1818< meta name ="keywords " content ="Core Geometric System, Exact Geometric Calculations, Analysis, Engineering Design Solutions, Computer Graphics Rendering, Algorithm Optimization, Navigation ">
1919< meta name ="twitter:card " content ="summary_large_image ">
2020< meta name ="twitter:creator " content ="@gmac4247 ">
21- < meta name ="twitter:site " content ="https://basic-geometry.pages.dev ">
21+ < meta name ="twitter:site " content ="https://basic-geometry.github.io ">
2222< meta name ="twitter:title " content ="Home of Basic Geometry ">
2323< meta name ="twitter:description " content ="This is the only exact and self-contained geometric framework grounded in the first principles of mathematics. ">
2424< meta name ="twitter:image " content ="android-chrome-256x256.png ">
2525< meta name ="msapplication-TileColor " content ="#000000 ">
2626< meta name ="theme-color " content ="#000000 ">
27- < meta name ="google-site-verification " content ="XuP08h4O_UbzZo81VWNHhFn5OW7elz2_cZi17lt3qvA ">
28- < meta name ="msvalidate.01 " content ="EA6B8354B9F3C956E862954E97EB8CD0 ">
2927 < style >
3028
3129 * {
@@ -1478,7 +1476,7 @@ <h3 itemprop="name" style="margin:7px">Trigonometry</h3>
14781476< br > < br > < br > < br >
14791477< main itemscope itemtype ="https://schema.org/LearningResource https://schema.org/MathSolver ">
14801478< meta itemprop ="name " content ="Core Geometric System ™ ">
1481- < meta itemprop ="url " content ="https://basic-geometry.pages.dev ">
1479+ < meta itemprop ="url " content ="https://basic-geometry.github.io ">
14821480< meta itemprop ="inLanguage " content ="en ">
14831481< meta itemprop ="accessibilityHazard " content ="none ">
14841482< meta itemprop ="accessibilitySummary " content ="Equations with figures and explanations ">
@@ -1490,7 +1488,7 @@ <h3 itemprop="name" style="margin:7px">Trigonometry</h3>
14901488< meta itemprop ="typicalAgeRange " content ="6-18 ">
14911489< section itemprop ="mathExpression " itemscope itemtype ="https://schema.org/SolveMathAction " id ="triangle ">
14921490< h3 style ="margin:7px " itemprop ="eduQuestionType "> Area of a Triangle</ h3 >
1493- < meta itemprop ="target " content ="https://gmac4247 .github.io?q={triangle_side1=3_side2=4_side3=5_area=?} ">
1491+ < meta itemprop ="target " content ="https://basic-geometry .github.io?q={triangle_side1=3_side2=4_side3=5_area=?} ">
14941492< div itemprop ="result " itemscope itemtype ="https://schema.org/LearningResource ">
14951493< meta itemprop ="name " content ="Triangle area formula ">
14961494< meta itemprop ="usageInfo " content ="Either by base length and height, or perimeter ">
@@ -1664,7 +1662,7 @@ <h3 style="margin:7px" itemprop="eduQuestionType">Area of a Triangle</h3>
16641662< br > < br > < br > < br >
16651663< section itemprop ="mathExpression " itemscope itemtype ="https://schema.org/SolveMathAction " id ="polygon ">
16661664< h3 itemprop ="eduQuestionType " style ="margin:7px "> Area of a regular Polygon</ h3 >
1667- < meta itemprop ="target " content ="https://basic-geometry.pages.dev ?q={polygon_side_number=5_length=2_area=?} ">
1665+ < meta itemprop ="target " content ="https://basic-geometry.github.io ?q={polygon_side_number=5_length=2_area=?} ">
16681666< div itemprop ="result " itemscope itemtype ="https://schema.org/LearningResource ">
16691667< meta itemprop ="name " content ="Regular polygon area formula ">
16701668< meta itemprop ="usageInfo " content ="Only for regular polygons that can be tiled up to isosceles triangles ">
