"
]
},
"metadata": {},
@@ -4318,7 +4334,7 @@
},
{
"cell_type": "code",
- "execution_count": 29,
+ "execution_count": 27,
"id": "072cbd6c-8a82-4213-99fc-811623ad8c41",
"metadata": {
"tags": []
@@ -4327,7 +4343,7 @@
"source": [
"# Wrap the trained model with the data preparation pipeline\n",
"model_wrapper = pyearthtools.training.lightning.Predict(\n",
- " model, # The trained CNN model\n",
+ " model, # The trained CNN model\n",
" data_preparation_normed # The data preparation pipeline\n",
")\n",
"\n",
@@ -4340,101 +4356,85 @@
},
{
"cell_type": "code",
- "execution_count": 30,
+ "execution_count": 28,
"id": "b4be6a52",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "array([[[ 0.24508621, 0.11092616, -0.03467894, ..., 0.4291155 ,\n",
- " 0.41032445, 0.34905007],\n",
- " [ 0.06729264, 0.22444546, 0.47754756, ..., 0.1731117 ,\n",
- " 0.1314369 , 0.07036693],\n",
- " [ 0.44198117, 0.65568805, 0.72863257, ..., -0.30857596,\n",
- " 0.20914252, 0.7002841 ],\n",
- " ...,\n",
- " [ 0.01560672, -0.1894289 , -0.48232144, ..., 1.0082207 ,\n",
- " 0.60520154, 0.27669346],\n",
- " [-0.3044927 , -0.37066957, -0.27879533, ..., 0.48623183,\n",
- " 0.23022135, -0.04774872],\n",
- " [ 0.51261675, 0.46222374, 0.43611524, ..., 0.784465 ,\n",
- " 0.67638767, 0.585016 ]],\n",
- "\n",
- " [[ 0.1739989 , 0.14216088, 0.1003792 , ..., 0.23476335,\n",
- " 0.21560968, 0.19656503],\n",
- " [-0.010908 , 0.13098194, 0.16181199, ..., 0.07339582,\n",
- " -0.10057873, -0.16229634],\n",
- " [ 1.0853866 , 1.1272728 , 1.2927105 , ..., -0.4901738 ,\n",
- " 0.47894996, 0.6378232 ],\n",
+ "array([[[ 1.6265482 , 1.6642686 , 1.7807953 , ..., -0.41998312,\n",
+ " -0.05053011, -0.62035227],\n",
+ " [ 1.6282165 , 1.6466169 , 1.755078 , ..., -0.86967456,\n",
+ " -0.06659667, -0.6387649 ],\n",
+ " [ 1.6345234 , 1.6240315 , 1.6426649 , ..., -1.0400431 ,\n",
+ " -0.24917367, -0.6859972 ],\n",
" ...,\n",
- " [ 0.32347783, 0.1530604 , -0.36704504, ..., 2.2871614 ,\n",
- " 1.4820675 , 0.7104936 ],\n",
- " [-0.18428366, -0.5963913 , -0.93383473, ..., 0.6886066 ,\n",
- " 0.3982786 , 0.12022203],\n",
- " [-0.26889893, -0.4153922 , -0.5274983 , ..., 0.32514077,\n",
- " 0.10366473, -0.09469063]],\n",
- "\n",
- " [[ 0.29989573, 0.26873863, 0.23308583, ..., 0.35678092,\n",
- " 0.3471158 , 0.32710022],\n",
- " [ 0.7007875 , 0.84441924, 1.0783322 , ..., 0.3950204 ,\n",
- " 0.5730443 , 0.6233401 ],\n",
- " [ 0.56969124, 0.6025304 , 0.6456148 , ..., -0.22357185,\n",
- " -0.42198908, 0.18817033],\n",
+ " [ 1.642726 , 1.4959918 , 1.295203 , ..., -0.7554755 ,\n",
+ " -0.57467616, -0.5757325 ],\n",
+ " [ 1.6350749 , 1.5650128 , 1.506095 , ..., -0.63705313,\n",
+ " -0.49757466, -0.62132066],\n",
+ " [ 1.6291701 , 1.644258 , 1.6520036 , ..., -0.3815208 ,\n",
+ " -0.30504227, -0.6222776 ]],\n",
+ "\n",
+ " [[ 0.37331304, 0.04814345, -0.97122186, ..., -0.3308119 ,\n",
+ " -1.1623396 , 0.06890745],\n",
+ " [ 0.39981708, 0.11974857, -0.916135 , ..., -0.6844403 ,\n",
+ " -1.2961906 , 0.08652025],\n",
+ " [ 0.42725852, 0.1846136 , -0.8319019 , ..., -0.95627266,\n",
+ " -1.4884118 , 0.085261 ],\n",
" ...,\n",
- " [ 0.5893009 , 0.36362782, 0.04500921, ..., 2.3144917 ,\n",
- " 1.386902 , 0.9947691 ],\n",
- " [-0.28036693, -0.78888327, -1.3113825 , ..., 0.99616814,\n",
- " 0.70593774, 0.20506375],\n",
- " [-0.4276789 , -0.54294723, -0.6514161 , ..., 0.04105376,\n",
- " -0.15166822, -0.3027542 ]],\n",
- "\n",
- " ...,\n",
- "\n",
- " [[ 1.3490297 , 0.8566821 , 1.6260393 , ..., 0.6117243 ,\n",
- " 0.5638359 , 1.3058991 ],\n",
- " [ 1.9504461 , 0.5837265 , 0.6163757 , ..., -0.5604832 ,\n",
- " -0.50448596, 1.9702082 ],\n",
- " [ 0.29819992, 1.4200642 , 1.2040739 , ..., -0.32891572,\n",
- " -1.4031858 , 1.4697403 ],\n",
+ " [ 0.24053523, 0.04329998, -0.41543078, ..., -0.07199283,\n",
+ " -0.6893464 , -0.4049187 ],\n",
+ " [ 0.28573784, 0.00251288, -0.9453188 , ..., -0.11058147,\n",
+ " -0.7709441 , -0.21876507],\n",
+ " [ 0.34219432, -0.00976607, -0.938062 , ..., -0.1951685 ,\n",
+ " -0.9421096 , -0.02641799]],\n",
+ "\n",
+ " [[-0.47082186, -0.44774178, -0.40512496, ..., -0.9397035 ,\n",
+ " 0.14880559, 1.113687 ],\n",
+ " [-0.43420443, -0.18625255, -0.3106985 , ..., -1.0107784 ,\n",
+ " -0.02244223, 0.9295246 ],\n",
+ " [-0.3905126 , 0.12768012, -0.00546314, ..., -1.2066957 ,\n",
+ " -0.10597208, 0.83207333],\n",
" ...,\n",
- " [ 0.45729098, -0.2274404 , 0.56907094, ..., -0.7582452 ,\n",
- " -0.25473458, -0.35702682],\n",
- " [-0.40157175, -0.6543036 , -0.8019015 , ..., -0.5883408 ,\n",
- " 0.42199385, -0.40957326],\n",
- " [-0.4185561 , -0.5121959 , -0.53309935, ..., -0.76167035,\n",
- " -0.41935343, -0.4870026 ]],\n",
- "\n",
- " [[ 1.1997573 , 0.91190654, 1.5743611 , ..., 0.49030527,\n",
- " 0.96745735, 1.338628 ],\n",
- " [ 2.2542176 , 0.42433867, 0.01592403, ..., -1.1286747 ,\n",
- " -0.01179639, 1.9916474 ],\n",
- " [ 0.4237562 , 1.4438224 , 0.97457874, ..., 0.48495716,\n",
- " -1.0389876 , 1.1999533 ],\n",
+ " [-0.6347259 , -0.38031957, 0.3319075 , ..., 0.6130836 ,\n",
+ " 0.95907784, 1.4434704 ],\n",
+ " [-0.58675295, -0.4606492 , -0.00183191, ..., -0.24645995,\n",
+ " 0.7135204 , 1.4787238 ],\n",
+ " [-0.5219114 , -0.6370296 , -0.06315067, ..., -0.68712115,\n",
+ " 0.48995844, 1.3457698 ]],\n",
+ "\n",
+ " [[ 0.45943126, 0.90787065, -0.32233453, ..., 0.52636695,\n",
+ " -0.9199432 , -1.2558699 ],\n",
+ " [ 0.49145618, 0.91514105, 0.82572055, ..., -0.3147475 ,\n",
+ " -0.3943931 , -1.0036206 ],\n",
+ " [ 0.6085306 , 0.9962605 , 1.3351266 , ..., 0.31028575,\n",
+ " -0.19064371, -0.88718075],\n",
" ...,\n",
- " [-0.11583887, -0.19046861, -0.4617741 , ..., -0.11557942,\n",
- " -0.85613203, 0.17999189],\n",
- " [-0.34016842, -0.47557616, -0.25548655, ..., -1.026576 ,\n",
- " -1.1687881 , -0.15066133],\n",
- " [ 0.2402395 , 0.32311684, 0.11746781, ..., -1.2505002 ,\n",
- " -1.0781028 , -0.46903607]],\n",
- "\n",
- " [[ 0.9869987 , 1.1268078 , 1.5579988 , ..., 0.6903477 ,\n",
- " 0.74076974, 1.5238316 ],\n",
- " [ 1.8661613 , 0.6105358 , 0.14305058, ..., -1.1973902 ,\n",
- " 0.00862824, 2.0179327 ],\n",
- " [ 0.3577485 , 1.557207 , 0.8968994 , ..., 0.13660753,\n",
- " -0.71716374, 1.4018275 ],\n",
+ " [ 0.4116845 , 0.7484452 , 0.22491366, ..., -1.1199399 ,\n",
+ " -0.6356092 , -0.08859143],\n",
+ " [ 0.51986814, -0.24747247, 0.14966637, ..., -0.40968487,\n",
+ " 0.02281968, -0.42017704],\n",
+ " [ 0.50627023, 0.5339893 , -0.06993005, ..., -0.6905567 ,\n",
+ " -0.8807853 , -1.1061283 ]],\n",
+ "\n",
+ " [[ 0.93798494, 1.0052907 , 0.90717006, ..., 0.5913818 ,\n",
+ " 1.0622437 , 1.2788589 ],\n",
+ " [ 0.94440717, 1.0617036 , 1.03835 , ..., 0.42319804,\n",
+ " 1.0339918 , 1.3107482 ],\n",
+ " [ 0.9468403 , 1.0707257 , 1.136673 , ..., 0.2485732 ,\n",
+ " 1.0005698 , 1.3366479 ],\n",
" ...,\n",
- " [-0.5810135 , -0.36615527, -0.8015445 , ..., -0.42343837,\n",
- " -0.4228332 , 2.3804533 ],\n",
- " [-0.5192234 , 0.70658493, -0.32903892, ..., -0.5793631 ,\n",
- " -0.7078126 , -0.4471825 ],\n",
- " [-0.13518474, -0.30073836, -0.21317519, ..., -0.9163058 ,\n",
- " -0.874373 , -0.25766635]]], shape=(53, 32, 64), dtype=float32)"
+ " [ 0.8905333 , 0.81879306, 0.60550255, ..., 0.8694485 ,\n",
+ " 0.93078625, 1.1228474 ],\n",
+ " [ 0.91156334, 0.88583666, 0.7065313 , ..., 0.8718242 ,\n",
+ " 1.00816 , 1.181128 ],\n",
+ " [ 0.9283387 , 0.9496423 , 0.861162 , ..., 0.76870537,\n",
+ " 1.0587218 , 1.2356416 ]]], shape=(5, 64, 32), dtype=float32)"
]
},
- "execution_count": 30,
+ "execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
@@ -4445,7 +4445,7 @@
},
{
"cell_type": "code",
- "execution_count": 31,
+ "execution_count": 29,
"id": "8f03e1ed-51a5-4f42-9d18-dfae1f6c6a1c",
"metadata": {
"tags": []
@@ -4454,7 +4454,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "04d4dd37136741d3ad9e255f2018680b",
+ "model_id": "724878007368402ab8c446fc06e7ce62",
"version_major": 2,
"version_minor": 0
},
@@ -4469,10 +4469,54 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "Using default `ModelCheckpoint`. Consider installing `litmodels` package to enable `LitModelCheckpoint` for automatic upload to the Lightning model registry.\n",
- "GPU available: False, used: False\n",
+ "💡 Tip: For seamless cloud uploads and versioning, try installing [litmodels](https://pypi.org/project/litmodels/) to enable LitModelCheckpoint, which syncs automatically with the Lightning model registry.\n",
+ "GPU available: True (cuda), used: True\n",
"TPU available: False, using: 0 TPU cores\n",
- "HPU available: False, using: 0 HPUs\n"
+ "HPU available: False, using: 0 HPUs\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n"
]
},
{
@@ -4489,8 +4533,8 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "CPU times: user 5min 53s, sys: 30.2 s, total: 6min 23s\n",
- "Wall time: 6min 26s\n"
+ "CPU times: user 2.7 s, sys: 156 ms, total: 2.86 s\n",
+ "Wall time: 2.86 s\n"
]
}
],
@@ -4498,7 +4542,7 @@
"%%time \n",
"\n",
"# Define the test split using a date range with 1-hour intervals\n",
- "test_split = pyearthtools.pipeline.iterators.DateRange(test_start, test_end, interval=\"1h\")\n",
+ "test_split = pyearthtools.pipeline.iterators.DateRange(test_start, test_end, interval=\"6h\")\n",
"\n",
"# Initialise lists to store true values and predictions\n",
"y_true = []\n",
@@ -4524,7 +4568,7 @@
},
{
"cell_type": "code",
- "execution_count": 32,
+ "execution_count": 30,
"id": "b60a847e-1717-4537-a376-cd295337b652",
"metadata": {
"tags": []
@@ -4553,28 +4597,76 @@
" */\n",
"\n",
":root {\n",
- " --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
- " --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
- " --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
- " --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
- " --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
- " --xr-background-color: var(--jp-layout-color0, white);\n",
- " --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
- " --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
+ " --xr-font-color0: var(\n",
+ " --jp-content-font-color0,\n",
+ " var(--pst-color-text-base rgba(0, 0, 0, 1))\n",
+ " );\n",
+ " --xr-font-color2: var(\n",
+ " --jp-content-font-color2,\n",
+ " var(--pst-color-text-base, rgba(0, 0, 0, 0.54))\n",
+ " );\n",
+ " --xr-font-color3: var(\n",
+ " --jp-content-font-color3,\n",
+ " var(--pst-color-text-base, rgba(0, 0, 0, 0.38))\n",
+ " );\n",
+ " --xr-border-color: var(\n",
+ " --jp-border-color2,\n",
+ " hsl(from var(--pst-color-on-background, white) h s calc(l - 10))\n",
+ " );\n",
+ " --xr-disabled-color: var(\n",
+ " --jp-layout-color3,\n",
+ " hsl(from var(--pst-color-on-background, white) h s calc(l - 40))\n",
+ " );\n",
+ " --xr-background-color: var(\n",
+ " --jp-layout-color0,\n",
+ " var(--pst-color-on-background, white)\n",
+ " );\n",
+ " --xr-background-color-row-even: var(\n",
+ " --jp-layout-color1,\n",
+ " hsl(from var(--pst-color-on-background, white) h s calc(l - 5))\n",
+ " );\n",
+ " --xr-background-color-row-odd: var(\n",
+ " --jp-layout-color2,\n",
+ " hsl(from var(--pst-color-on-background, white) h s calc(l - 15))\n",
+ " );\n",
"}\n",
"\n",
"html[theme=\"dark\"],\n",
"html[data-theme=\"dark\"],\n",
"body[data-theme=\"dark\"],\n",
"body.vscode-dark {\n",
- " --xr-font-color0: rgba(255, 255, 255, 1);\n",
- " --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
- " --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
- " --xr-border-color: #1f1f1f;\n",
- " --xr-disabled-color: #515151;\n",
- " --xr-background-color: #111111;\n",
- " --xr-background-color-row-even: #111111;\n",
- " --xr-background-color-row-odd: #313131;\n",
+ " --xr-font-color0: var(\n",
+ " --jp-content-font-color0,\n",
+ " var(--pst-color-text-base, rgba(255, 255, 255, 1))\n",
+ " );\n",
+ " --xr-font-color2: var(\n",
+ " --jp-content-font-color2,\n",
+ " var(--pst-color-text-base, rgba(255, 255, 255, 0.54))\n",
+ " );\n",
+ " --xr-font-color3: var(\n",
+ " --jp-content-font-color3,\n",
+ " var(--pst-color-text-base, rgba(255, 255, 255, 0.38))\n",
+ " );\n",
+ " --xr-border-color: var(\n",
+ " --jp-border-color2,\n",
+ " hsl(from var(--pst-color-on-background, #111111) h s calc(l + 10))\n",
+ " );\n",
+ " --xr-disabled-color: var(\n",
+ " --jp-layout-color3,\n",
+ " hsl(from var(--pst-color-on-background, #111111) h s calc(l + 40))\n",
+ " );\n",
+ " --xr-background-color: var(\n",
+ " --jp-layout-color0,\n",
+ " var(--pst-color-on-background, #111111)\n",
+ " );\n",
+ " --xr-background-color-row-even: var(\n",
+ " --jp-layout-color1,\n",
+ " hsl(from var(--pst-color-on-background, #111111) h s calc(l + 5))\n",
+ " );\n",
+ " --xr-background-color-row-odd: var(\n",
+ " --jp-layout-color2,\n",
+ " hsl(from var(--pst-color-on-background, #111111) h s calc(l + 15))\n",
+ " );\n",
"}\n",
"\n",
".xr-wrap {\n",
@@ -4630,6 +4722,7 @@
