "\n", - "data_cls = mc.Classification(model_params)\n", - "best_model = data_cls.train_model(train_x, train_y, valid_x, valid_y) # 모델 학습\n", - "data_cls.save_model(best_model, best_model_path=model_params[\"best_model_path\"]) # 모델 저장" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": {