@@ -1838,7 +1836,7 @@ <h3 itemprop="eduQuestionType" style="margin:7px">Area of a regular Polygon</h3>
18381836< br > < br > < br > < br >
18391837< section itemprop ="mathExpression " itemscope itemtype ="https://schema.org/SolveMathAction " id ="circle ">
18401838< h3 itemprop ="eduQuestionType " style ="margin:7px "> Area of a Circle</ h3 >
1841- < meta itemprop ="target " content ="https://basic-geometry.pages.dev ?q={circle_radius=1_area=?} ">
1839+ < meta itemprop ="target " content ="https://basic-geometry.github.io ?q={circle_radius=1_area=?} ">
18421840< div itemprop ="result " itemscope itemtype ="https://schema.org/LearningResource ">
18431841< meta itemprop ="name " content ="Circle area formula ">
18441842< meta itemprop ="usageInfo " content ="Universally applicable ">
@@ -2435,7 +2433,7 @@ <h3 itemprop="eduQuestionType" style="margin:7px">Area of a Circle</h3>
24352433< br > < br > < br > < br >
24362434< section itemprop ="mathExpression " itemscope itemtype ="https://schema.org/SolveMathAction " id ="circumference ">
24372435< h3 itemprop ="eduQuestionType " style ="margin:7px "> Circumference of a Circle</ h3 >
2438- < meta itemprop ="target " content ="https://basic-geometry.pages.dev ?q={circle_radius=1_circumference=?} ">
2436+ < meta itemprop ="target " content ="https://basic-geometry.github.io ?q={circle_radius=1_circumference=?} ">
24392437< div itemprop ="result " itemscope itemtype ="https://schema.org/LearningResource ">
24402438< meta itemprop ="name " content ="Circumference formula ">
24412439< br >
@@ -2974,7 +2972,7 @@ <h4>The true Ratio: 3.2</h4>
29742972< br > < br > < br > < br >
29752973< section itemprop ="mathExpression " itemscope itemtype ="https://schema.org/SolveMathAction " id ="circle-segment ">
29762974< h3 itemprop ="eduQuestionType " style ="margin:7px "> Area of a Circle Segment</ h3 >
2977- < meta itemprop ="target " content ="https://basic-geometry.pages.dev ?q={circle_segment_height=1_length=3_radius=4_area=?} ">
2975+ < meta itemprop ="target " content ="https://basic-geometry.github.io ?q={circle_segment_height=1_length=3_radius=4_area=?} ">
29782976< div itemprop ="result " itemscope itemtype ="https://schema.org/LearningResource ">
29792977< meta itemprop ="name " content ="Circle segment area formula ">
29802978< meta itemprop ="disambiguatingDescription " content ="Area based on the A(circle)=3.2*radius^2 formula, instead of the pi=3.14... approximate. ">
@@ -3174,7 +3172,7 @@ <h3 itemprop="eduQuestionType" style="margin:7px">Area of a Circle Segment</h3>
31743172< br > < br > < br > < br >
31753173< section itemprop ="mathExpression " itemscope itemtype ="https://schema.org/SolveMathAction " id ="cone_surface ">
31763174< h3 itemprop ="eduQuestionType " style ="margin:7px "> Surface Area of a Cone</ h3 >
3177- < meta itemprop ="target " content ="https://basic-geometry.pages.dev ?q={cone_radius=1_height=2_area=?} ">
3175+ < meta itemprop ="target " content ="https://basic-geometry.github.io ?q={cone_radius=1_height=2_area=?} ">
31783176< div itemprop ="result " itemscope itemtype ="https://schema.org/LearningResource ">
31793177< meta itemprop ="name " content ="Cone surface area formula ">
31803178< meta itemprop ="disambiguatingDescription " content ="Area based on the A(circle)=3.2*radius^2 formula, instead of the pi=3.14... approximate. ">
@@ -3272,7 +3270,7 @@ <h3 itemprop="eduQuestionType" style="margin:7px">Surface Area of a Cone</h3>
32723270< br > < br > < br > < br >