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
+ " border: 2px solid transparent !important;\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
@@ -4638,7 +4731,7 @@
"}\n",
"\n",
".xr-section-item input:focus + label {\n",
- " border: 2px solid var(--xr-font-color0);\n",
+ " border: 2px solid var(--xr-font-color0) !important;\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
@@ -4770,7 +4863,9 @@
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
+ " border-color: var(--xr-background-color-row-odd);\n",
" margin-bottom: 0;\n",
+ " padding-top: 2px;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
@@ -4781,6 +4876,7 @@
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
+ " border-color: var(--xr-background-color-row-even);\n",
"}\n",
"\n",
".xr-var-name {\n",
@@ -4830,8 +4926,15 @@
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
- " background-color: var(--xr-background-color) !important;\n",
- " padding-bottom: 5px !important;\n",
+ " border-top: 2px dotted var(--xr-background-color);\n",
+ " padding-bottom: 20px !important;\n",
+ " padding-top: 10px !important;\n",
+ "}\n",
+ "\n",
+ ".xr-var-attrs-in + label,\n",
+ ".xr-var-data-in + label,\n",
+ ".xr-index-data-in + label {\n",
+ " padding: 0 1px;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
@@ -4844,6 +4947,12 @@
" float: right;\n",
"}\n",
"\n",
+ ".xr-var-data > pre,\n",
+ ".xr-index-data > pre,\n",
+ ".xr-var-data > table > tbody > tr {\n",
+ " background-color: transparent !important;\n",
+ "}\n",
+ "\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
@@ -4903,2213 +5012,335 @@
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
- "<xarray.Dataset> Size: 115MB\n",
- "Dimensions: (time: 264, latitude: 32, longitude: 64)\n",
+ "\n",
+ ".xr-var-attrs-in:checked + label > .xr-icon-file-text2,\n",
+ ".xr-var-data-in:checked + label > .xr-icon-database,\n",
+ ".xr-index-data-in:checked + label > .xr-icon-database {\n",
+ " color: var(--xr-font-color0);\n",
+ " filter: drop-shadow(1px 1px 5px var(--xr-font-color2));\n",
+ " stroke-width: 0.8px;\n",
+ "}\n",
+ "<xarray.Dataset> Size: 2MB\n",
+ "Dimensions: (time: 44, longitude: 64, latitude: 32)\n",
"Coordinates:\n",
- " * time (time) datetime64[ns] 2kB 2017-01-01 ... 2017-01-11T23:00:00\n",
- " * latitude (latitude) float64 256B -87.19 -81.56 -75.94 ... 81.56 87.19\n",
- " * longitude (longitude) float64 512B 0.0 5.625 11.25 ... 343.1 348.8 354.4\n",
- "Data variables: (12/53)\n",
- " u50 (time, latitude, longitude) float32 2MB -4.516 -4.181 ... -7.626\n",
- " u100 (time, latitude, longitude) float32 2MB -4.504 -3.801 ... -1.783\n",
- " u150 (time, latitude, longitude) float32 2MB -4.168 -3.161 ... -0.1854\n",
- " u200 (time, latitude, longitude) float32 2MB -4.082 -3.166 ... 3.008\n",
- " u250 (time, latitude, longitude) float32 2MB -3.733 -3.103 ... 2.488\n",
- " u300 (time, latitude, longitude) float32 2MB -3.452 -2.377 ... 3.883\n",
- " ... ...\n",
- " vo500 (time, latitude, longitude) float32 2MB -5.498e-06 ... 4.115e-06\n",
- " vo600 (time, latitude, longitude) float32 2MB -4.675e-06 ... -2.075e-05\n",
- " vo700 (time, latitude, longitude) float32 2MB 1.607e-05 ... -1.521e-05\n",
- " vo850 (time, latitude, longitude) float32 2MB -5.099e-06 ... -7.604e-06\n",
- " vo925 (time, latitude, longitude) float32 2MB -1.709e-06 ... -1.359e-05\n",
- " vo1000 (time, latitude, longitude) float32 2MB -2.693e-06 ... -1.537e-05\n",
+ " * time (time) datetime64[ns] 352B 2017-01-01 ... 2017-01...\n",
+ " * longitude (longitude) float64 512B 0.0 5.625 ... 348.8 354.4\n",
+ " * latitude (latitude) float64 256B -87.19 -81.56 ... 87.19\n",
+ "Data variables:\n",
+ " 2m_temperature (time, longitude, latitude) float32 360kB 236.5 ....\n",
+ " u_component_of_wind850 (time, longitude, latitude) float32 360kB -4.186 ...\n",
+ " v_component_of_wind850 (time, longitude, latitude) float32 360kB -4.593 ...\n",
+ " vorticity850 (time, longitude, latitude) float32 360kB -4.668e...\n",
+ " geopotential850 (time, longitude, latitude) float32 360kB 1.223e+...\n",
"Attributes:\n",
- " level-dtype: int32 Dimensions: time : 264latitude : 32longitude : 64
Coordinates: (3)
time
(time)
datetime64[ns]
2017-01-01 ... 2017-01-11T23:00:00
array(['2017-01-01T00:00:00.000000000', '2017-01-01T01:00:00.000000000',\n",
- " '2017-01-01T02:00:00.000000000', ..., '2017-01-11T21:00:00.000000000',\n",
- " '2017-01-11T22:00:00.000000000', '2017-01-11T23:00:00.000000000'],\n",
- " shape=(264,), dtype='datetime64[ns]') latitude
(latitude)
float64
-87.19 -81.56 ... 81.56 87.19
array([-87.1875, -81.5625, -75.9375, -70.3125, -64.6875, -59.0625, -53.4375,\n",
- " -47.8125, -42.1875, -36.5625, -30.9375, -25.3125, -19.6875, -14.0625,\n",
- " -8.4375, -2.8125, 2.8125, 8.4375, 14.0625, 19.6875, 25.3125,\n",
- " 30.9375, 36.5625, 42.1875, 47.8125, 53.4375, 59.0625, 64.6875,\n",
- " 70.3125, 75.9375, 81.5625, 87.1875]) longitude
(longitude)
float64
0.0 5.625 11.25 ... 348.8 354.4
array([ 0. , 5.625, 11.25 , 16.875, 22.5 , 28.125, 33.75 , 39.375,\n",
+ " level-dtype: int64 Dimensions: time : 44longitude : 64latitude : 32
Coordinates: (3)
Data variables: (53)
u50
(time, latitude, longitude)
float32
-4.516 -4.181 ... -6.619 -7.626
array([[[ -4.515588 , -4.180817 , -4.1120563, ..., -4.792563 ,\n",
- " -4.833252 , -4.729222 ],\n",
- " [ -5.7370977, -5.658057 , -5.4365425, ..., -6.7300806,\n",
- " -6.731986 , -6.3876762],\n",
- " [ -6.91377 , -6.6437807, -6.165647 , ..., -7.3285356,\n",
- " -7.4553823, -7.092862 ],\n",
- " ...,\n",
- " [ 13.699665 , 15.356525 , 15.682891 , ..., 22.60171 ,\n",
- " 18.62405 , 13.91454 ],\n",
- " [ 7.950869 , 8.647194 , 7.043558 , ..., 15.0366 ,\n",
- " 11.549854 , 7.326909 ],\n",
- " [ -7.9796495, -8.478355 , -9.809154 , ..., -2.2120652,\n",
- " -4.1137447, -6.0192037]],\n",
- "\n",
- " [[ -4.577475 , -4.229547 , -4.1498423, ..., -4.83591 ,\n",
- " -4.865039 , -4.741327 ],\n",
- " [ -5.8221703, -5.73509 , -5.5153923, ..., -6.7069345,\n",
- " -6.735596 , -6.3619432],\n",
- " [ -6.966469 , -6.6683774, -6.200102 , ..., -7.2708397,\n",
- " -7.4027357, -7.076506 ],\n",
- "...\n",
- " [ 11.299452 , 14.218014 , 14.324108 , ..., 9.43517 ,\n",
- " 11.003006 , 11.126028 ],\n",
- " [ 5.7512617, 5.295869 , 5.90588 , ..., 4.2711887,\n",
- " 4.2414656, 4.0339518],\n",
- " [ -7.1573534, -8.407563 , -9.963662 , ..., -6.04914 ,\n",
- " -6.7530775, -7.6138663]],\n",
- "\n",
- " [[ -4.6938744, -4.5887017, -4.575171 , ..., -4.2994843,\n",
- " -4.2606044, -4.600458 ],\n",
- " [ -6.438577 , -6.5002723, -6.715164 , ..., -4.966514 ,\n",
- " -5.4996753, -5.9328113],\n",
- " [ -7.276238 , -7.6196814, -8.1866 , ..., -5.415591 ,\n",
- " -6.281309 , -6.7596083],\n",
- " ...,\n",
- " [ 11.173633 , 14.110836 , 14.285116 , ..., 9.656092 ,\n",
- " 11.227858 , 11.341167 ],\n",
- " [ 5.6369963, 5.3436413, 5.936568 , ..., 4.408535 ,\n",
- " 4.3322153, 3.9609385],\n",
- " [ -7.0831647, -8.346309 , -10.013237 , ..., -5.835328 ,\n",
- " -6.618587 , -7.6256013]]], shape=(264, 32, 64), dtype=float32) u100
(time, latitude, longitude)
float32
-4.504 -3.801 ... -2.078 -1.783
array([[[-4.5036969e+00, -3.8010962e+00, -3.4037309e+00, ...,\n",
- " -4.7714000e+00, -4.6110854e+00, -4.7008886e+00],\n",
- " [-6.0649772e+00, -5.4573455e+00, -4.8593006e+00, ...,\n",
- " -7.6492949e+00, -7.3042498e+00, -6.9220638e+00],\n",
- " [-5.7096167e+00, -6.2457995e+00, -5.8110709e+00, ...,\n",
- " -5.6543465e+00, -6.1290417e+00, -6.1273937e+00],\n",
- " ...,\n",
- " [ 8.7835751e+00, 9.8195763e+00, 8.8214207e+00, ...,\n",
- " 1.9501080e+01, 1.4124816e+01, 9.3286018e+00],\n",
- " [ 4.7529759e+00, 3.1433408e+00, 1.7558799e+00, ...,\n",
- " 8.5397015e+00, 6.0417848e+00, 4.3351922e+00],\n",
- " [-1.5372348e+00, -3.0082197e+00, -4.0106297e+00, ...,\n",
- " -1.2256861e-02, -6.5559375e-01, -1.1491712e+00]],\n",
- "\n",
- " [[-4.5688229e+00, -3.8681309e+00, -3.4448528e+00, ...,\n",
- " -4.7347684e+00, -4.5742269e+00, -4.6675854e+00],\n",
- " [-6.1534514e+00, -5.5720592e+00, -5.0116291e+00, ...,\n",
- " -7.6116180e+00, -7.2365804e+00, -6.9150677e+00],\n",
- " [-5.7571654e+00, -6.3541727e+00, -5.9413195e+00, ...,\n",
- " -5.6335220e+00, -6.0660071e+00, -6.0757308e+00],\n",
- "...\n",
- " 4.0839787e+00, 5.6039925e+00, 5.9713855e+00],\n",
- " [ 1.1206436e+00, 1.5079274e+00, 2.7491629e+00, ...,\n",
- " 1.3333428e-01, 8.0416536e-01, 3.2860048e+00],\n",
- " [-3.0835881e+00, -4.9722137e+00, -5.0274119e+00, ...,\n",
- " -1.9008496e+00, -2.0837374e+00, -1.7247202e+00]],\n",
- "\n",
- " [[-5.4256520e+00, -5.5207667e+00, -5.1592813e+00, ...,\n",
- " -4.9705687e+00, -4.7170439e+00, -4.7438407e+00],\n",
- " [-6.0286417e+00, -6.4618020e+00, -6.7634010e+00, ...,\n",
- " -3.6667483e+00, -4.9866962e+00, -6.0201259e+00],\n",
- " [-4.8921475e+00, -5.7784228e+00, -6.8969712e+00, ...,\n",
- " -1.9367898e+00, -3.2007051e+00, -4.5615587e+00],\n",
- " ...,\n",
- " [ 5.7191467e+00, 8.2320662e+00, 1.0485605e+01, ...,\n",
- " 4.2807665e+00, 5.8467693e+00, 6.1283221e+00],\n",
- " [ 9.3474007e-01, 1.1732807e+00, 2.5532956e+00, ...,\n",
- " 2.6093149e-01, 8.1674421e-01, 3.3673966e+00],\n",
- " [-3.1400132e+00, -5.1489253e+00, -5.1881638e+00, ...,\n",
- " -1.8302050e+00, -2.0780158e+00, -1.7825848e+00]]],\n",
- " shape=(264, 32, 64), dtype=float32) u150
(time, latitude, longitude)
float32
-4.168 -3.161 ... -1.05 -0.1854
array([[[-4.1684914 , -3.1613858 , -2.7010157 , ..., -4.159571 ,\n",
- " -4.1469707 , -4.4665055 ],\n",
- " [-4.2707977 , -3.6105661 , -2.803268 , ..., -7.392248 ,\n",
- " -7.3011894 , -6.6855645 ],\n",
- " [-4.429795 , -4.360402 , -3.1135447 , ..., -5.6924415 ,\n",
- " -6.11937 , -5.886215 ],\n",
- " ...,\n",
- " [ 4.8054676 , 4.6463356 , 3.7305222 , ..., 17.265085 ,\n",
- " 10.644622 , 3.3710341 ],\n",
- " [ 4.041523 , 2.555804 , 1.1854582 , ..., 5.5267363 ,\n",
- " 3.032053 , 1.6981647 ],\n",
- " [ 1.3496708 , -1.0356026 , -2.5574918 , ..., 0.5166919 ,\n",
- " -0.05522752, 0.0959481 ]],\n",
- "\n",
- " [[-4.1899285 , -3.2343016 , -2.8338454 , ..., -4.1571417 ,\n",
- " -4.0999475 , -4.433356 ],\n",
- " [-4.351814 , -3.7454417 , -3.0091438 , ..., -7.428971 ,\n",
- " -7.2572255 , -6.6329846 ],\n",
- " [-4.5597367 , -4.550096 , -3.3210332 , ..., -5.6431246 ,\n",
- " -6.0558367 , -5.7706747 ],\n",
- "...\n",
- " [ 4.272675 , 6.3670673 , 8.505863 , ..., 0.2831422 ,\n",
- " 0.674577 , 1.8083353 ],\n",
- " [ 1.6598284 , 0.92851734, 2.164907 , ..., -2.8740273 ,\n",
- " -1.8031602 , 0.9269514 ],\n",
- " [-0.2303021 , -3.0542483 , -3.7947946 , ..., -1.097392 ,\n",
- " -1.0699457 , -0.15103018]],\n",
- "\n",
- " [[-5.3996816 , -5.1478314 , -4.6477904 , ..., -4.3056183 ,\n",
- " -3.896646 , -4.0607805 ],\n",
- " [-4.9841795 , -5.2605658 , -5.5930533 , ..., -1.6642246 ,\n",
- " -3.110782 , -4.9687862 ],\n",
- " [-1.862619 , -3.2545314 , -5.358683 , ..., -0.43748426,\n",
- " -0.98191524, -2.9551988 ],\n",
- " ...,\n",
- " [ 4.1397123 , 6.0744667 , 8.344214 , ..., 0.14856458,\n",
- " 0.82696044, 2.0432372 ],\n",
- " [ 1.4145579 , 0.729506 , 1.9340229 , ..., -2.835986 ,\n",
- " -1.9135864 , 0.859519 ],\n",
- " [-0.3062508 , -3.182104 , -3.9742985 , ..., -0.98311675,\n",
- " -1.0498677 , -0.18535006]]], shape=(264, 32, 64), dtype=float32) u200
(time, latitude, longitude)
float32
-4.082 -3.166 ... 0.07976 3.008
array([[[-4.0824537e+00, -3.1658812e+00, -2.4741838e+00, ...,\n",
- " -4.1945739e+00, -4.1677389e+00, -4.7680840e+00],\n",
- " [-2.9938798e+00, -1.6301289e+00, -6.7597985e-01, ...,\n",
- " -5.7402487e+00, -5.4827065e+00, -5.5080805e+00],\n",
- " [-1.7214687e+00, -1.1395136e+00, 4.0314627e-01, ...,\n",
- " -3.9414744e+00, -4.3266621e+00, -3.9804609e+00],\n",
- " ...,\n",
- " [ 3.1217422e+00, 5.0804996e+00, 2.8060265e+00, ...,\n",
- " 2.9976786e+01, 2.0053677e+01, 7.7826967e+00],\n",
- " [ 3.7124934e+00, 2.1749444e+00, 8.4680557e-02, ...,\n",
- " 1.0652870e+01, 6.0389528e+00, 3.4673347e+00],\n",
- " [ 4.3148022e+00, 1.0489364e+00, -1.1932211e+00, ...,\n",
- " 3.7096388e+00, 2.8677840e+00, 3.0649536e+00]],\n",
- "\n",
- " [[-4.0503011e+00, -3.1991374e+00, -2.6016402e+00, ...,\n",
- " -4.1410532e+00, -4.1359177e+00, -4.7680678e+00],\n",
- " [-2.9995954e+00, -1.6723475e+00, -7.5340676e-01, ...,\n",
- " -5.7214079e+00, -5.4191933e+00, -5.4438524e+00],\n",
- " [-1.8897697e+00, -1.2937875e+00, 1.3125896e-01, ...,\n",
- " -3.8089404e+00, -4.1522512e+00, -3.8830090e+00],\n",
- "...\n",
- " -8.7705040e-01, 1.2536736e+00, 6.6003704e-01],\n",
- " [-7.1999645e-01, -5.5403471e-01, 1.2374382e+00, ...,\n",
- " -4.5255804e+00, -2.9552870e+00, 7.2020459e-01],\n",
- " [-1.1575084e+00, -5.3112435e+00, -6.0239697e+00, ...,\n",
- " -4.0066147e-01, -1.8010616e-02, 2.9932337e+00]],\n",
- "\n",
- " [[-5.7756219e+00, -5.3746510e+00, -5.0181527e+00, ...,\n",
- " -4.9727612e+00, -4.3067245e+00, -4.4731193e+00],\n",
- " [-3.4371541e+00, -3.2502451e+00, -3.2722120e+00, ...,\n",
- " -9.2095423e-01, -1.7635245e+00, -3.7139840e+00],\n",
- " [ 9.2774510e-01, 7.6690102e-01, -8.4401619e-01, ...,\n",
- " 3.1110458e+00, 3.5337412e+00, 1.7833352e-01],\n",
- " ...,\n",
- " [-3.4739227e+00, 1.0679700e+00, 6.8688087e+00, ...,\n",
- " -1.2486291e+00, 7.9656172e-01, 6.9056082e-01],\n",
- " [-1.1222820e+00, -8.1393480e-01, 1.1491261e+00, ...,\n",
- " -4.4375620e+00, -2.9083056e+00, 6.9107723e-01],\n",
- " [-1.2693677e+00, -5.6366897e+00, -6.2972994e+00, ...,\n",
- " -1.0712147e-01, 7.9760551e-02, 3.0084381e+00]]],\n",
- " shape=(264, 32, 64), dtype=float32) u250
(time, latitude, longitude)
float32
-3.733 -3.103 ... -1.831 2.488
array([[[-3.7329459e+00, -3.1025276e+00, -2.3790877e+00, ...,\n",
- " -4.4463911e+00, -4.2685165e+00, -4.3916292e+00],\n",
- " [-2.2801936e+00, -7.1160889e-01, 4.5991087e-01, ...,\n",
- " -5.2770104e+00, -4.9422822e+00, -4.4273348e+00],\n",
- " [-7.5626469e-01, -7.4067193e-01, 6.8474090e-01, ...,\n",
- " -4.2075329e+00, -5.1559248e+00, -4.4651103e+00],\n",
- " ...,\n",
- " [-1.4230719e+00, -7.8361893e-01, -6.7018354e-01, ...,\n",
- " 2.4453049e+01, 1.1765058e+01, -9.0705538e-01],\n",
- " [ 3.4082656e+00, -9.3101501e-02, -2.9301977e+00, ...,\n",
- " 5.0926013e+00, 1.0900548e+00, 1.0082197e+00],\n",
- " [ 5.6974311e+00, 1.4735794e-01, -3.1801786e+00, ...,\n",
- " 2.1319675e-01, -2.0460224e-01, 2.8618784e+00]],\n",
- "\n",
- " [[-3.7251940e+00, -3.1081879e+00, -2.4709027e+00, ...,\n",
- " -4.4322009e+00, -4.2263317e+00, -4.3571987e+00],\n",
- " [-2.2664208e+00, -7.4057651e-01, 3.8448381e-01, ...,\n",
- " -5.3413210e+00, -4.9072537e+00, -4.3672132e+00],\n",
- " [-8.2933891e-01, -8.4505129e-01, 5.3400147e-01, ...,\n",
- " -4.0854483e+00, -4.9892502e+00, -4.3257070e+00],\n",
- "...\n",
- " -1.3517981e+00, 3.1707287e-01, -1.4103022e+00],\n",
- " [ 6.0335445e-01, -1.7381573e+00, 6.2997103e-01, ...,\n",
- " -5.8305688e+00, -4.8383217e+00, -4.0754032e-01],\n",
- " [-2.2887993e-01, -7.5538683e+00, -8.8770428e+00, ...,\n",
- " -1.2867131e+00, -1.9680376e+00, 2.5245318e+00]],\n",
- "\n",
- " [[-5.0054917e+00, -5.0874290e+00, -4.4785118e+00, ...,\n",
- " -4.9508185e+00, -4.7966814e+00, -4.7176232e+00],\n",
- " [-2.4496629e+00, -2.7619328e+00, -2.9531007e+00, ...,\n",
- " -8.8115835e-01, -1.8372774e+00, -3.1784048e+00],\n",
- " [ 1.6404845e+00, 5.7218432e-01, -1.9232231e+00, ...,\n",
- " 6.2225485e+00, 4.7952824e+00, 8.9013898e-01],\n",
- " ...,\n",
- " [-7.5008488e-01, 5.3827667e+00, 1.1454168e+01, ...,\n",
- " -1.7296162e+00, 2.1718216e-01, -1.4718122e+00],\n",
- " [ 3.4695530e-01, -2.0584288e+00, 4.0790081e-01, ...,\n",
- " -5.4952579e+00, -5.0344510e+00, -4.8479557e-01],\n",
- " [-3.9304066e-01, -8.0384283e+00, -9.4888439e+00, ...,\n",
- " -7.9883432e-01, -1.8311567e+00, 2.4882398e+00]]],\n",
- " shape=(264, 32, 64), dtype=float32) u300
(time, latitude, longitude)
float32
-3.452 -2.377 ... -0.3948 3.883
array([[[-3.45237970e+00, -2.37705088e+00, -1.42019439e+00, ...,\n",
- " -4.28189993e+00, -4.38074112e+00, -4.13529491e+00],\n",
- " [ 2.42706060e-01, 1.10960650e+00, 1.72828674e+00, ...,\n",
- " -4.14374399e+00, -3.97740173e+00, -3.46978331e+00],\n",
- " [ 4.88328665e-01, 1.45078599e+00, 3.06191278e+00, ...,\n",
- " -4.64030075e+00, -6.62518406e+00, -5.26203156e+00],\n",
- " ...,\n",
- " [-3.35711479e-01, 1.15620041e+00, -2.31137753e-01, ...,\n",
- " 2.91852951e+01, 1.24922047e+01, -4.13790035e+00],\n",
- " [ 3.34577417e+00, 1.05316305e+00, -1.91998243e+00, ...,\n",
- " 4.61367607e+00, -2.74254560e-01, -1.11001539e+00],\n",
- " [ 5.98215580e+00, 1.51817799e+00, -1.09534645e+00, ...,\n",
- " 2.02098131e+00, 9.74306107e-01, 3.48655224e+00]],\n",
- "\n",
- " [[-3.44700885e+00, -2.36018205e+00, -1.37584162e+00, ...,\n",
- " -4.30845070e+00, -4.37854719e+00, -4.10067415e+00],\n",
- " [ 1.91157103e-01, 1.00531602e+00, 1.66043425e+00, ...,\n",
- " -4.34904385e+00, -3.93074608e+00, -3.38026333e+00],\n",
- " [ 2.89972693e-01, 1.06854022e+00, 2.63290739e+00, ...,\n",
- " -4.60219622e+00, -6.34778595e+00, -4.98602200e+00],\n",
- "...\n",
- " 2.29252911e+00, 2.11235142e+00, -1.73262596e+00],\n",
- " [-1.58019257e+00, -3.16544724e+00, -1.78005552e+00, ...,\n",
- " -6.24522114e+00, -5.11150360e+00, -3.94151211e-02],\n",
- " [ 1.50244236e+00, -3.94769764e+00, -5.13560104e+00, ...,\n",
- " -8.90028000e-01, -4.92192268e-01, 3.87190723e+00]],\n",
- "\n",
- " [[-5.24107933e+00, -4.64274549e+00, -3.89641523e+00, ...,\n",
- " -5.34191799e+00, -4.54195786e+00, -4.35171032e+00],\n",
- " [-1.08337009e+00, -1.40323794e+00, -2.10471916e+00, ...,\n",
- " 9.73336458e-01, -1.36294365e-02, -2.09690928e+00],\n",
- " [ 3.89237690e+00, 4.09910011e+00, 6.61227167e-01, ...,\n",
- " 1.02149830e+01, 7.68803310e+00, 1.99144912e+00],\n",
- " ...,\n",
- " [-2.57801819e+00, 4.92826128e+00, 6.85629749e+00, ...,\n",
- " 2.37091160e+00, 2.24653053e+00, -1.48659325e+00],\n",
- " [-1.72960663e+00, -3.39307785e+00, -1.82734632e+00, ...,\n",
- " -5.68632269e+00, -4.87972879e+00, -9.74988937e-02],\n",
- " [ 1.25421906e+00, -4.34037304e+00, -5.70617676e+00, ...,\n",
- " -5.41769981e-01, -3.94802094e-01, 3.88295746e+00]]],\n",
- " shape=(264, 32, 64), dtype=float32) u400
(time, latitude, longitude)
float32
-2.508 -0.9027 ... 1.174 3.905
array([[[-2.5080454 , -0.9026866 , -0.28295207, ..., -3.5456598 ,\n",
- " -3.0973916 , -3.000344 ],\n",
- " [ 0.65221524, 2.5441365 , 3.5290256 , ..., -4.227853 ,\n",
- " -3.876405 , -3.0450985 ],\n",
- " [-2.5476859 , -2.9159513 , -0.861784 , ..., -5.584049 ,\n",
- " -6.3703337 , -4.27836 ],\n",
- " ...,\n",
- " [-3.8921442 , -0.820307 , -0.13893604, ..., 18.060276 ,\n",
- " 6.970176 , 1.3333702 ],\n",
- " [-1.0731308 , -1.6206203 , -2.8521132 , ..., 1.5080619 ,\n",
- " -2.0549219 , 0.22534925],\n",
- " [ 4.1518536 , 2.6103892 , 0.56416416, ..., 0.5697646 ,\n",
- " 0.8516488 , 4.2527537 ]],\n",
- "\n",
- " [[-2.454502 , -0.90267944, -0.3339486 , ..., -3.5354009 ,\n",
- " -3.0384154 , -2.939378 ],\n",
- " [ 0.7285085 , 2.5580392 , 3.4316397 , ..., -4.3323216 ,\n",
- " -3.7245624 , -2.8432531 ],\n",
- " [-2.607412 , -2.932725 , -1.123776 , ..., -5.4731817 ,\n",
- " -6.0792246 , -4.065922 ],\n",
- "...\n",
- " [-0.9740834 , 4.277211 , 6.5982146 , ..., 2.420404 ,\n",
- " 1.6087632 , -1.0727086 ],\n",
- " [-2.9242792 , -2.042346 , -1.6764636 , ..., -3.8322587 ,\n",
- " -3.54924 , -0.4810999 ],\n",
- " [ 1.4949656 , -1.1591387 , -2.5893164 , ..., 0.7721238 ,\n",
- " 1.1038156 , 3.781988 ]],\n",
- "\n",
- " [[-4.5526485 , -3.973907 , -3.3126736 , ..., -5.7147293 ,\n",
- " -4.555147 , -3.744625 ],\n",
- " [-1.1187224 , -0.58979726, -0.891821 , ..., 1.4807847 ,\n",
- " 0.30335808, -1.4818149 ],\n",
- " [ 1.5889142 , 0.45572495, -1.5778654 , ..., 10.421387 ,\n",
- " 6.8511767 , 2.496008 ],\n",
- " ...,\n",
- " [-1.0238161 , 4.2071056 , 6.4975324 , ..., 2.1394124 ,\n",
- " 1.5372472 , -0.9280586 ],\n",
- " [-3.1308498 , -2.27634 , -1.8121886 , ..., -3.5351427 ,\n",
- " -3.4843926 , -0.5007077 ],\n",
- " [ 1.2601418 , -1.6172037 , -2.9134817 , ..., 0.95169735,\n",
- " 1.1742225 , 3.9051735 ]]], shape=(264, 32, 64), dtype=float32) u500
(time, latitude, longitude)
float32
-2.209 -1.292 ... -0.4235 2.543
array([[[-2.2088306 , -1.2919351 , -0.5422449 , ..., -3.7187002 ,\n",
- " -3.4420807 , -3.0476375 ],\n",
- " [-0.92727315, 0.78019416, 1.8908262 , ..., -5.169722 ,\n",
- " -4.5778418 , -3.2267756 ],\n",
- " [-2.9380956 , -3.191389 , -2.1830528 , ..., -4.755191 ,\n",
- " -4.7995534 , -2.5756326 ],\n",
- " ...,\n",
- " [-3.5619442 , -1.2760818 , -2.4597788 , ..., 15.042897 ,\n",
- " 7.003955 , 1.435245 ],\n",
- " [-3.9107552 , -5.6082253 , -7.2867627 , ..., 1.6482491 ,\n",
- " -1.1780841 , -0.57872427],\n",
- " [ 1.641243 , 0.11464643, -0.86872244, ..., -1.4715178 ,\n",
- " -0.35519028, 3.1118412 ]],\n",
- "\n",
- " [[-2.2062075 , -1.2868842 , -0.6181061 , ..., -3.7059 ,\n",
- " -3.397701 , -3.029128 ],\n",
- " [-0.8455925 , 0.8094348 , 1.8731728 , ..., -5.182468 ,\n",
- " -4.456787 , -3.0815737 ],\n",
- " [-2.928336 , -3.271224 , -2.3069856 , ..., -4.7201343 ,\n",
- " -4.6496067 , -2.4783444 ],\n",
- "...\n",
- " [-0.8997216 , 2.3370404 , 4.7217646 , ..., -1.1797323 ,\n",
- " -1.0172253 , -2.5816743 ],\n",
- " [-4.2851706 , -5.935523 , -4.4262943 , ..., -6.0413666 ,\n",
- " -5.4491596 , -3.108668 ],\n",
- " [-0.31202888, -2.860086 , -3.1009836 , ..., -1.2671688 ,\n",
- " -0.52211237, 2.4941196 ]],\n",
- "\n",
- " [[-3.210919 , -2.9239838 , -2.244425 , ..., -4.389412 ,\n",
- " -3.9423277 , -3.381456 ],\n",
- " [-0.6525775 , 0.0288651 , -0.13574517, ..., 1.2728219 ,\n",
- " -0.736387 , -1.5409312 ],\n",
- " [ 0.43996805, 0.26911807, -1.7552443 , ..., 5.255977 ,\n",
- " 3.0372539 , 1.247118 ],\n",
- " ...,\n",
- " [-0.9541197 , 2.2104125 , 4.5730734 , ..., -1.2939682 ,\n",
- " -1.101623 , -2.600603 ],\n",
- " [-4.5467415 , -6.234966 , -4.620124 , ..., -5.9104958 ,\n",
- " -5.635918 , -3.1807253 ],\n",
- " [-0.5945616 , -3.234672 , -3.3170204 , ..., -1.0946338 ,\n",
- " -0.42352247, 2.5428398 ]]], shape=(264, 32, 64), dtype=float32) u600
(time, latitude, longitude)
float32
-2.298 -1.327 ... -1.33 0.3719
array([[[-2.2978246 , -1.3267068 , -0.6424836 , ..., -3.868645 ,\n",
- " -3.4633734 , -3.082255 ],\n",
- " [-0.3831042 , 1.2789958 , 2.2923431 , ..., -4.510755 ,\n",
- " -4.237688 , -3.2022052 ],\n",
- " [-1.4090064 , -2.43472 , -1.9117533 , ..., -4.4747033 ,\n",
- " -3.1671188 , -2.5828083 ],\n",
- " ...,\n",
- " [-5.2824445 , -4.539521 , -3.5421467 , ..., 4.291349 ,\n",
- " -0.38833284, -3.5996015 ],\n",
- " [-4.3536677 , -6.402181 , -7.506848 , ..., -3.0327415 ,\n",
- " -3.9441438 , -3.170146 ],\n",
- " [ 0.9655349 , -0.36913753, -1.0617845 , ..., -2.5509076 ,\n",
- " -1.4679515 , 0.69069195]],\n",
- "\n",
- " [[-2.25953 , -1.3304378 , -0.65898347, ..., -3.8337643 ,\n",
- " -3.4205928 , -3.0600593 ],\n",
- " [-0.2790177 , 1.3453798 , 2.2733364 , ..., -4.487301 ,\n",
- " -4.0969753 , -3.113511 ],\n",
- " [-1.3908521 , -2.4625258 , -2.0063667 , ..., -4.4405503 ,\n",
- " -3.1163306 , -2.4700403 ],\n",
- "...\n",
- " [-0.73024654, 3.036984 , 5.5050116 , ..., -0.6817603 ,\n",
- " -0.33608818, -1.8064952 ],\n",
- " [-3.7865043 , -4.152161 , -2.2776718 , ..., -3.8258698 ,\n",
- " -3.6627464 , -1.5109868 ],\n",
- " [-0.930794 , -3.366906 , -4.1637096 , ..., -1.4231654 ,\n",
- " -1.4280262 , 0.34917307]],\n",
- "\n",
- " [[-3.5566187 , -3.3246145 , -2.6461432 , ..., -5.271417 ,\n",
- " -4.5151477 , -3.666792 ],\n",
- " [-0.13435876, 0.22632766, 0.02286577, ..., -0.12688947,\n",
- " -1.5418351 , -2.7230318 ],\n",
- " [ 0.8675297 , 0.38643706, -0.9507042 , ..., 2.2268548 ,\n",
- " 1.1680694 , -0.28438413],\n",
- " ...,\n",
- " [-0.9527335 , 2.8999162 , 5.4499617 , ..., -0.94821644,\n",
- " -0.49839163, -1.844862 ],\n",
- " [-4.0111475 , -4.338313 , -2.3529344 , ..., -3.8106737 ,\n",
- " -3.882175 , -1.5102986 ],\n",
- " [-1.0502069 , -3.546209 , -4.331403 , ..., -1.1141483 ,\n",
- " -1.3300462 , 0.37185407]]], shape=(264, 32, 64), dtype=float32) u700
(time, latitude, longitude)
float32
-4.561 -3.34 ... -2.207 -0.8364
array([[[-4.5610375 , -3.3398025 , -2.4429474 , ..., -5.733875 ,\n",
- " -5.3981533 , -4.757751 ],\n",
- " [-0.43181485, 1.671933 , 3.103513 , ..., -4.207309 ,\n",
- " -4.116074 , -2.4036446 ],\n",
- " [-2.6409297 , -3.0252244 , -2.4797187 , ..., -4.6071935 ,\n",
- " -2.641398 , -2.0859892 ],\n",
- " ...,\n",
- " [-6.6249566 , -5.792616 , -4.376477 , ..., 3.8271189 ,\n",
- " -0.6971903 , -3.4823508 ],\n",
- " [-4.562193 , -6.091652 , -6.843397 , ..., -2.3699079 ,\n",
- " -3.5706644 , -2.7921016 ],\n",
- " [-1.2605838 , -2.1807778 , -2.7059464 , ..., -3.5091493 ,\n",
- " -2.8846953 , -1.2832855 ]],\n",
- "\n",
- " [[-4.522327 , -3.3313344 , -2.4561367 , ..., -5.729718 ,\n",
- " -5.349838 , -4.6934237 ],\n",
- " [-0.3654213 , 1.7549038 , 3.1110861 , ..., -4.198762 ,\n",
- " -4.02629 , -2.334326 ],\n",
- " [-2.6497278 , -3.0524724 , -2.5264761 , ..., -4.6097727 ,\n",
- " -2.604565 , -2.0132613 ],\n",
- "...\n",
- " [-3.4879062 , -0.4931078 , 2.1796317 , ..., -3.3552742 ,\n",
- " -3.173777 , -4.4076557 ],\n",
- " [-3.3810806 , -4.045495 , -3.4914377 , ..., -4.4130445 ,\n",
- " -4.021079 , -2.585738 ],\n",
- " [-1.772533 , -2.9950657 , -3.0834246 , ..., -2.6216972 ,\n",
- " -2.343152 , -0.8682462 ]],\n",
- "\n",
- " [[-5.6440244 , -4.8785195 , -3.708661 , ..., -6.7042856 ,\n",
- " -6.161365 , -5.118689 ],\n",
- " [-0.50868213, 1.2510735 , 1.7222264 , ..., -0.05595493,\n",
- " -0.7487705 , -0.81173337],\n",
- " [-1.5294788 , -1.4514595 , -1.3055313 , ..., 0.01850629,\n",
- " 1.3473132 , 0.75259364],\n",
- " ...,\n",
- " [-3.5810988 , -0.63205814, 2.1049342 , ..., -3.6480715 ,\n",
- " -3.1312127 , -4.458499 ],\n",
- " [-3.5582132 , -4.1519747 , -3.6346827 , ..., -4.455348 ,\n",