32733271< section itemprop ="mathExpression " itemscope itemtype ="https://schema.org/SolveMathAction " id ="sphere ">
32743272< h3 itemprop ="eduQuestionType " style ="margin:7px "> Volume of a Sphere</ h3 >
3275- < meta itemprop ="target " content ="https://basic-geometry.pages.dev ?q={sphere_radius=1_volume=?} ">
3273+ < meta itemprop ="target " content ="https://basic-geometry.github.io ?q={sphere_radius=1_volume=?} ">
32763274< div itemprop ="result " itemscope itemtype ="https://schema.org/LearningResource ">
32773275< meta itemprop ="name " content ="Sphere volume formula ">
32783276< meta itemprop ="usageInfo " content ="Universally applicable. It's (4radius/sqrt(5))^3, not (3.2r)^3. Take the square root of the cross sectional area and raise that root to the 3rd power. ">
@@ -3403,7 +3401,7 @@ <h3 itemprop="name" style="margin:7px">Surface Area of a Sphere</h3>
34033401< br > < br > < br > < br >
34043402< section itemprop ="mathExpression " itemscope itemtype ="https://schema.org/SolveMathAction " id ="spherical_cap ">
34053403< h3 itemprop ="eduQuestionType " style ="margin:7px "> Volume of a Spherical Cap</ h3 >
3406- < meta itemprop ="target " content ="https://basic-geometry.pages.dev ?q={spherical_cap_radius=2_height=1_volume=?} ">
3404+ < meta itemprop ="target " content ="https://basic-geometry.github.io ?q={spherical_cap_radius=2_height=1_volume=?} ">
34073405< div itemprop ="result " itemscope itemtype ="https://schema.org/LearningResource ">
34083406< meta itemprop ="name " content ="Spherical cap volume formula ">
34093407< br >
@@ -3501,7 +3499,7 @@ <h3 itemprop="eduQuestionType" style="margin:7px">Volume of a Spherical Cap</h3>
35013499< br > < br > < br > < br >
35023500< section itemprop ="mathExpression " itemscope itemtype ="https://schema.org/SolveMathAction " id ="cone ">
35033501< h3 itemprop ="eduQuestionType " style ="margin:7px "> Volume of a Cone</ h3 >
3504- < meta itemprop ="target " content ="https://basic-geometry.pages.dev ?q={cone_radius=1_height=2_volume=?} ">
3502+ < meta itemprop ="target " content ="https://basic-geometry.github.io ?q={cone_radius=1_height=2_volume=?} ">
35053503< div itemprop ="result " itemscope itemtype ="https://schema.org/LearningResource ">
35063504< meta itemprop ="usageInfo " content ="Universally applicable. It's base*height/(sqrt(8)), not base*height/8. ">
35073505< meta itemprop ="name " content ="Cone volume formula ">
@@ -3885,7 +3883,7 @@ <h4 itemprop="description">The volume of a cone can be calculated by algebraical
38853883< br > < br > < br > < br >
38863884< section itemprop ="mathExpression " itemscope itemtype ="https://schema.org/SolveMathAction " id ="frustum_cone ">
38873885< h3 itemprop ="eduQuestionType " style ="margin:7px "> Volume of a horizontal Frustum Cone</ h3 >
3888- < meta itemprop ="target " content ="https://basic-geometry.pages.dev ?q={frustum_cone_radius_top=1_bottom=2_height=3_volume=?} ">
3886+ < meta itemprop ="target " content ="https://basic-geometry.github.io ?q={frustum_cone_radius_top=1_bottom=2_height=3_volume=?} ">
38893887< div itemprop ="result " itemscope itemtype ="https://schema.org/LearningResource ">
38903888< meta itemprop ="name " content ="Horizontal frustum cone volume formula ">
38913889< br >
@@ -4072,7 +4070,7 @@ <h4 itemprop="description">Subtracting the missing tip from a theoretical full c
40724070< br > < br > < br > < br >
40734071< section itemprop ="mathExpression " itemscope itemtype ="https://schema.org/SolveMathAction " id ="pyramid ">