- " -4.242317 , -2.6125493 ],\n",
- " [-1.8564478 , -3.0892537 , -3.0950193 , ..., -2.5334396 ,\n",
- " -2.207218 , -0.83643425]]], shape=(264, 32, 64), dtype=float32) u850
(time, latitude, longitude)
float32
-3.701 -3.046 ... -5.621 -4.735
array([[[-3.700848 , -3.0459986 , -2.3297453 , ..., -5.259374 ,\n",
- " -4.645319 , -4.0120344 ],\n",
- " [-1.9515821 , -0.73680687, 0.62842584, ..., -5.9646044 ,\n",
- " -4.866065 , -3.3179152 ],\n",
- " [-2.4295964 , -3.024395 , -2.6336012 , ..., -5.474152 ,\n",
- " -4.1439905 , -2.467473 ],\n",
- " ...,\n",
- " [-6.6447353 , -7.6569395 , -7.47756 , ..., -3.4200635 ,\n",
- " -6.291331 , -8.764523 ],\n",
- " [-3.282771 , -6.1140094 , -7.5411468 , ..., -3.5242314 ,\n",
- " -4.3802066 , -4.6322885 ],\n",
- " [-4.263814 , -5.809041 , -6.9237685 , ..., -5.5395336 ,\n",
- " -5.665223 , -4.875762 ]],\n",
- "\n",
- " [[-3.6916254 , -3.040875 , -2.325194 , ..., -5.2337875 ,\n",
- " -4.601919 , -3.978317 ],\n",
- " [-1.8958346 , -0.63594496, 0.6289159 , ..., -6.00354 ,\n",
- " -4.8134 , -3.2672508 ],\n",
- " [-2.4089441 , -3.0149856 , -2.6571631 , ..., -5.481371 ,\n",
- " -4.0872126 , -2.4031546 ],\n",
- "...\n",
- " [-4.1631823 , -2.8990116 , -1.5095029 , ..., -2.7469037 ,\n",
- " -3.6267123 , -4.761761 ],\n",
- " [-2.3246725 , -2.467965 , -1.364098 , ..., -1.6220175 ,\n",
- " -2.167076 , -2.2362177 ],\n",
- " [-5.188545 , -7.2589474 , -7.6749477 , ..., -4.9199853 ,\n",
- " -5.755123 , -4.7699394 ]],\n",
- "\n",
- " [[-4.2183123 , -4.016149 , -3.3487132 , ..., -5.6552277 ,\n",
- " -4.9397793 , -4.1487103 ],\n",
- " [-1.5307357 , -0.55882454, -0.0142979 , ..., -3.7262235 ,\n",
- " -3.0643306 , -2.6792383 ],\n",
- " [-0.94051147, -0.7078631 , -0.8840668 , ..., -2.1484962 ,\n",
- " -1.3683546 , -1.0078807 ],\n",
- " ...,\n",
- " [-4.2722654 , -3.0933337 , -1.6322832 , ..., -2.9243312 ,\n",
- " -3.8248136 , -4.848228 ],\n",
- " [-2.4279013 , -2.5676515 , -1.4056785 , ..., -1.7134719 ,\n",
- " -2.4211695 , -2.3390176 ],\n",
- " [-5.2470903 , -7.390249 , -7.8217587 , ..., -4.7809176 ,\n",
- " -5.6206703 , -4.735077 ]]], shape=(264, 32, 64), dtype=float32) u925
(time, latitude, longitude)
float32
-3.832 -3.379 ... -6.16 -6.232
array([[[-3.8319778 , -3.378754 , -2.6806123 , ..., -5.3782988 ,\n",
- " -4.758183 , -4.161596 ],\n",
- " [-1.8771808 , -0.72965455, 0.37179363, ..., -5.9166303 ,\n",
- " -4.752893 , -3.2532563 ],\n",
- " [-2.3147707 , -2.8679898 , -2.3988566 , ..., -5.273701 ,\n",
- " -3.9528723 , -2.3236892 ],\n",
- " ...,\n",
- " [-8.915366 , -9.146771 , -8.344265 , ..., -0.33371305,\n",
- " -3.3207107 , -5.822526 ],\n",
- " [-5.228216 , -6.0595026 , -7.945266 , ..., 1.8762869 ,\n",
- " -0.43607983, -2.7794719 ],\n",
- " [-5.9827037 , -7.1089907 , -8.074281 , ..., -6.2042584 ,\n",
- " -6.356915 , -6.2515574 ]],\n",
- "\n",
- " [[-3.8179412 , -3.3585024 , -2.6662903 , ..., -5.3629394 ,\n",
- " -4.7431135 , -4.140206 ],\n",
- " [-1.8083571 , -0.6595864 , 0.44114268, ..., -5.9352865 ,\n",
- " -4.7048855 , -3.2228553 ],\n",
- " [-2.2655563 , -2.8182387 , -2.3982031 , ..., -5.2825327 ,\n",
- " -3.8953984 , -2.2953138 ],\n",
- "...\n",
- " [-3.8121023 , -3.1269212 , -1.3310466 , ..., -1.2509441 ,\n",
- " -3.5669947 , -5.8274393 ],\n",
- " [-1.3039746 , -1.1507835 , -1.6002833 , ..., 2.328251 ,\n",
- " -0.38440463, -3.5265455 ],\n",
- " [-5.9887404 , -7.7838125 , -8.150272 , ..., -5.6973333 ,\n",
- " -6.362167 , -6.2796707 ]],\n",
- "\n",
- " [[-4.0346246 , -3.8811646 , -3.2625012 , ..., -5.767743 ,\n",
- " -5.0802236 , -4.39147 ],\n",
- " [-1.93262 , -0.97108907, -0.04131991, ..., -4.570166 ,\n",
- " -3.7188241 , -2.7168453 ],\n",
- " [-1.0838726 , -1.0641582 , -1.0192151 , ..., -3.5412917 ,\n",
- " -2.1350756 , -1.4069514 ],\n",
- " ...,\n",
- " [-3.9786565 , -3.1755195 , -1.3868484 , ..., -1.50982 ,\n",
- " -3.8440003 , -5.9298115 ],\n",
- " [-1.4570299 , -1.354423 , -1.8655384 , ..., 2.3190126 ,\n",
- " -0.41674337, -3.7501655 ],\n",
- " [-6.0940595 , -7.875936 , -8.278907 , ..., -5.4778123 ,\n",
- " -6.1599007 , -6.232448 ]]], shape=(264, 32, 64), dtype=float32) u1000
(time, latitude, longitude)
float32
-3.661 -3.258 ... -5.569 -6.282
array([[[-3.6606739 , -3.258007 , -2.556588 , ..., -5.4120407 ,\n",
- " -4.781799 , -4.082481 ],\n",
- " [-2.165416 , -1.1666274 , 0.37798303, ..., -6.19134 ,\n",
- " -5.118345 , -3.340535 ],\n",
- " [-2.7777684 , -3.6542377 , -3.243579 , ..., -5.4775667 ,\n",
- " -4.22006 , -2.6256738 ],\n",
- " ...,\n",
- " [-5.5763593 , -6.7145443 , -6.482531 , ..., 1.8317745 ,\n",
- " -2.3662372 , -4.436029 ],\n",
- " [-2.156641 , -4.248657 , -6.153871 , ..., 3.0398002 ,\n",
- " 3.403242 , -1.4309195 ],\n",
- " [-5.7488456 , -6.884016 , -7.748476 , ..., -6.9534516 ,\n",
- " -7.221986 , -6.6133823 ]],\n",
- "\n",
- " [[-3.6307373 , -3.241928 , -2.5418844 , ..., -5.405639 ,\n",
- " -4.778677 , -4.073919 ],\n",
- " [-2.103827 , -1.0402374 , 0.4440412 , ..., -6.1956835 ,\n",
- " -5.0926185 , -3.30462 ],\n",
- " [-2.744395 , -3.5831532 , -3.2102804 , ..., -5.4904118 ,\n",
- " -4.1935177 , -2.5859828 ],\n",
- "...\n",
- " [-2.4049816 , -3.6225128 , -2.856221 , ..., 1.9285989 ,\n",
- " -1.7190793 , -4.050205 ],\n",
- " [ 0.3325472 , -1.024299 , -2.2343702 , ..., 4.138956 ,\n",
- " 5.324688 , -0.23398675],\n",
- " [-5.1217074 , -6.479947 , -7.657279 , ..., -5.23432 ,\n",
- " -5.668585 , -6.332001 ]],\n",
- "\n",
- " [[-3.9847386 , -4.013445 , -3.494027 , ..., -5.828747 ,\n",
- " -5.2515774 , -4.532758 ],\n",
- " [-1.7682321 , -1.1872666 , -0.5346559 , ..., -4.8492846 ,\n",
- " -4.1363435 , -3.0369465 ],\n",
- " [-1.4239771 , -1.5763359 , -1.5377061 , ..., -3.6566625 ,\n",
- " -2.300198 , -1.5169715 ],\n",
- " ...,\n",
- " [-2.433406 , -3.7024822 , -2.9040353 , ..., 1.820471 ,\n",
- " -1.7021158 , -4.086131 ],\n",
- " [ 0.18013859, -1.1157918 , -2.3425434 , ..., 4.0934033 ,\n",
- " 5.284589 , -0.39824134],\n",
- " [-5.107533 , -6.4682713 , -7.7154083 , ..., -5.1598005 ,\n",
- " -5.5692205 , -6.2815976 ]]], shape=(264, 32, 64), dtype=float32) v50
(time, latitude, longitude)
float32
-0.3013 -0.6513 ... -6.993 -5.56
array([[[-3.01255822e-01, -6.51341677e-01, -9.58986819e-01, ...,\n",
- " 6.69219255e-01, 5.31977415e-01, 3.14361125e-01],\n",
- " [ 4.88668680e-04, -4.99779403e-01, -8.37913334e-01, ...,\n",
- " 1.39386272e+00, 1.09735811e+00, 7.78076112e-01],\n",
- " [ 1.29003763e-01, -6.46564722e-01, -1.01469636e+00, ...,\n",
- " 2.39697647e+00, 1.82799160e+00, 1.28914511e+00],\n",
- " ...,\n",
- " [-4.19912815e-01, -3.43571877e+00, -5.69915581e+00, ...,\n",
- " -4.67177582e+00, -1.01985073e+00, 2.87250376e+00],\n",
- " [-3.51695752e+00, -5.60007763e+00, -7.13520193e+00, ...,\n",
- " -2.39644504e+00, -1.34025455e+00, -4.65787530e-01],\n",
- " [-6.48263359e+00, -6.20369482e+00, -4.83839130e+00, ...,\n",
- " -9.91197205e+00, -8.42486477e+00, -6.53033400e+00]],\n",
- "\n",
- " [[-2.54501402e-01, -5.99205911e-01, -9.10276890e-01, ...,\n",
- " 6.55643642e-01, 5.36448121e-01, 3.10084254e-01],\n",
- " [ 8.48408639e-02, -3.90543699e-01, -7.29533553e-01, ...,\n",
- " 1.34844434e+00, 1.06707871e+00, 7.81378925e-01],\n",
- " [ 2.35685110e-01, -5.10141253e-01, -8.81481409e-01, ...,\n",
- " 2.37508154e+00, 1.83728552e+00, 1.29184699e+00],\n",
- "...\n",
- " 6.85892582e+00, 6.68337727e+00, 5.37974691e+00],\n",
- " [-1.14135027e+00, -1.85309744e+00, -2.54358864e+00, ...,\n",
- " 2.12627220e+00, 1.97548127e+00, 6.92301154e-01],\n",
- " [-5.84043312e+00, -4.79764080e+00, -3.21035862e+00, ...,\n",
- " -8.30368710e+00, -6.85819244e+00, -5.51513004e+00]],\n",
- "\n",
- " [[-1.01485002e+00, -1.63819599e+00, -2.05406880e+00, ...,\n",
- " -7.42564678e-01, -5.46388984e-01, -1.19365931e-01],\n",
- " [-7.55311728e-01, -1.72614348e+00, -2.43797135e+00, ...,\n",
- " -1.90608382e-01, -6.29031658e-02, 4.06514078e-01],\n",
- " [ 9.67190027e-01, 1.25819877e-01, -1.10059905e+00, ...,\n",
- " 1.49841523e+00, 1.88203442e+00, 1.90428817e+00],\n",
- " ...,\n",
- " [ 3.64921284e+00, 2.62399626e+00, 1.53535533e+00, ...,\n",
- " 6.52955627e+00, 6.56930208e+00, 5.33586502e+00],\n",
- " [-1.24955702e+00, -1.89043307e+00, -2.39490104e+00, ...,\n",
- " 1.86528230e+00, 1.85669172e+00, 6.20767057e-01],\n",
- " [-5.99015331e+00, -4.95576620e+00, -3.23448372e+00, ...,\n",
- " -8.47082520e+00, -6.99346495e+00, -5.56013966e+00]]],\n",
- " shape=(264, 32, 64), dtype=float32) v100
(time, latitude, longitude)
float32
0.1589 -0.2325 ... -4.231 -3.433
array([[[ 0.15891981, -0.23246354, -0.57790244, ..., 1.3149929 ,\n",
- " 1.1286387 , 0.95115525],\n",
- " [-0.39203912, -0.9681413 , -1.2063031 , ..., 1.6022203 ,\n",
- " 0.80235976, 0.67617494],\n",
- " [-0.39439094, -1.1876113 , -1.4197626 , ..., 2.2980301 ,\n",
- " 1.4859238 , 1.3518496 ],\n",
- " ...,\n",
- " [ 1.280096 , -3.9347303 , -6.748124 , ..., -1.0642052 ,\n",
- " -0.36460304, 2.4641252 ],\n",
- " [-1.6074392 , -4.8691163 , -6.2208652 , ..., 0.16688013,\n",
- " -0.3993802 , 0.26073813],\n",
- " [-4.383089 , -4.6999836 , -4.6233706 , ..., -5.78155 ,\n",
- " -5.027502 , -3.8959866 ]],\n",
- "\n",
- " [[ 0.19228074, -0.1348014 , -0.47529608, ..., 1.3061357 ,\n",
- " 1.1279967 , 0.97285426],\n",
- " [-0.30051154, -0.78300613, -1.0458696 , ..., 1.4902041 ,\n",
- " 0.7372835 , 0.6413629 ],\n",
- " [-0.24130678, -0.9689967 , -1.2155759 , ..., 2.207738 ,\n",
- " 1.4279532 , 1.3994225 ],\n",
- "...\n",
- " [ 5.963793 , 4.3152094 , 3.534722 , ..., 7.2392116 ,\n",
- " 6.921445 , 6.8298774 ],\n",
- " [ 0.9613103 , 0.18175091, -0.31712878, ..., 3.6243315 ,\n",
- " 3.176784 , 2.716238 ],\n",
- " [-3.743714 , -3.7036805 , -3.1921635 , ..., -4.7265997 ,\n",
- " -4.087673 , -3.333674 ]],\n",
- "\n",
- " [[-0.6594162 , -1.9194236 , -2.5775833 , ..., -0.74058604,\n",
- " -0.5212045 , -0.05267143],\n",
- " [-0.9935372 , -2.440522 , -3.6353273 , ..., 0.12208176,\n",
- " 0.03016603, 0.0799855 ],\n",
- " [ 0.72068876, -0.29600102, -1.8375583 , ..., 1.8321441 ,\n",
- " 2.150944 , 2.0785353 ],\n",
- " ...,\n",
- " [ 5.9477386 , 4.347687 , 3.7050178 , ..., 7.058391 ,\n",
- " 6.8281326 , 6.757015 ],\n",
- " [ 0.94374883, 0.19184671, -0.24634743, ..., 3.4358048 ,\n",
- " 2.965022 , 2.5951674 ],\n",
- " [-3.8528795 , -3.816994 , -3.2598538 , ..., -4.9080334 ,\n",
- " -4.2308598 , -3.433031 ]]], shape=(264, 32, 64), dtype=float32) v150
(time, latitude, longitude)
float32
1.074 0.2758 ... -1.75 -1.344
array([[[ 1.0743054 , 0.27583435, -0.1546919 , ..., 2.5920532 ,\n",
- " 2.0236068 , 1.7395098 ],\n",
- " [-0.22828826, -1.2390633 , -1.5236121 , ..., 2.0095198 ,\n",
- " 0.99706346, 0.47305357],\n",
- " [-0.74853253, -1.8772113 , -2.2751913 , ..., 2.070454 ,\n",
- " 0.7645488 , 0.24814224],\n",
- " ...,\n",
- " [ 0.39203644, -5.425818 , -7.7765627 , ..., -2.2329893 ,\n",
- " -2.2601957 , 1.5057335 ],\n",
- " [-0.35473204, -3.6512113 , -5.1208854 , ..., -0.27679968,\n",
- " -0.4670291 , 1.4571927 ],\n",
- " [-2.614342 , -3.3609743 , -3.6074443 , ..., -3.7035306 ,\n",
- " -2.8730354 , -2.2880561 ]],\n",
- "\n",
- " [[ 1.1215862 , 0.34839496, -0.1013931 , ..., 2.5853803 ,\n",
- " 2.0250533 , 1.7330385 ],\n",
- " [-0.18165776, -1.11316 , -1.4257575 , ..., 1.946326 ,\n",
- " 0.9184061 , 0.4683424 ],\n",
- " [-0.6777727 , -1.673966 , -2.1012099 , ..., 1.9715419 ,\n",
- " 0.53282535, 0.19120443],\n",
- "...\n",
- " [ 6.9663544 , 5.533422 , 4.60344 , ..., 6.868223 ,\n",
- " 7.194436 , 7.9607964 ],\n",
- " [ 1.9082999 , 1.1777053 , 1.1773641 , ..., 4.074665 ,\n",
- " 4.2940545 , 4.814667 ],\n",
- " [-2.0724497 , -2.201594 , -1.8487829 , ..., -1.9761462 ,\n",
- " -1.5081836 , -1.2184345 ]],\n",
- "\n",
- " [[-0.06698 , -1.503594 , -2.2461936 , ..., 0.00916743,\n",
- " 0.18552017, 0.573951 ],\n",
- " [-1.034759 , -2.8895762 , -3.8847136 , ..., -0.20842266,\n",
- " -0.36224842, -0.30377454],\n",
- " [-0.11191799, -1.2836528 , -2.6482773 , ..., 1.3146435 ,\n",
- " 1.3394573 , 1.0277662 ],\n",
- " ...,\n",
- " [ 6.912933 , 5.6102653 , 4.7935476 , ..., 6.6097527 ,\n",
- " 7.0411797 , 7.91053 ],\n",
- " [ 1.7749825 , 1.0600421 , 1.2093368 , ..., 3.7723353 ,\n",
- " 3.95229 , 4.7060747 ],\n",
- " [-2.1876357 , -2.306432 , -1.8670194 , ..., -2.2466094 ,\n",
- " -1.7502341 , -1.3440574 ]]], shape=(264, 32, 64), dtype=float32) v200
(time, latitude, longitude)
float32
1.284 0.8174 ... 0.5544 0.9026
array([[[ 1.2837902 , 0.81736374, 0.5546421 , ..., 2.6884017 ,\n",
- " 2.416966 , 2.2967365 ],\n",
- " [ -1.5371838 , -2.300435 , -2.302557 , ..., 0.8621377 ,\n",
- " 0.09203839, -0.19632119],\n",
- " [ -2.2741838 , -3.2510257 , -3.408566 , ..., 0.38471472,\n",
- " -1.0333158 , -1.177903 ],\n",
- " ...,\n",
- " [ -0.7709646 , -10.582101 , -11.601489 , ..., -7.7562075 ,\n",
- " -9.663285 , -2.2341986 ],\n",
- " [ 1.500792 , -2.7658963 , -3.9570565 , ..., -3.2621384 ,\n",
- " -0.91800976, 3.3478975 ],\n",
- " [ -1.414962 , -2.7739234 , -3.575447 , ..., -1.3106349 ,\n",
- " -0.8082682 , -0.32122678]],\n",
- "\n",
- " [[ 1.3386761 , 0.8986719 , 0.6395366 , ..., 2.7441869 ,\n",
- " 2.4450226 , 2.3284452 ],\n",
- " [ -1.4591043 , -2.1437259 , -2.141191 , ..., 0.81390905,\n",
- " 0.03141284, -0.21735013],\n",
- " [ -2.1779232 , -3.095646 , -3.2118402 , ..., 0.18186736,\n",
- " -1.222285 , -1.2220024 ],\n",
- "...\n",
- " [ 8.752809 , 8.266314 , 8.028877 , ..., 6.0279555 ,\n",
- " 6.111726 , 8.42778 ],\n",
- " [ 3.6484764 , 3.5768209 , 3.3561208 , ..., 4.709958 ,\n",
- " 7.1034527 , 8.925984 ],\n",
- " [ -2.3555207 , -2.229397 , -1.6092358 , ..., 0.2634654 ,\n",
- " 0.80340767, 1.0110092 ]],\n",
- "\n",
- " [[ 0.07549584, -1.462248 , -2.3553965 , ..., 0.6765096 ,\n",
- " 0.5948267 , 1.083153 ],\n",
- " [ -1.9292536 , -3.8329902 , -4.850865 , ..., -0.64384437,\n",
- " -0.808458 , -0.75769675],\n",
- " [ -0.8671326 , -2.1713686 , -3.4631596 , ..., 0.3947984 ,\n",
- " 0.6102262 , -0.06374533],\n",
- " ...,\n",
- " [ 8.733778 , 8.38739 , 8.096025 , ..., 5.671028 ,\n",
- " 5.8773494 , 8.389897 ],\n",
- " [ 3.4315057 , 3.3722858 , 3.353668 , ..., 3.8655586 ,\n",
- " 6.4176044 , 8.63239 ],\n",
- " [ -2.5598497 , -2.4709587 , -1.6698937 , ..., -0.14776587,\n",
- " 0.55436456, 0.90259516]]], shape=(264, 32, 64), dtype=float32) v250
(time, latitude, longitude)
float32
0.5972 -0.0173 ... 1.274 1.779
array([[[ 5.9718812e-01, -1.7300189e-02, -4.0426517e-01, ...,\n",
- " 2.0709169e+00, 1.6088868e+00, 1.6174906e+00],\n",
- " [-2.5779259e+00, -3.1608665e+00, -3.1198456e+00, ...,\n",
- " -4.0794802e-01, -1.3078582e+00, -1.1108794e+00],\n",
- " [-4.1072845e+00, -4.5663500e+00, -3.8240099e+00, ...,\n",
- " -1.5423387e+00, -2.9551482e+00, -2.5538390e+00],\n",
- " ...,\n",
- " [-3.0238123e+00, -1.2953299e+01, -1.2867127e+01, ...,\n",
- " -1.6531883e+01, -1.4085334e+01, -3.6661739e+00],\n",
- " [ 1.1474209e+00, -4.3467979e+00, -5.5934906e+00, ...,\n",
- " -4.1049042e+00, -2.2401237e-01, 4.7178378e+00],\n",
- " [-8.6006618e-01, -2.9804389e+00, -4.2554188e+00, ...,\n",
- " -2.1644068e-01, 2.8038001e-01, 6.0681140e-01]],\n",
- "\n",
- " [[ 5.9891963e-01, 4.0186882e-02, -3.5124603e-01, ...,\n",
- " 2.0758114e+00, 1.5952666e+00, 1.6055517e+00],\n",
- " [-2.5384035e+00, -3.0355246e+00, -2.9755659e+00, ...,\n",
- " -4.6818757e-01, -1.4017477e+00, -1.1434908e+00],\n",
- " [-3.9975655e+00, -4.3095694e+00, -3.5057225e+00, ...,\n",
- " -1.8153629e+00, -3.1781211e+00, -2.6212835e+00],\n",
- "...\n",
- " 9.9925709e-01, 4.4961576e+00, 9.3980522e+00],\n",
- " [ 2.3613758e+00, 1.4696965e+00, 2.1386852e+00, ...,\n",
- " 4.0641041e+00, 7.4984288e+00, 1.0547953e+01],\n",
- " [-2.4754262e+00, -3.1891484e+00, -2.6621723e+00, ...,\n",
- " 1.0424497e+00, 1.5583845e+00, 1.9088658e+00]],\n",
- "\n",
- " [[-5.9757519e-01, -2.4253225e+00, -3.2171478e+00, ...,\n",
- " 2.4921012e-01, -1.8034482e-01, 6.5908992e-01],\n",
- " [-3.3900251e+00, -5.3848009e+00, -6.8522701e+00, ...,\n",
- " -2.2105598e+00, -2.6220114e+00, -1.9346936e+00],\n",
- " [-2.6465657e+00, -3.3145247e+00, -4.2986174e+00, ...,\n",
- " -2.8172834e+00, -2.2647138e+00, -1.9721956e+00],\n",
- " ...,\n",
- " [ 5.6323905e+00, 3.9012265e+00, 5.2938166e+00, ...,\n",
- " 2.6592827e-01, 4.1102324e+00, 9.4518700e+00],\n",
- " [ 2.0483932e+00, 1.1232924e+00, 1.9766250e+00, ...,\n",
- " 3.1464682e+00, 6.7490330e+00, 1.0099433e+01],\n",
- " [-2.7219157e+00, -3.5272717e+00, -2.7879479e+00, ...,\n",
- " 6.7090654e-01, 1.2739788e+00, 1.7792052e+00]]],\n",
- " shape=(264, 32, 64), dtype=float32) v300
(time, latitude, longitude)
float32
-0.5141 -1.311 ... 2.118 2.523
array([[[ -0.51410496, -1.3110995 , -1.169744 , ..., 0.72340703,\n",
- " 0.37649977, 0.855906 ],\n",
- " [ -4.5165615 , -5.4128885 , -5.013404 , ..., -2.8177872 ,\n",
- " -3.7003813 , -2.4022284 ],\n",
- " [ -7.545192 , -8.000952 , -5.069907 , ..., -3.0301418 ,\n",
- " -4.5185366 , -4.549033 ],\n",
- " ...,\n",
- " [ -2.31211 , -13.393718 , -13.232042 , ..., -16.519321 ,\n",
- " -10.755644 , 0.47936344],\n",
- " [ 1.7778721 , -3.5388913 , -4.2281914 , ..., -4.0631695 ,\n",
- " 0.72173405, 6.046821 ],\n",
- " [ 0.07604897, -1.390886 , -2.2029853 , ..., 1.3001885 ,\n",
- " 1.5619168 , 1.8429157 ]],\n",
- "\n",
- " [[ -0.47097027, -1.1940472 , -1.0125307 , ..., 0.7938943 ,\n",
- " 0.36756623, 0.8530715 ],\n",
- " [ -4.469095 , -5.155694 , -4.70088 , ..., -2.8610394 ,\n",
- " -3.779932 , -2.466278 ],\n",
- " [ -7.499728 , -7.661307 , -4.6402903 , ..., -3.4779336 ,\n",
- " -4.9071703 , -4.665249 ],\n",
- "...\n",
- " [ 7.0431666 , 5.521301 , 5.6760464 , ..., -0.8124218 ,\n",
- " 4.4598627 , 9.920302 ],\n",
- " [ 2.7176166 , 0.44734573, 1.3263174 , ..., 0.20446873,\n",
- " 4.8200593 , 8.620828 ],\n",
- " [ -0.19450355, -0.8368531 , -0.08248937, ..., 1.826586 ,\n",
- " 2.330554 , 2.6680145 ]],\n",
- "\n",
- " [[ -2.3668633 , -5.3132067 , -6.0225425 , ..., -3.3822608 ,\n",
- " -3.299654 , -1.05089 ],\n",
- " [ -4.9503164 , -7.8319664 , -8.956902 , ..., -5.3124146 ,\n",
- " -5.996638 , -4.219297 ],\n",
- " [ -4.9164944 , -5.2652025 , -4.601714 , ..., -5.6279635 ,\n",
- " -4.254792 , -3.311726 ],\n",
- " ...,\n",
- " [ 6.6807437 , 5.426625 , 6.0176816 , ..., -1.402647 ,\n",
- " 4.1893167 , 9.891621 ],\n",
- " [ 2.3224916 , -0.08221388, 1.1878264 , ..., -0.51711273,\n",
- " 4.224893 , 8.412719 ],\n",
- " [ -0.4847896 , -1.208527 , -0.34261513, ..., 1.4020164 ,\n",
- " 2.1181722 , 2.52278 ]]], shape=(264, 32, 64), dtype=float32) v400
(time, latitude, longitude)
float32
-2.035 -2.597 ... 2.267 2.858
array([[[ -2.035246 , -2.596593 , -2.38403 , ..., -2.3076649 ,\n",
- " -2.1378148 , -1.0543497 ],\n",
- " [ -6.3086395 , -6.203291 , -5.291257 , ..., -4.679534 ,\n",
- " -5.5063906 , -4.4178104 ],\n",
- " [ -7.883464 , -7.8475466 , -5.6475983 , ..., -3.9742694 ,\n",
- " -4.839796 , -4.3739924 ],\n",
- " ...,\n",
- " [ 1.9168806 , -8.104704 , -9.496894 , ..., -18.00729 ,\n",
- " -8.346772 , 2.5932674 ],\n",
- " [ 2.2867756 , -1.4129825 , -1.806315 , ..., -1.3468118 ,\n",
- " 1.980475 , 5.6411495 ],\n",
- " [ 1.4285251 , 0.47143513, -1.0759947 , ..., 3.4515545 ,\n",
- " 3.5462558 , 3.3184164 ]],\n",
- "\n",
- " [[ -2.0297074 , -2.5028002 , -2.284854 , ..., -2.3025122 ,\n",
- " -2.1870916 , -1.0881407 ],\n",
- " [ -6.277159 , -5.994116 , -4.9950104 , ..., -4.7824407 ,\n",
- " -5.688001 , -4.486674 ],\n",
- " [ -7.7705255 , -7.4618654 , -5.2007504 , ..., -4.2912397 ,\n",
- " -5.1287413 , -4.506134 ],\n",
- "...\n",
- " [ 3.5526228 , 0.9967909 , 2.434585 , ..., -6.744385 ,\n",
- " -0.5980587 , 7.126568 ],\n",
- " [ 1.5421767 , 0.98928833, 2.3734522 , ..., 0.43756914,\n",
- " 3.2859855 , 6.6713467 ],\n",
- " [ 0.6403644 , 0.39565754, 1.2880764 , ..., 2.5176282 ,\n",
- " 2.5414429 , 3.0346355 ]],\n",
- "\n",
- " [[ -3.820512 , -6.761049 , -7.597625 , ..., -6.113325 ,\n",
- " -5.800723 , -3.467524 ],\n",
- " [ -6.8851976 , -8.919493 , -10.509952 , ..., -7.2402344 ,\n",
- " -7.8977747 , -6.5315337 ],\n",
- " [ -4.756229 , -4.730919 , -6.194823 , ..., -6.515725 ,\n",
- " -4.984255 , -4.214165 ],\n",
- " ...,\n",
- " [ 3.202283 , 0.86308 , 2.6520042 , ..., -7.489316 ,\n",
- " -0.9699898 , 6.962867 ],\n",
- " [ 1.2467852 , 0.5358329 , 2.0966053 , ..., -0.04900503,\n",
- " 2.8775334 , 6.4004498 ],\n",
- " [ 0.435871 , 0.17221326, 1.2387867 , ..., 2.247854 ,\n",
- " 2.267417 , 2.8582659 ]]], shape=(264, 32, 64), dtype=float32) v500
(time, latitude, longitude)
float32
-2.915 -3.271 ... 0.05046 0.7155
array([[[-2.9149075e+00, -3.2707267e+00, -3.1465118e+00, ...,\n",
- " -2.3104091e+00, -2.3270392e+00, -2.0412798e+00],\n",
- " [-6.8611126e+00, -7.1611118e+00, -6.0153055e+00, ...,\n",
- " -4.0050201e+00, -5.0476141e+00, -5.0517583e+00],\n",
- " [-6.2807941e+00, -6.9562759e+00, -5.8835292e+00, ...,\n",
- " -3.2802134e+00, -4.5081711e+00, -4.4466372e+00],\n",
- " ...,\n",
- " [ 1.0913630e+00, -5.0086632e+00, -6.5461454e+00, ...,\n",
- " -1.7532803e+01, -1.2128894e+01, -6.1287975e-01],\n",
- " [ 2.2433186e-01, -2.8015060e+00, -3.7685213e+00, ...,\n",
- " -7.9017162e-01, -2.2619009e-01, 2.0092707e+00],\n",
- " [ 6.9867581e-01, -9.5212531e-01, -2.0839312e+00, ...,\n",
- " 1.4824373e+00, 1.9110167e+00, 1.6167928e+00]],\n",
- "\n",
- " [[-2.8981166e+00, -3.2145844e+00, -3.0758660e+00, ...,\n",
- " -2.3141685e+00, -2.3246810e+00, -2.0500207e+00],\n",
- " [-6.7938018e+00, -7.0213346e+00, -5.7928782e+00, ...,\n",
- " -4.0448847e+00, -5.1493497e+00, -5.1161795e+00],\n",
- " [-6.2137451e+00, -6.7648640e+00, -5.5479274e+00, ...,\n",
- " -3.4895306e+00, -4.6775074e+00, -4.4639454e+00],\n",
- "...\n",
- " -9.8612528e+00, -4.3489532e+00, 3.5421600e+00],\n",
- " [-8.5530806e-01, -2.3335376e+00, -1.3298607e-01, ...,\n",
- " -2.0590796e+00, -1.2710257e+00, 1.8691421e+00],\n",
- " [-8.4601402e-01, -2.7590547e+00, -3.2443447e+00, ...,\n",
- " -1.6281033e-01, 2.2799802e-01, 8.8306451e-01]],\n",
- "\n",
- " [[-3.6870627e+00, -5.7539024e+00, -6.6341467e+00, ...,\n",
- " -4.4679432e+00, -4.4907761e+00, -3.3959584e+00],\n",
- " [-6.3274817e+00, -8.2680454e+00, -9.6369400e+00, ...,\n",
- " -5.0845823e+00, -5.9145689e+00, -5.5501537e+00],\n",
- " [-5.0672135e+00, -5.2328267e+00, -5.6873465e+00, ...,\n",
- " -4.4293385e+00, -3.5908027e+00, -3.0769627e+00],\n",
- " ...,\n",
- " [ 3.9387054e+00, 5.0513749e+00, 8.1559734e+00, ...,\n",
- " -1.0576760e+01, -4.7368193e+00, 3.5058520e+00],\n",
- " [-1.1124120e+00, -2.7916207e+00, -2.6093960e-01, ...,\n",
- " -2.4280429e+00, -1.7318068e+00, 1.6095741e+00],\n",
- " [-1.0355339e+00, -2.9315784e+00, -3.4173541e+00, ...,\n",
- " -4.4512486e-01, 5.0463915e-02, 7.1546161e-01]]],\n",
- " shape=(264, 32, 64), dtype=float32) v600
(time, latitude, longitude)
float32
-3.712 -4.346 ... -0.3787 0.3113
array([[[-3.7116909e+00, -4.3455148e+00, -4.4542966e+00, ...,\n",
- " -3.6441107e+00, -3.8462098e+00, -3.3489347e+00],\n",
- " [-6.4428349e+00, -6.9292908e+00, -5.8562150e+00, ...,\n",
- " -4.9759183e+00, -6.1406713e+00, -5.5952139e+00],\n",
- " [-7.1544266e+00, -7.4569969e+00, -5.8215880e+00, ...,\n",
- " -5.4292450e+00, -5.8279896e+00, -5.0626783e+00],\n",
- " ...,\n",
- " [ 9.4160652e-01, -1.2114720e+00, -6.2553310e-01, ...,\n",
- " -1.7684944e+01, -1.2613728e+01, -2.4810753e+00],\n",
- " [-2.0384359e-01, -2.3262131e+00, -1.5286162e+00, ...,\n",
- " -2.7766929e+00, -3.0420129e+00, 2.3193455e-01],\n",
- " [ 5.9517407e-01, -4.2432672e-01, -9.1524160e-01, ...,\n",
- " 1.0699219e+00, 1.2459153e+00, 1.4202468e+00]],\n",
- "\n",
- " [[-3.6823781e+00, -4.2944565e+00, -4.4426837e+00, ...,\n",
- " -3.6898212e+00, -3.8934093e+00, -3.3877580e+00],\n",
- " [-6.3790245e+00, -6.8103209e+00, -5.6998053e+00, ...,\n",
- " -4.9968028e+00, -6.2235298e+00, -5.6551504e+00],\n",
- " [-7.0842371e+00, -7.2804556e+00, -5.6046300e+00, ...,\n",
- " -5.6598902e+00, -6.0456939e+00, -5.1146398e+00],\n",
- "...\n",
- " -7.7659798e+00, -4.0987539e+00, 1.2507110e+00],\n",
- " [-7.3013544e-01, -2.0253856e+00, -4.8287845e-01, ...,\n",
- " -3.0056243e+00, -2.5916498e+00, -1.5212750e-01],\n",
- " [-4.3840933e-01, -2.2164912e+00, -2.4669442e+00, ...,\n",
- " -3.6544800e-01, -2.6184916e-01, 4.0662467e-01]],\n",
- "\n",
- " [[-4.6395683e+00, -6.6250544e+00, -7.8448477e+00, ...,\n",
- " -5.3580837e+00, -5.5770054e+00, -4.4386234e+00],\n",
- " [-5.7836909e+00, -8.2839451e+00, -9.7167597e+00, ...,\n",
- " -6.1198654e+00, -7.3811545e+00, -6.4681625e+00],\n",
- " [-4.7700377e+00, -5.8123274e+00, -5.5906086e+00, ...,\n",
- " -5.9850559e+00, -5.3294373e+00, -4.4993892e+00],\n",
- " ...,\n",
- " [ 3.8522415e+00, 3.1296930e+00, 3.9743700e+00, ...,\n",
- " -7.9083853e+00, -4.4912577e+00, 1.0636215e+00],\n",
- " [-9.2237234e-01, -2.3262661e+00, -5.1373863e-01, ...,\n",
- " -3.1726961e+00, -2.8019474e+00, -3.2449603e-01],\n",
- " [-5.8183169e-01, -2.4082839e+00, -2.5693474e+00, ...,\n",
- " -4.8941636e-01, -3.7874889e-01, 3.1131446e-01]]],\n",
- " shape=(264, 32, 64), dtype=float32) v700
(time, latitude, longitude)
float32
-5.888 -5.337 ... -0.5704 0.3695
array([[[-5.88760662e+00, -5.33651352e+00, -4.43355465e+00, ...,\n",
- " -5.44546795e+00, -5.68417740e+00, -5.57138824e+00],\n",
- " [-6.52176523e+00, -8.11415672e+00, -7.60680485e+00, ...,\n",
- " -5.75769234e+00, -6.06367970e+00, -5.26491737e+00],\n",
- " [-4.95207071e+00, -4.78350401e+00, -4.04001141e+00, ...,\n",
- " -6.04989719e+00, -6.03513813e+00, -6.14012527e+00],\n",
- " ...,\n",
- " [ 2.33710766e-01, -1.99041510e+00, -1.11384869e-01, ...,\n",
- " -1.15132713e+01, -9.14465237e+00, -2.11797833e+00],\n",
- " [-1.15962029e-02, -6.79891586e-01, -2.88751841e-01, ...,\n",
- " -2.57745767e+00, -2.37215352e+00, -2.01642036e-01],\n",
- " [ 7.00948775e-01, 2.87693918e-01, 6.46921396e-02, ...,\n",
- " 1.37357557e+00, 1.42519951e+00, 1.23225820e+00]],\n",
- "\n",
- " [[-5.90737247e+00, -5.36556339e+00, -4.44207907e+00, ...,\n",