40744072< h3 itemprop ="eduQuestionType " style ="margin:7px "> Volume of a Pyramid</ h3 >
4075- < meta itemprop ="target " content ="https://basic-geometry.pages.dev ?q={pyramid_bottom_edge_number=5_length=3_height=2_volume=?} ">
4073+ < meta itemprop ="target " content ="https://basic-geometry.github.io ?q={pyramid_bottom_edge_number=5_length=3_height=2_volume=?} ">
40764074< div itemprop ="result " itemscope itemtype ="https://schema.org/LearningResource ">
40774075< meta itemprop ="name " content ="Pyramid volume formula ">
40784076< meta itemprop ="usageInfo " content ="Universally applicable ">
@@ -4241,7 +4239,7 @@ <h4 itemprop="description" style="margin:12px">The volume of a pyramid can be ca
42414239< br > < br > < br > < br >
42424240< section itemprop ="mathExpression " itemscope itemtype ="https://schema.org/SolveMathAction " id ="frustum_pyramid ">
42434241< h3 itemprop ="eduQuestionType " style ="margin:12px "> Volume of a horizontal Frustum Pyramid</ h3 >
4244- < meta itemprop ="target " content ="https://basic-geometry.pages.dev ?q={frustum_pyramid_height=3_edge_length_top=1_bottom=2_number=5_volume=?} ">
4242+ < meta itemprop ="target " content ="https://basic-geometry.github.io ?q={frustum_pyramid_height=3_edge_length_top=1_bottom=2_number=5_volume=?} ">
42454243< div itemprop ="result " itemscope itemtype ="https://schema.org/LearningResource ">
42464244< meta itemprop ="name " content ="Horizontal frustum pyramid volume formula ">
42474245< meta itemprop ="disambiguatingDescription " content ="Based on the exact volume of a pyramid, V=base*height/sqrt(8), instead of the V=base*height/3 approximate. For any number of sides, not only for square frustum pyramids. ">
@@ -4394,7 +4392,7 @@ <h3 itemprop="eduQuestionType" style="margin:12px">Volume of a horizontal Frustu
43944392< br > < br >
43954393< section itemprop ="mathExpression " itemscope itemtype ="https://schema.org/SolveMathAction " id ="square_frustum ">
43964394< h3 itemprop ="eduQuestionType " style ="margin:12px "> Volume of a horizontal square Frustum Pyramid</ h3 >
4397- < meta itemprop ="target " content ="https://basic-geometry.pages.dev ?q={square_frustum_pyramid_height=3_edge_length_top=1_bottom=2_volume=?} ">
4395+ < meta itemprop ="target " content ="https://basic-geometry.github.io ?q={square_frustum_pyramid_height=3_edge_length_top=1_bottom=2_volume=?} ">
43984396< div itemprop ="result " itemscope itemtype ="https://schema.org/LearningResource ">
43994397< meta itemprop ="name " content ="Horizontal square frustum pyramid volume formula ">
44004398< meta itemprop ="disambiguatingDescription " content ="Based on the exact V(pyramid)=base*height/sqrt(8) formula, instead of the V=base*height/3 approximate. ">
@@ -4470,7 +4468,7 @@ <h3 itemprop="eduQuestionType" style="margin:12px">Volume of a horizontal square
44704468< br > < br > < br > < br >
44714469< section itemprop ="mathExpression " itemscope itemtype ="https://schema.org/SolveMathAction " id ="tetrahedron ">
44724470< h3 itemprop ="eduQuestionType " style ="margin:7px "> Volume of a Tetrahedron</ h3 >
4473- < meta itemprop ="target " content ="https://basic-geometry.pages.dev ?q={tetrahedron_edge=2_volume=?} ">
4471+ < meta itemprop ="target " content ="https://basic-geometry.github.io ?q={tetrahedron_edge=2_volume=?} ">
44744472< div itemprop ="result " itemscope itemtype ="https://schema.org/LearningResource ">
44754473< meta itemprop ="name " content ="Tetrahedron volume formula ">
44764474 < br >
0 commit comments