- " -5.48716354e+00, -5.72613049e+00, -5.58696175e+00],\n",
- " [-6.53471184e+00, -8.04554844e+00, -7.52782536e+00, ...,\n",
- " -5.80390644e+00, -6.14366817e+00, -5.33053637e+00],\n",
- " [-4.94985676e+00, -4.74281979e+00, -3.95707107e+00, ...,\n",
- " -6.18658209e+00, -6.15310526e+00, -6.15263224e+00],\n",
- "...\n",
- " -1.21776705e+01, -8.59072971e+00, -2.23772836e+00],\n",
- " [-2.04022288e+00, -1.84453535e+00, -8.08174610e-02, ...,\n",
- " -8.25747013e+00, -6.78054380e+00, -1.67829347e+00],\n",
- " [-7.27575123e-01, -1.45647347e+00, -1.57236290e+00, ...,\n",
- " -1.01543021e+00, -4.31939483e-01, 4.27592278e-01]],\n",
- "\n",
- " [[-6.28351021e+00, -6.44284391e+00, -5.97428465e+00, ...,\n",
- " -6.22459698e+00, -6.34507847e+00, -6.19096804e+00],\n",
- " [-5.81995010e+00, -9.40628624e+00, -1.09017506e+01, ...,\n",
- " -6.14888144e+00, -6.42298794e+00, -5.68543339e+00],\n",
- " [-4.32196236e+00, -4.25676107e+00, -4.09320545e+00, ...,\n",
- " -6.35135794e+00, -5.53307247e+00, -5.77509022e+00],\n",
- " ...,\n",
- " [ 1.68233871e+00, 1.70109129e+00, 4.12406731e+00, ...,\n",
- " -1.24554014e+01, -9.02917385e+00, -2.38381791e+00],\n",
- " [-2.28267074e+00, -2.03351593e+00, -3.66022587e-02, ...,\n",
- " -8.53965664e+00, -7.15362263e+00, -1.89032865e+00],\n",
- " [-8.07223022e-01, -1.60999835e+00, -1.63898623e+00, ...,\n",
- " -1.20372486e+00, -5.70380211e-01, 3.69467974e-01]]],\n",
- " shape=(264, 32, 64), dtype=float32) v850
(time, latitude, longitude)
float32
-3.332 -3.727 ... -1.134 -0.4765
array([[[ -3.3320022 , -3.7269638 , -3.7034047 , ..., -1.8359864 ,\n",
- " -2.474593 , -2.8529036 ],\n",
- " [ -5.03118 , -5.281986 , -4.831592 , ..., -2.9853582 ,\n",
- " -2.3293939 , -3.2669222 ],\n",
- " [ -4.7476506 , -4.5378203 , -4.0796905 , ..., -1.9752276 ,\n",
- " -3.501766 , -4.0860744 ],\n",
- " ...,\n",
- " [ 2.4000716 , -0.4610858 , 1.0037122 , ..., -11.272499 ,\n",
- " -10.494943 , -2.0378113 ],\n",
- " [ -0.13860786, 0.12673664, 0.77398443, ..., -3.4282856 ,\n",
- " -4.2810493 , -0.660682 ],\n",
- " [ 1.0307974 , 1.0297006 , 1.0746112 , ..., 0.4279998 ,\n",
- " 0.9103863 , 1.0008558 ]],\n",
- "\n",
- " [[ -3.3459084 , -3.7286353 , -3.7131908 , ..., -1.8549309 ,\n",
- " -2.4911323 , -2.8717847 ],\n",
- " [ -5.036228 , -5.263791 , -4.792404 , ..., -2.990643 ,\n",
- " -2.356086 , -3.2881804 ],\n",
- " [ -4.7553864 , -4.4888067 , -4.0138817 , ..., -2.0111651 ,\n",
- " -3.5512965 , -4.1022835 ],\n",
- "...\n",
- " [ -0.5254307 , -2.309094 , 0.9837084 , ..., -13.285639 ,\n",
- " -9.9855 , -2.2934303 ],\n",
- " [ -3.1946034 , -3.624552 , -2.293986 , ..., -11.015121 ,\n",
- " -11.896258 , -5.619769 ],\n",
- " [ 0.2633152 , -0.3870768 , -0.7861345 , ..., -1.7031382 ,\n",
- " -1.0850856 , -0.42684615]],\n",
- "\n",
- " [[ -3.100826 , -3.935339 , -4.631159 , ..., -1.7454422 ,\n",
- " -2.6127138 , -3.0710986 ],\n",
- " [ -4.5948596 , -5.076358 , -5.4869137 , ..., -2.988352 ,\n",
- " -2.3019547 , -3.3152974 ],\n",
- " [ -4.3814955 , -3.8662846 , -3.6012576 , ..., -2.3656323 ,\n",
- " -3.3508127 , -3.798109 ],\n",
- " ...,\n",
- " [ -0.73771334, -2.4948916 , 1.0570798 , ..., -13.516873 ,\n",
- " -10.06075 , -2.5107327 ],\n",
- " [ -3.3170943 , -3.806742 , -2.380379 , ..., -11.089888 ,\n",
- " -12.00993 , -5.7446947 ],\n",
- " [ 0.20562184, -0.48941022, -0.87074625, ..., -1.7558748 ,\n",
- " -1.1335452 , -0.47651267]]], shape=(264, 32, 64), dtype=float32) v925
(time, latitude, longitude)
float32
-3.438 -3.853 ... -1.758 -0.6256
array([[[-3.4383445e+00, -3.8527584e+00, -3.8866506e+00, ...,\n",
- " -1.9210130e+00, -2.5685139e+00, -2.9711120e+00],\n",
- " [-4.9889164e+00, -5.2147198e+00, -4.7846608e+00, ...,\n",
- " -3.0710607e+00, -2.2734473e+00, -3.3777528e+00],\n",
- " [-4.7212405e+00, -4.6590123e+00, -4.1908956e+00, ...,\n",
- " -3.5206568e-01, -3.5504875e+00, -4.1158018e+00],\n",
- " ...,\n",
- " [ 9.1666698e-02, -1.2828994e+00, 6.2050962e-01, ...,\n",
- " -1.0598297e+01, -1.0292307e+01, -2.5529885e+00],\n",
- " [-4.8186171e-01, 5.1273060e-01, 1.2478931e+00, ...,\n",
- " -3.9017234e+00, -5.4293242e+00, -1.5466048e+00],\n",
- " [ 1.1131661e+00, 1.3330793e+00, 1.5953242e+00, ...,\n",
- " 2.8365207e-01, 8.0632740e-01, 1.2027309e+00]],\n",
- "\n",
- " [[-3.4501643e+00, -3.8776248e+00, -3.9038386e+00, ...,\n",
- " -1.9108512e+00, -2.5755384e+00, -2.9712181e+00],\n",
- " [-4.9929156e+00, -5.2112775e+00, -4.7676449e+00, ...,\n",
- " -3.0631375e+00, -2.2988999e+00, -3.4057984e+00],\n",
- " [-4.7392759e+00, -4.6423187e+00, -4.1526155e+00, ...,\n",
- " -3.9423692e-01, -3.5905316e+00, -4.1475673e+00],\n",
- "...\n",
- " -1.5621232e+01, -1.3637296e+01, -4.5587602e+00],\n",
- " [-3.4009135e+00, -3.4878073e+00, -2.3208792e+00, ...,\n",
- " -1.1625347e+01, -1.6297131e+01, -7.8776469e+00],\n",
- " [-1.6377091e-02, -6.3892245e-01, -9.1480029e-01, ...,\n",
- " -2.3375149e+00, -1.6811590e+00, -5.6085962e-01]],\n",
- "\n",
- " [[-3.2948222e+00, -4.0192976e+00, -4.5321627e+00, ...,\n",
- " -1.7261635e+00, -2.5618441e+00, -3.0414073e+00],\n",
- " [-4.5231080e+00, -5.0614996e+00, -5.2443080e+00, ...,\n",
- " -2.7895091e+00, -2.1509280e+00, -3.3015501e+00],\n",
- " [-4.4826775e+00, -4.1855836e+00, -3.6692884e+00, ...,\n",
- " -5.1552123e-01, -3.3692932e+00, -3.7607875e+00],\n",
- " ...,\n",
- " [-1.1404793e+00, -2.1886191e+00, 1.1843386e+00, ...,\n",
- " -1.5831915e+01, -1.4054182e+01, -4.6704626e+00],\n",
- " [-3.5461864e+00, -3.6711464e+00, -2.4308412e+00, ...,\n",
- " -1.1756403e+01, -1.6569857e+01, -8.1042595e+00],\n",
- " [-6.4313173e-02, -7.2208190e-01, -1.0240391e+00, ...,\n",
- " -2.4225492e+00, -1.7580211e+00, -6.2559801e-01]]],\n",
- " shape=(264, 32, 64), dtype=float32) v1000
(time, latitude, longitude)
float32
-3.336 -3.763 ... -4.247 -2.849
array([[[-3.3362818e+00, -3.7628124e+00, -3.8051989e+00, ...,\n",
- " -1.6908396e+00, -2.4260843e+00, -2.8895643e+00],\n",
- " [-4.9783907e+00, -5.1192870e+00, -4.7539783e+00, ...,\n",
- " -2.8736165e+00, -2.1801062e+00, -3.2032449e+00],\n",
- " [-4.7227235e+00, -4.5632815e+00, -4.1146312e+00, ...,\n",
- " -2.2278428e-02, -3.3986259e+00, -4.0268731e+00],\n",
- " ...,\n",
- " [-1.6666240e-01, -4.5989990e-02, 1.2090614e+00, ...,\n",
- " -7.7094903e+00, -7.2873592e+00, -4.8831873e+00],\n",
- " [-7.8592944e-01, -3.9350808e-01, 2.4963403e-01, ...,\n",
- " -2.9827321e-01, -4.9013119e+00, -3.3592200e+00],\n",
- " [-8.4388280e-01, -3.2204610e-01, 8.8895261e-03, ...,\n",
- " -1.7780571e+00, -1.5295146e+00, -1.3135970e+00]],\n",
- "\n",
- " [[-3.3504648e+00, -3.7655554e+00, -3.8002319e+00, ...,\n",
- " -1.6853973e+00, -2.4286397e+00, -2.8839977e+00],\n",
- " [-5.0065398e+00, -5.1405420e+00, -4.7630968e+00, ...,\n",
- " -2.8624184e+00, -2.1908641e+00, -3.2217560e+00],\n",
- " [-4.7547712e+00, -4.5737424e+00, -4.0573673e+00, ...,\n",
- " -3.4642801e-02, -3.4449301e+00, -4.0403047e+00],\n",
- "...\n",
- " -1.1493248e+01, -9.7912350e+00, -5.2716532e+00],\n",
- " [-3.7309363e+00, -3.5590160e+00, -2.1635313e+00, ...,\n",
- " -3.9079297e+00, -9.8720722e+00, -6.4946532e+00],\n",
- " [-2.7355886e+00, -3.1756947e+00, -2.8879752e+00, ...,\n",
- " -4.9140520e+00, -4.1931782e+00, -2.8005762e+00]],\n",
- "\n",
- " [[-3.0588889e+00, -3.8021078e+00, -4.2435384e+00, ...,\n",
- " -1.7468183e+00, -2.6639342e+00, -3.1829188e+00],\n",
- " [-4.5537276e+00, -4.9045949e+00, -5.0900507e+00, ...,\n",
- " -2.8497565e+00, -2.2568066e+00, -3.3275988e+00],\n",
- " [-4.5084496e+00, -4.1528864e+00, -3.7296450e+00, ...,\n",
- " -3.2069153e-01, -3.3251636e+00, -3.8580647e+00],\n",
- " ...,\n",
- " [-2.2226527e+00, -1.8485398e+00, 4.8391008e-01, ...,\n",
- " -1.1660734e+01, -9.9946251e+00, -5.3083301e+00],\n",
- " [-3.7611670e+00, -3.6555126e+00, -2.1793060e+00, ...,\n",
- " -3.9109628e+00, -9.8869305e+00, -6.5545030e+00],\n",
- " [-2.7775145e+00, -3.3000281e+00, -2.9848914e+00, ...,\n",
- " -4.9339314e+00, -4.2472315e+00, -2.8491557e+00]]],\n",
- " shape=(264, 32, 64), dtype=float32) t2m
(time, latitude, longitude)
float32
245.8 245.9 245.6 ... 251.4 252.2
array([[[245.82423, 245.94196, 245.61293, ..., 247.2532 , 246.62192,\n",
- " 246.08101],\n",
- " [250.09105, 248.87187, 247.85678, ..., 254.32559, 251.5907 ,\n",
- " 250.18341],\n",
- " [247.56639, 246.60187, 244.93477, ..., 261.1475 , 252.60695,\n",
- " 248.27972],\n",
- " ...,\n",
- " [272.9329 , 273.54074, 274.02838, ..., 263.8496 , 265.877 ,\n",
- " 269.77844],\n",
- " [264.5728 , 264.47086, 264.42004, ..., 253.18102, 259.058 ,\n",
- " 262.6364 ],\n",
- " [251.75052, 251.3909 , 250.66052, ..., 251.86694, 251.82796,\n",
- " 251.89162]],\n",
- "\n",
- " [[245.8145 , 245.94661, 245.6099 , ..., 247.24562, 246.61905,\n",
- " 246.09981],\n",
- " [250.08443, 248.84914, 247.85506, ..., 254.34135, 251.61452,\n",
- " 250.20786],\n",
- " [247.60103, 246.6478 , 244.92134, ..., 261.13248, 252.6544 ,\n",
- " 248.3614 ],\n",
- "...\n",
- " [272.2473 , 273.38425, 274.11346, ..., 259.14935, 263.9964 ,\n",
- " 270.69904],\n",
- " [262.92508, 263.97156, 264.93948, ..., 251.61433, 258.4999 ,\n",
- " 263.9225 ],\n",
- " [250.52066, 250.58871, 250.85042, ..., 250.97644, 251.37543,\n",
- " 252.2774 ]],\n",
- "\n",
- " [[245.91035, 245.9346 , 245.50052, ..., 247.41518, 246.86935,\n",
- " 246.22278],\n",
- " [250.20926, 249.33423, 247.94185, ..., 255.23953, 252.54103,\n",
- " 250.88863],\n",
- " [248.52785, 248.67296, 246.41048, ..., 264.58167, 256.81808,\n",
- " 251.00488],\n",
- " ...,\n",
- " [272.2473 , 273.3665 , 274.08493, ..., 259.07654, 263.84103,\n",
- " 270.67575],\n",
- " [262.87604, 263.90384, 264.8649 , ..., 251.48323, 258.35147,\n",
- " 263.8536 ],\n",
- " [250.48952, 250.51318, 250.78346, ..., 250.94379, 251.35503,\n",
- " 252.23683]]], shape=(264, 32, 64), dtype=float32) z50
(time, latitude, longitude)
float32
2.018e+05 2.018e+05 ... 1.9e+05
array([[[201756.8 , 201805.92, 201797.58, ..., 201819.53, 201808.62,\n",
- " 201746.84],\n",
- " [201357.92, 201400.75, 201414.77, ..., 201469.5 , 201421.7 ,\n",
- " 201326.1 ],\n",
- " [200821.66, 200869.92, 200919.84, ..., 201033.7 , 200923.88,\n",
- " 200774.64],\n",
- " ...,\n",
- " [190854.72, 189746.22, 189287.22, ..., 189638.4 , 189514.11,\n",
- " 189926. ],\n",
- " [190412.39, 189509.53, 189114.42, ..., 190125.83, 189899.7 ,\n",
- " 190013.3 ],\n",
- " [190537.5 , 189913.4 , 189689.33, ..., 190427.95, 190181.92,\n",
- " 190261.86]],\n",
- "\n",
- " [[201757.53, 201803.33, 201797.05, ..., 201821.38, 201808.98,\n",
- " 201747.3 ],\n",
- " [201361.45, 201404.28, 201414.8 , ..., 201474.66, 201425.72,\n",
- " 201326.39],\n",
- " [200820.66, 200867.55, 200916.03, ..., 201029.89, 200923.9 ,\n",
- " 200769.83],\n",
- "...\n",
- " [191299.89, 190892.36, 190781.52, ..., 189754.38, 190162.98,\n",
- " 190923.17],\n",
- " [190099.8 , 189352.62, 188983.6 , ..., 189658.28, 189703.03,\n",
- " 190213.4 ],\n",
- " [190044.11, 189116.25, 188747.11, ..., 189660.64, 189589.75,\n",
- " 190061.72]],\n",
- "\n",
- " [[201766.16, 201817.58, 201841.25, ..., 201847.72, 201838.11,\n",
- " 201778.06],\n",
- " [201437.77, 201496.8 , 201511.86, ..., 201520.84, 201466.23,\n",
- " 201328.67],\n",
- " [200913.05, 201000.75, 201034.16, ..., 201254.84, 201091.83,\n",
- " 200847.88],\n",
- " ...,\n",
- " [191318.56, 190894.45, 190761.39, ..., 189662.95, 190096.66,\n",
- " 190915.8 ],\n",
- " [190092.92, 189318.25, 188955.08, ..., 189600.06, 189642.61,\n",
- " 190166.53],\n",
- " [190010. , 189073.05, 188699.19, ..., 189631.88, 189545.1 ,\n",
- " 190037.27]]], shape=(264, 32, 64), dtype=float32) z100
(time, latitude, longitude)
float32
1.554e+05 1.555e+05 ... 1.496e+05
array([[[155397.14, 155465.61, 155434.64, ..., 155557.11, 155526.33,\n",
- " 155403.34],\n",
- " [155043.06, 155249.62, 155330.75, ..., 155155.06, 155108.16,\n",
- " 154942.11],\n",
- " [154470.66, 154634.44, 154749.27, ..., 154743.6 , 154580.88,\n",
- " 154353.33],\n",
- " ...,\n",
- " [149843. , 149049.73, 148606.53, ..., 149544.97, 149383.81,\n",
- " 149707.1 ],\n",
- " [149715.75, 149229.81, 148986.8 , ..., 149302.47, 149272.6 ,\n",
- " 149524.92],\n",
- " [149726.25, 149416.05, 149200.61, ..., 149494.89, 149406.81,\n",
- " 149529.2 ]],\n",
- "\n",
- " [[155405.17, 155470.31, 155436.02, ..., 155564.58, 155536.44,\n",
- " 155409.55],\n",
- " [155046.06, 155249.14, 155329.28, ..., 155157.03, 155112.62,\n",
- " 154950.03],\n",
- " [154472.86, 154642.83, 154750.55, ..., 154745.3 , 154584.25,\n",
- " 154357.03],\n",
- "...\n",
- " [149492. , 149021.23, 148982.78, ..., 148369.44, 148704.42,\n",
- " 149651.45],\n",
- " [149451.95, 148994.8 , 148866.44, ..., 148964.8 , 149097.06,\n",
- " 149582.05],\n",
- " [149382.36, 148980.28, 148794.86, ..., 149279.23, 149297.14,\n",
- " 149568.45]],\n",
- "\n",
- " [[155434.69, 155515.78, 155545.3 , ..., 155453.48, 155449.69,\n",
- " 155360.12],\n",
- " [155037.16, 155202.45, 155301.81, ..., 155115.88, 155123.98,\n",
- " 154956.03],\n",
- " [154555.11, 154737.19, 154850.94, ..., 155144.4 , 154917.53,\n",
- " 154524.34],\n",
- " ...,\n",
- " [149501. , 149011.53, 148944.4 , ..., 148328.56, 148673.69,\n",
- " 149614.75],\n",
- " [149438.83, 148961.3 , 148832.7 , ..., 148934.42, 149063.66,\n",
- " 149559.44],\n",
- " [149377.2 , 148940.94, 148767.52, ..., 149253.6 , 149275.27,\n",
- " 149556.95]]], shape=(264, 32, 64), dtype=float32) z150
(time, latitude, longitude)
float32
1.286e+05 1.288e+05 ... 1.252e+05
array([[[128620.266, 128751.22 , 128783.91 , ..., 128834.2 ,\n",
- " 128799.16 , 128674.266],\n",
- " [128328.766, 128595.68 , 128717.36 , ..., 128464.74 ,\n",
- " 128404.27 , 128271.875],\n",
- " [127733.71 , 127953.63 , 128130.78 , ..., 128014.42 ,\n",
- " 127901.016, 127715.19 ],\n",
- " ...,\n",
- " [125572.33 , 125379.805, 125235.94 , ..., 125639.55 ,\n",
- " 125552.61 , 125856.92 ],\n",
- " [125640.06 , 125528.24 , 125436.53 , ..., 125568.61 ,\n",
- " 125586.12 , 125735.41 ],\n",
- " [125457.086, 125325.69 , 125207.36 , ..., 125459.93 ,\n",
- " 125408.984, 125438.125]],\n",
- "\n",
- " [[128627.07 , 128754.35 , 128787.45 , ..., 128844.414,\n",
- " 128817.17 , 128688.266],\n",
- " [128331.47 , 128602.29 , 128716.48 , ..., 128469.04 ,\n",
- " 128408.48 , 128275.734],\n",
- " [127734.945, 127951.016, 128125.87 , ..., 128019.86 ,\n",
- " 127907.266, 127724.016],\n",
- "...\n",
- " [125334.1 , 125086.805, 125069.53 , ..., 124432.266,\n",
- " 124761.63 , 125405.74 ],\n",
- " [125458.03 , 125268.11 , 125214.01 , ..., 125092.04 ,\n",
- " 125230.125, 125529.8 ],\n",
- " [125135.63 , 124820.91 , 124724.79 , ..., 125062.47 ,\n",
- " 125080.33 , 125238.016]],\n",
- "\n",
- " [[128560.06 , 128695.52 , 128764.31 , ..., 128702.69 ,\n",
- " 128714.58 , 128660.59 ],\n",
- " [128349.016, 128647.93 , 128757.414, ..., 128613.59 ,\n",
- " 128565.016, 128366.88 ],\n",
- " [127887.87 , 128190.75 , 128284.01 , ..., 128691.42 ,\n",
- " 128458.125, 128028.83 ],\n",
- " ...,\n",
- " [125336.91 , 125079.21 , 125057.2 , ..., 124426.625,\n",
- " 124738.24 , 125382.74 ],\n",
- " [125446.51 , 125249.75 , 125196.58 , ..., 125088.06 ,\n",
- " 125218.125, 125520.805],\n",
- " [125116.07 , 124792.9 , 124701.8 , ..., 125048.49 ,\n",
- " 125069.5 , 125225.734]]], shape=(264, 32, 64), dtype=float32) z200
(time, latitude, longitude)
float32
1.098e+05 1.1e+05 ... 1.078e+05
array([[[109844.69 , 110005.15 , 110010.91 , ..., 110056.305,\n",
- " 109994.34 , 109855.22 ],\n",
- " [109557.74 , 109846.42 , 109985.94 , ..., 109691.016,\n",
- " 109658.086, 109464.34 ],\n",
- " [109096.984, 109415.516, 109669.78 , ..., 109188.99 ,\n",
- " 109132.33 , 108992.08 ],\n",
- " ...,\n",
- " [108363.34 , 108225.734, 108054.41 , ..., 108209.82 ,\n",
- " 108238.66 , 108422.125],\n",
- " [108275.664, 107967.53 , 107769.14 , ..., 108134.39 ,\n",
- " 108215.05 , 108380.53 ],\n",
- " [107989.98 , 107856.94 , 107763.53 , ..., 107963.98 ,\n",
- " 107980.19 , 108038.13 ]],\n",
- "\n",
- " [[109846.445, 110003.836, 110006.2 , ..., 110063.26 ,\n",
- " 110006.586, 109863.02 ],\n",
- " [109559.414, 109842.1 , 109967.11 , ..., 109693.68 ,\n",
- " 109663.37 , 109472.75 ],\n",
- " [109098.266, 109410.75 , 109654.69 , ..., 109190.95 ,\n",
- " 109138.2 , 108996.39 ],\n",
- "...\n",
- " [108135.03 , 107913.6 , 107864.93 , ..., 107092.56 ,\n",
- " 107380.5 , 107989.32 ],\n",
- " [107849.36 , 107295.305, 107045.41 , ..., 107520.72 ,\n",
- " 107615.1 , 108037.76 ],\n",
- " [107638.7 , 107340.125, 107217.3 , ..., 107561.7 ,\n",
- " 107616.33 , 107862.58 ]],\n",
- "\n",
- " [[109828.11 , 109948.24 , 110011.35 , ..., 109991.4 ,\n",
- " 109997.68 , 109880.625],\n",
- " [109541.05 , 109860.28 , 109995.04 , ..., 109920.43 ,\n",
- " 109907.08 , 109619.01 ],\n",
- " [109190.25 , 109531.29 , 109676.5 , ..., 109900.92 ,\n",
- " 109689.445, 109312.94 ],\n",
- " ...,\n",
- " [108137.54 , 107903.13 , 107851.22 , ..., 107090.82 ,\n",
- " 107352.19 , 107967.664],\n",
- " [107834.34 , 107269.695, 107017.96 , ..., 107501.83 ,\n",
- " 107592.8 , 108021.695],\n",
- " [107616.5 , 107317.055, 107189.98 , ..., 107544.17 ,\n",
- " 107598.95 , 107849.85 ]]], shape=(264, 32, 64), dtype=float32) z250
(time, latitude, longitude)
float32
9.539e+04 9.551e+04 ... 9.419e+04
array([[[95393.984, 95514.44 , 95502.84 , ..., 95539.51 , 95475.94 ,\n",
- " 95354.6 ],\n",
- " [95165.03 , 95480.88 , 95624.07 , ..., 95296.9 , 95236.52 ,\n",
- " 95022.45 ],\n",
- " [94840.06 , 95195.33 , 95445.055, ..., 94812.914, 94734.49 ,\n",
- " 94643.1 ],\n",
- " ...,\n",
- " [95006.08 , 94708.43 , 94334.43 , ..., 95094.6 , 94942.15 ,\n",
- " 94923.05 ],\n",
- " [94884.84 , 94451.03 , 94128.11 , ..., 95051.625, 94929.27 ,\n",
- " 94967.125],\n",
- " [94540.945, 94390.945, 94286.375, ..., 94691.93 , 94640.09 ,\n",
- " 94658.17 ]],\n",
- "\n",
- " [[95392.016, 95507.68 , 95504.23 , ..., 95542.52 , 95483.51 ,\n",
- " 95357.67 ],\n",
- " [95170.59 , 95485.12 , 95619.984, ..., 95305.07 , 95245.33 ,\n",
- " 95031.35 ],\n",
- " [94835.63 , 95188.23 , 95421.414, ..., 94819.81 , 94736.65 ,\n",
- " 94645.266],\n",
- "...\n",
- " [94437.96 , 93959.59 , 93771.6 , ..., 93488.74 , 93705.85 ,\n",
- " 94277.95 ],\n",
- " [94180.43 , 93409.02 , 93039.46 , ..., 93696.484, 93709.37 ,\n",
- " 94227.99 ],\n",
- " [94056.73 , 93671.32 , 93496.37 , ..., 93963.23 , 93977.45 ,\n",
- " 94213.79 ]],\n",
- "\n",
- " [[95311.91 , 95355.9 , 95357.16 , ..., 95298.84 , 95326.42 ,\n",
- " 95242.99 ],\n",
- " [95191.26 , 95462.82 , 95565.1 , ..., 95339.664, 95350.664,\n",
- " 95060.09 ],\n",
- " [95035.35 , 95414.66 , 95530.234, ..., 95418.016, 95252.4 ,\n",
- " 94912.15 ],\n",
- " ...,\n",
- " [94446.664, 93964.51 , 93743.484, ..., 93496.695, 93688.375,\n",
- " 94265.03 ],\n",
- " [94171.98 , 93380.695, 92993.61 , ..., 93689.81 , 93685.914,\n",
- " 94199.67 ],\n",
- " [94037.61 , 93648.38 , 93463.08 , ..., 93938.56 , 93945.97 ,\n",
- " 94194.05 ]]], shape=(264, 32, 64), dtype=float32) z300
(time, latitude, longitude)
float32
8.38e+04 8.393e+04 ... 8.306e+04
array([[[83798.99 , 83931.9 , 84007.42 , ..., 83930.734, 83871.85 ,\n",
- " 83753.95 ],\n",
- " [83594.06 , 83965.48 , 84214.27 , ..., 83641.76 , 83613.016,\n",
- " 83416.83 ],\n",
- " [83443.6 , 83926.914, 84249.98 , ..., 83278.68 , 83280.664,\n",
- " 83165.26 ],\n",
- " ...,\n",
- " [83602.6 , 83406.24 , 83159.91 , ..., 84103.54 , 83883. ,\n",
- " 83823.17 ],\n",
- " [83643.65 , 83220.555, 83034.195, ..., 83919.99 , 83817.11 ,\n",
- " 83773.164],\n",
- " [83524.91 , 83353.61 , 83240.52 , ..., 83496.07 , 83435.61 ,\n",
- " 83399.195]],\n",
- "\n",
- " [[83800.945, 83922.1 , 83996.61 , ..., 83952.984, 83885.84 ,\n",
- " 83764.305],\n",
- " [83597.87 , 83961.04 , 84200.1 , ..., 83653.68 , 83622.61 ,\n",
- " 83425.05 ],\n",
- " [83440.11 , 83917.805, 84225.88 , ..., 83288.836, 83283.71 ,\n",
- " 83174.164],\n",
- "...\n",
- " [83056.44 , 82693.42 , 82447.07 , ..., 82217.52 , 82478.695,\n",
- " 83148.11 ],\n",
- " [82735.01 , 81920.65 , 81697.24 , ..., 82382.67 , 82466.62 ,\n",
- " 83113.14 ],\n",
- " [83026.83 , 82586.086, 82411.75 , ..., 82832.76 , 82855.41 ,\n",
- " 83081.08 ]],\n",
- "\n",
- " [[83749.836, 83829.61 , 83873.39 , ..., 83928.836, 83899.555,\n",
- " 83753.9 ],\n",
- " [83649.94 , 83970.8 , 84130.09 , ..., 83928.23 , 83895.72 ,\n",
- " 83573.11 ],\n",
- " [83657.98 , 84121.73 , 84396.61 , ..., 84083.96 , 84006.79 ,\n",
- " 83610.95 ],\n",
- " ...,\n",
- " [83061.586, 82698.52 , 82435.76 , ..., 82235.58 , 82485.76 ,\n",
- " 83129.14 ],\n",
- " [82723.7 , 81895.36 , 81661.984, ..., 82384.055, 82431.79 ,\n",
- " 83083.83 ],\n",
- " [83009.266, 82555.875, 82387.19 , ..., 82796.13 , 82830.125,\n",
- " 83060.96 ]]], shape=(264, 32, 64), dtype=float32) z400
(time, latitude, longitude)
float32
6.528e+04 6.544e+04 ... 6.502e+04
array([[[65275.11 , 65435.71 , 65493.027, ..., 65433.688, 65441.984,\n",
- " 65272.695],\n",
- " [65171.066, 65556.63 , 65776.64 , ..., 65070.543, 65149.04 ,\n",
- " 65005.324],\n",
- " [64998.26 , 65455.76 , 65788.055, ..., 64838.867, 64891.605,\n",
- " 64807.61 ],\n",
- " ...,\n",
- " [65528.637, 65305.883, 65122.414, ..., 65765.82 , 65527.41 ,\n",
- " 65393.42 ],\n",
- " [65638.336, 65330.35 , 65236.39 , ..., 65683.81 , 65528.266,\n",
- " 65366.61 ],\n",
- " [65341.902, 65263.336, 65201.312, ..., 65318.754, 65279.195,\n",
- " 65241.395]],\n",
- "\n",
- " [[65274.293, 65419.832, 65485.97 , ..., 65454.367, 65455.867,\n",
- " 65279.863],\n",
- " [65170.055, 65548.78 , 65760.82 , ..., 65082.395, 65155.29 ,\n",
- " 65005.05 ],\n",
- " [64997.367, 65445.527, 65776.375, ..., 64842.37 , 64889.11 ,\n",
- " 64811.555],\n",
- "...\n",
- " [64654.062, 64158.07 , 64022.42 , ..., 64002.207, 64003.31 ,\n",
- " 64579.855],\n",
- " [64793.062, 64066.832, 63792.11 , ..., 64554.11 , 64509.82 ,\n",
- " 64840.07 ],\n",
- " [64854.39 , 64560.688, 64417.15 , ..., 64808.598, 64857.164,\n",
- " 65032.824]],\n",
- "\n",
- " [[65105.29 , 65241.914, 65334.92 , ..., 65269.63 , 65356.312,\n",
- " 65313.51 ],\n",
- " [64991.586, 65350.844, 65535.508, ..., 65221.297, 65291.145,\n",
- " 65121.395],\n",
- " [65078.918, 65505.465, 65758.36 , ..., 65587.98 , 65550.125,\n",
- " 65221.867],\n",
- " ...,\n",
- " [64654.285, 64147.336, 63999.08 , ..., 64020.75 , 64023.586,\n",
- " 64571.406],\n",
- " [64801.586, 64051. , 63762.16 , ..., 64550.773, 64481.227,\n",
- " 64816.508],\n",
- " [64845.047, 64547.08 , 64402.684, ..., 64796.73 , 64840.586,\n",
- " 65020.28 ]]], shape=(264, 32, 64), dtype=float32) z500
(time, latitude, longitude)
float32
5.03e+04 5.042e+04 ... 5.031e+04
array([[[50297.258, 50424.633, 50517.082, ..., 50389.035, 50406.273,\n",
- " 50286.883],\n",
- " [50180.094, 50467.812, 50655.117, ..., 50137.42 , 50207.03 ,\n",
- " 50066.72 ],\n",
- " [50102.11 , 50454.15 , 50741.848, ..., 49909.67 , 49981.73 ,\n",
- " 49883.695],\n",
- " ...,\n",
- " [50507.812, 50491.375, 50406.258, ..., 51042.43 , 50990.887,\n",
- " 50785.742],\n",
- " [50670.535, 50631.258, 50543.984, ..., 50905.953, 50892.383,\n",
- " 50809.492],\n",
- " [50558.387, 50586.59 , 50595.906, ..., 50564.64 , 50537.777,\n",
- " 50584.258]],\n",
- "\n",
- " [[50293.324, 50418.46 , 50506.816, ..., 50398.848, 50415.86 ,\n",
- " 50292.258],\n",
- " [50172.684, 50468. , 50642.387, ..., 50152.637, 50208.766,\n",
- " 50069.72 ],\n",
- " [50102.32 , 50441.668, 50733.168, ..., 49910.84 , 49983.016,\n",
- " 49889.258],\n",
- "...\n",
- " [49520.34 , 49122.48 , 48978.105, ..., 49303.223, 49371.055,\n",
- " 49846.09 ],\n",
- " [49717.73 , 49159.07 , 48939.14 , ..., 49771.96 , 49761.715,\n",
- " 50111.88 ],\n",
- " [50133.28 , 49916.832, 49817.098, ..., 50121.93 , 50167.61 ,\n",
- " 50324.88 ]],\n",
- "\n",
- " [[50137.6 , 50258.59 , 50314.793, ..., 50220.16 , 50328.727,\n",
- " 50242.543],\n",
- " [50024.95 , 50348.723, 50500.977, ..., 50236.863, 50340.63 ,\n",
- " 50199.227],\n",
- " [50118.72 , 50492.875, 50655.426, ..., 50437.3 , 50530.816,\n",
- " 50226.03 ],\n",
- " ...,\n",
- " [49534.637, 49125.605, 48983.434, ..., 49332.082, 49383.766,\n",
- " 49835.29 ],\n",
- " [49715.543, 49154.336, 48924.484, ..., 49780.977, 49751.42 ,\n",
- " 50105.453],\n",
- " [50128.16 , 49904.688, 49806.617, ..., 50111.22 , 50157.883,\n",
- " 50313.457]]], shape=(264, 32, 64), dtype=float32) z600
(time, latitude, longitude)
float32
3.753e+04 3.765e+04 ... 3.78e+04
array([[[37525.465, 37649.168, 37697.168, ..., 37639.2 , 37724.53 ,\n",
- " 37633.574],\n",
- " [37503.668, 37780.484, 38002.875, ..., 37469.508, 37585.465,\n",
- " 37446.016],\n",
- " [37507.617, 37865.586, 38121.1 , ..., 37277.773, 37422.477,\n",
- " 37338.12 ],\n",
- " ...,\n",
- " [37687.94 , 37551.273, 37394.3 , ..., 38335.89 , 38191.777,\n",
- " 37878.91 ],\n",
- " [37985.066, 37927.41 , 37838.72 , ..., 38196.883, 38158.863,\n",
- " 38053.26 ],\n",
- " [38023.67 , 38050.184, 38081.52 , ..., 38026.01 , 38013.94 ,\n",
- " 37996.188]],\n",
- "\n",
- " [[37523.094, 37641.48 , 37696.45 , ..., 37649.1 , 37735.152,\n",
- " 37639.08 ],\n",
- " [37503.62 , 37783.418, 37988.754, ..., 37478.082, 37589.047,\n",
- " 37444.062],\n",
- " [37505.516, 37861.375, 38112.527, ..., 37277.96 , 37423.86 ,\n",
- " 37336.562],\n",
- "...\n",
- " [36728.203, 36216.465, 36197.77 , ..., 36611.004, 36573.2 ,\n",
- " 37012.83 ],\n",
- " [37272.992, 36686.844, 36571.176, ..., 37319.297, 37257.44 ,\n",
- " 37489.88 ],\n",
- " [37737.11 , 37580.09 , 37499.285, ..., 37750.65 , 37760.457,\n",
- " 37806.414]],\n",
- "\n",
- " [[37432.695, 37474.12 , 37532.695, ..., 37440.082, 37560.27 ,\n",
- " 37555.09 ],\n",
- " [37364.05 , 37643.543, 37779.227, ..., 37495.188, 37615.19 ,\n",
- " 37513.316],\n",
- " [37530.65 , 37885.438, 38045.137, ..., 37833.22 , 37918.574,\n",
- " 37668.08 ],\n",
- " ...,\n",
- " [36736.418, 36219.305, 36189.1 , ..., 36635.71 , 36577.992,\n",
- " 37012.293],\n",
- " [37273.02 , 36667.875, 36554.69 , ..., 37338.75 , 37260.656,\n",
- " 37477.17 ],\n",
- " [37739.79 , 37575.367, 37490.938, ..., 37744.59 , 37754.21 ,\n",
- " 37800.41 ]]], shape=(264, 32, 64), dtype=float32) z700
(time, latitude, longitude)
float32
2.658e+04 2.673e+04 ... 2.686e+04
array([[[26581.797, 26731.916, 26814.13 , ..., 26633.64 , 26728.803,\n",
- " 26683.11 ],\n",
- " [26395.357, 26684. , 26874.059, ..., 26372.795, 26508.498,\n",
- " 26448.59 ],\n",
- " [26425.432, 26708.127, 26924.586, ..., 26251.42 , 26369.328,\n",
- " 26342.01 ],\n",
- " ...,\n",
- " [26647.453, 26785.97 , 26690.379, ..., 27350.8 , 27160.129,\n",
- " 26810.697],\n",
- " [26864.14 , 26856.818, 26938.115, ..., 27091.545, 27046.932,\n",
- " 26925.053],\n",
- " [27048.783, 27096.443, 27130.184, ..., 27034.146, 27027.645,\n",
- " 27026.082]],\n",
- "\n",
- " [[26575.168, 26722.154, 26810.148, ..., 26640.25 , 26729.916,\n",
- " 26688.016],\n",
- " [26393.148, 26685.19 , 26871.355, ..., 26371.664, 26509.959,\n",
- " 26444.906],\n",
- " [26421.395, 26700.875, 26907.25 , ..., 26252.383, 26367.984,\n",
- " 26334.805],\n",
- "...\n",
- " [25878.547, 25358.639, 25128.246, ..., 25834.035, 25765.14 ,\n",
- " 25964.807],\n",
- " [26361.932, 25907.021, 25701.281, ..., 26421.615, 26399.748,\n",
- " 26447.854],\n",
- " [26822.936, 26653.322, 26561.31 , ..., 26775.695, 26820.25 ,\n",
- " 26866.89 ]],\n",
- "\n",
- " [[26451.611, 26541.582, 26655.547, ..., 26448.697, 26616.523,\n",
- " 26668.227],\n",
- " [26243.418, 26525.701, 26698.143, ..., 26458.014, 26656.162,\n",
- " 26578.748],\n",
- " [26435.887, 26731.66 , 26866.33 , ..., 26771.625, 26930.586,\n",
- " 26755.78 ],\n",
- " ...,\n",
- " [25892.145, 25356.098, 25123.818, ..., 25851.18 , 25793.645,\n",
- " 25981.879],\n",
- " [26374.223, 25904.852, 25699.969, ..., 26425.834, 26391.936,\n",
- " 26437.926],\n",
- " [26822.828, 26655.902, 26557.703, ..., 26769.137, 26807.377,\n",
- " 26861.527]]], shape=(264, 32, 64), dtype=float32) z850
(time, latitude, longitude)
float32
1.239e+04 1.246e+04 ... 1.271e+04
array([[[12388.163 , 12461.749 , 12506.162 , ..., 12435.745 ,\n",
- " 12480.713 , 12497.041 ],\n",
- " [12179.026 , 12371.592 , 12527.25 , ..., 12112.015 ,\n",
- " 12259.826 , 12301.381 ],\n",
- " [12051.338 , 12271.361 , 12436.835 , ..., 11903.085 ,\n",
- " 12077.9795, 12106.597 ],\n",
- " ...,\n",
- " [12330.989 , 12574.277 , 12441.885 , ..., 13592.991 ,\n",
- " 13214.523 , 12696.648 ],\n",
- " [12653.858 , 12809.562 , 12835.155 , ..., 13086.455 ,\n",
- " 12965.445 , 12751.889 ],\n",
- " [12988.502 , 13109.121 , 13160.622 , ..., 12966.399 ,\n",
- " 12968.22 , 12934.729 ]],\n",
- "\n",
- " [[12391.646 , 12464.629 , 12511.317 , ..., 12441.749 ,\n",
- " 12487.02 , 12501.463 ],\n",
- " [12178.317 , 12371.539 , 12523.588 , ..., 12113.151 ,\n",
- " 12264.113 , 12306.238 ],\n",
- " [12045.532 , 12267.811 , 12430.3955, ..., 11894.267 ,\n",
- " 12071.487 , 12106.415 ],\n",
- "...\n",
- " [11324.873 , 10791.407 , 10449.294 , ..., 11608.553 ,\n",
- " 11356.27 , 11459.9375],\n",
- " [11981.9795, 11522.983 , 11243.272 , ..., 12195.109 ,\n",
- " 12034.967 , 12088.678 ],\n",
- " [12714.35 , 12538.698 , 12404.272 , ..., 12719.771 ,\n",
- " 12702.446 , 12713.654 ]],\n",
- "\n",
- " [[12303.626 , 12345.834 , 12387.212 , ..., 12238.668 ,\n",
- " 12367.819 , 12443.675 ],\n",
- " [12048.462 , 12234.544 , 12343.092 , ..., 11915.756 ,\n",
- " 12136.278 , 12255.953 ],\n",
- " [11962.126 , 12173.683 , 12269.028 , ..., 12085.015 ,\n",
- " 12346.505 , 12335.88 ],\n",
- " ...,\n",
- " [11342.209 , 10811.471 , 10445.732 , ..., 11651.975 ,\n",
- " 11386.067 , 11464.445 ],\n",
- " [11985.959 , 11515.851 , 11234.631 , ..., 12203.556 ,\n",
- " 12043.469 , 12084.824 ],\n",
- " [12727.291 , 12546.31 , 12404.834 , ..., 12710.7 ,\n",
- " 12686.366 , 12707.766 ]]], shape=(264, 32, 64), dtype=float32) z925
(time, latitude, longitude)
float32
6.027e+03 6.075e+03 ... 6.422e+03
array([[[6026.814 , 6074.8584, 6119.369 , ..., 6067.6733, 6119.454 ,\n",
- " 6129.0015],\n",
- " [5822.5664, 5963.978 , 6093.7056, ..., 5755.6904, 5877.847 ,\n",
- " 5905.8003],\n",
- " [5627.236 , 5815.2236, 5935.261 , ..., 5408.04 , 5612.284 ,\n",
- " 5599.525 ],\n",
- " ...,\n",
- " [5889.4814, 6155.1567, 6191.16 , ..., 7268.2085, 6867.5996,\n",
- " 6232.2617],\n",
- " [6084.4736, 6320.519 , 6411.7466, ..., 6653.765 , 6485.929 ,\n",
- " 6291.3174],\n",
- " [6629.4717, 6771.8027, 6876.36 , ..., 6688.933 , 6720.6455,\n",
- " 6681.0728]],\n",
- "\n",
- " [[6028.1245, 6069.4614, 6115.1406, ..., 6070.8257, 6123.083 ,\n",
- " 6132.8633],\n",
- " [5819.3594, 5959.5303, 6082.056 , ..., 5755.093 , 5870.715 ,\n",
- " 5904.2007],\n",
- " [5622.4 , 5808.041 , 5923.502 , ..., 5404.6924, 5608.778 ,\n",
- " 5600.4785],\n",
- "...\n",
- " [5075.6304, 4552.6704, 4210.592 , ..., 5276.85 , 4950.1475,\n",
- " 4907.425 ],\n",
- " [5619.627 , 5239.213 , 5041.929 , ..., 5924.452 , 5757.516 ,\n",
- " 5704.9355],\n",
- " [6461.8745, 6360.3433, 6287.7124, ..., 6399.3154, 6421.752 ,\n",
- " 6432.9575]],\n",
- "\n",
- " [[5935.344 , 5973.5728, 6016.516 , ..., 5910.6416, 6007.064 ,\n",
- " 6112.6836],\n",
- " [5682.3765, 5780.538 , 5929.895 , ..., 5609.198 , 5808.585 ,\n",
- " 5903.523 ],\n",
- " [5481.659 , 5658.961 , 5696.969 , ..., 5692.6577, 5906.495 ,\n",
- " 5855.5107],\n",
- " ...,\n",
- " [5085.931 , 4577.223 , 4223.3022, ..., 5323.7456, 4991.132 ,\n",
- " 4922.6577],\n",
- " [5634.593 , 5256.141 , 5045.58 , ..., 5943.4473, 5764.041 ,\n",
- " 5699.6636],\n",
- " [6458.943 , 6359.486 , 6285.8433, ..., 6386.384 , 6405.9224,\n",
- " 6422.0864]]], shape=(264, 32, 64), dtype=float32) z1000
(time, latitude, longitude)
float32
122.6 149.6 169.7 ... 759.2 681.4
array([[[ 122.56855 , 149.63144 , 169.74323 , ...,\n",
- " 131.83235 , 167.90488 , 174.69861 ],\n",
- " [ -99.65876 , 8.585175 , 164.71835 , ...,\n",
- " -239.84654 , -115.91939 , -54.86322 ],\n",
- " [ -496.14462 , -362.08844 , -177.97443 , ...,\n",
- " -695.41223 , -513.8613 , -437.003 ],\n",
- " ...,\n",
- " [ -156.15604 , 242.54193 , 367.56055 , ...,\n",
- " 1669.4042 , 1163.7014 , 366.99823 ],\n",
- " [ 286.9351 , 544.53864 , 618.4367 , ...,\n",
- " 1018.56244 , 774.5431 , 505.05902 ],\n",
- " [ 933.2417 , 1083.1249 , 1130.9543 , ...,\n",
- " 992.4226 , 986.4939 , 904.9301 ]],\n",
- "\n",
- " [[ 115.98902 , 142.40547 , 164.821 , ...,\n",
- " 133.08858 , 168.14236 , 177.90161 ],\n",
- " [ -104.79966 , 4.7680817, 162.93094 , ...,\n",
- " -236.99553 , -114.314316 , -55.367676 ],\n",
- " [ -498.9111 , -363.45334 , -179.22177 , ...,\n",
- " -703.5527 , -513.75287 , -437.70587 ],\n",
- "...\n",
- " -389.2955 , -864.40405 , -960.5099 ],\n",
- " [ -255.79486 , -676.8061 , -951.427 , ...,\n",
- " 299.8588 , 14.703751 , -183.89929 ],\n",
- " [ 765.79865 , 603.387 , 475.92093 , ...,\n",
- " 769.3898 , 767.4034 , 691.2712 ]],\n",
- "\n",
- " [[ 21.953423 , -15.652359 , 41.05937 , ...,\n",
- " -19.40512 , 53.027664 , 107.420616 ],\n",
- " [ -286.0387 , -259.90573 , -142.99875 , ...,\n",
- " -301.82062 , -170.3812 , -86.81496 ],\n",
- " [ -544.18695 , -518.2349 , -475.63397 , ...,\n",
- " -489.1667 , -298.94675 , -289.4049 ],\n",
- " ...,\n",
- " [ -931.94543 , -1470.1501 , -1825.746 , ...,\n",
- " -336.11743 , -818.2705 , -948.1074 ],\n",
- " [ -256.93005 , -667.7745 , -953.3942 , ...,\n",
- " 321.70996 , 13.48085 , -191.66583 ],\n",
- " [ 766.4583 , 608.5107 , 468.29816 , ...,\n",
- " 761.35614 , 759.2279 , 681.4339 ]]],\n",
- " shape=(264, 32, 64), dtype=float32) vo50
(time, latitude, longitude)
float32
4.927e-06 4.465e-06 ... 3.354e-05
array([[[ 4.9270920e-06, 4.4647472e-06, 3.8813514e-06, ...,\n",
- " 4.2116967e-06, 4.9971422e-06, 5.0555118e-06],\n",
- " [ 4.7877766e-06, 5.5067239e-06, 6.2713107e-06, ...,\n",
- " 4.0385162e-06, 4.1024978e-06, 3.6634206e-06],\n",
- " [-4.4386013e-07, 8.2898350e-07, 1.3182698e-06, ...,\n",
- " 4.9980508e-07, 7.9725032e-07, 8.3699774e-08],\n",
- " ...,\n",
- " [ 7.2474268e-07, 3.9440201e-06, 7.8427729e-06, ...,\n",
- " 3.8218463e-05, 3.2718002e-05, 2.5066513e-05],\n",
- " [-8.8534189e-06, -1.3653689e-06, 8.5001120e-06, ...,\n",
- " 8.8430133e-06, 5.6821027e-06, 1.6093818e-06],\n",
- " [ 3.0353091e-05, 3.5952104e-05, 3.7108795e-05, ...,\n",
- " 3.8747377e-05, 3.8910108e-05, 3.7443391e-05]],\n",
- "\n",
- " [[ 5.0207309e-06, 4.6301125e-06, 3.9724068e-06, ...,\n",
- " 4.2471893e-06, 5.0437602e-06, 5.0580215e-06],\n",
- " [ 4.8953793e-06, 5.6901790e-06, 6.3305206e-06, ...,\n",
- " 4.0102759e-06, 4.0857135e-06, 3.6647439e-06],\n",
- " [-4.1132103e-07, 8.1645544e-07, 1.1957882e-06, ...,\n",
- " 4.2069911e-07, 8.0567145e-07, 3.9446036e-08],\n",
- "...\n",
- " 2.4095702e-05, 1.7639341e-05, 1.3794835e-05],\n",
- " [-7.8310532e-06, -4.5721099e-06, 3.1100526e-06, ...,\n",
- " -1.0114313e-06, -3.4061959e-06, -6.4781179e-06],\n",
- " [ 3.4697940e-05, 3.8240825e-05, 3.8297210e-05, ...,\n",
- " 3.5752149e-05, 3.5266014e-05, 3.3423694e-05]],\n",
- "\n",
- " [[ 3.3847407e-06, 2.6739717e-06, 2.5431523e-06, ...,\n",
- " 1.4268855e-06, 3.1953682e-06, 4.0615537e-06],\n",
- " [ 2.6277987e-06, 3.5688176e-06, 4.8813367e-06, ...,\n",
- " 1.6776888e-06, 2.3031910e-06, 2.5907284e-06],\n",
- " [-2.3584912e-06, -4.1182866e-06, -4.1808289e-06, ...,\n",
- " -1.1602367e-07, -1.3276274e-06, -1.5866194e-06],\n",
- " ...,\n",
- " [ 3.0866033e-06, 3.4190671e-06, 5.5654805e-06, ...,\n",
- " 2.4316432e-05, 1.7511316e-05, 1.4002913e-05],\n",
- " [-7.9875990e-06, -4.5415850e-06, 3.3316173e-06, ...,\n",
- " -8.2331098e-07, -2.8498680e-06, -6.1309829e-06],\n",
- " [ 3.4719986e-05, 3.8700135e-05, 3.8420963e-05, ...,\n",
- " 3.5424910e-05, 3.5548725e-05, 3.3541892e-05]]],\n",
- " shape=(264, 32, 64), dtype=float32) vo100
(time, latitude, longitude)
float32
-1.184e-06 -1.851e-06 ... 1.155e-05
array([[[-1.18429330e-06, -1.85135809e-06, -3.01504497e-06, ...,\n",
- " 2.42272768e-06, 2.66167740e-06, 1.40850295e-06],\n",
- " [ 5.94833955e-06, 7.37083292e-06, 7.82095140e-06, ...,\n",
- " 3.88743138e-06, 5.59378077e-06, 6.43536259e-06],\n",
- " [-4.11546716e-06, 8.86577254e-07, 3.54815711e-06, ...,\n",
- " -1.27878070e-06, -2.68437134e-06, -3.98627071e-06],\n",
- " ...,\n",
- " [-6.92481126e-06, 1.25590896e-06, -5.22704249e-06, ...,\n",
- " 2.49173827e-05, 2.11215956e-05, 9.24168307e-06],\n",
- " [-1.03707616e-05, -8.60990895e-06, -9.37750701e-06, ...,\n",
- " 1.36483250e-05, 9.91502384e-06, 2.58556520e-06],\n",
- " [ 8.60286673e-06, 9.13175427e-06, 6.63059473e-06, ...,\n",
- " 1.99631504e-05, 1.84182045e-05, 1.53878827e-05]],\n",
- "\n",
- " [[-1.12837813e-06, -1.76153992e-06, -2.86669137e-06, ...,\n",
- " 2.33929609e-06, 2.64885307e-06, 1.48174138e-06],\n",
- " [ 6.17267688e-06, 7.63355092e-06, 7.92437640e-06, ...,\n",
- " 3.77829338e-06, 5.67355164e-06, 6.51725804e-06],\n",
- " [-3.88119133e-06, 1.08976656e-06, 3.47736477e-06, ...,\n",
- " -1.50383562e-06, -2.62774984e-06, -3.93923619e-06],\n",
- "...\n",
- " 1.41023675e-05, 1.19111000e-05, 2.38388384e-06],\n",
- " [-9.69617759e-06, -7.37770597e-06, -5.73769739e-06, ...,\n",
- " -9.71996087e-07, -3.01425507e-06, -5.10500422e-06],\n",
- " [ 7.10420318e-06, 8.34666753e-06, 9.20326511e-06, ...,\n",
- " 8.78947594e-06, 9.57861266e-06, 1.12178950e-05]],\n",
- "\n",
- " [[-3.67221901e-06, -2.28474210e-06, -2.98233999e-07, ...,\n",
- " -3.11861641e-06, -3.06896595e-07, -4.89277227e-07],\n",
- " [-9.52664095e-07, 1.33878621e-06, 4.22868015e-06, ...,\n",
- " -6.88391765e-06, -1.45484114e-06, 3.44518548e-06],\n",
- " [-8.30333738e-06, -8.38174947e-06, -8.50887318e-06, ...,\n",
- " -2.75204184e-06, -3.71155625e-06, -4.91830360e-06],\n",
- " ...,\n",
- " [-5.66526523e-06, 5.07832738e-07, -6.51467053e-06, ...,\n",
- " 1.38127207e-05, 1.21994190e-05, 2.97478800e-06],\n",
- " [-9.69142911e-06, -7.25172640e-06, -5.52379606e-06, ...,\n",
- " -1.13994201e-06, -2.83180043e-06, -4.84729844e-06],\n",
- " [ 6.64711206e-06, 7.92362152e-06, 9.02443844e-06, ...,\n",
- " 8.86917405e-06, 9.76102547e-06, 1.15492276e-05]]],\n",
- " shape=(264, 32, 64), dtype=float32) vo150
(time, latitude, longitude)
float32
-6.961e-06 -6.21e-06 ... 2.104e-06
array([[[-6.96068128e-06, -6.20991659e-06, -6.46581339e-06, ...,\n",
- " -3.17820172e-06, -1.62534661e-06, -1.90895116e-06],\n",
- " [-1.72086914e-06, 2.26153361e-06, 4.69861061e-06, ...,\n",
- " -1.35930259e-06, 4.83873464e-07, 1.91114418e-06],\n",
- " [-8.00706584e-06, -1.70810654e-06, 1.15455441e-06, ...,\n",
- " -1.02444455e-05, -1.01612150e-05, -1.01872683e-05],\n",
- " ...,\n",
- " [-1.39842232e-05, -7.08693369e-06, -1.05202016e-05, ...,\n",
- " 1.54042518e-05, 1.31555980e-05, 4.78337097e-06],\n",
- " [-1.68713104e-05, -1.34158818e-05, -1.35778246e-05, ...,\n",
- " 7.45228317e-06, 4.94951473e-06, -3.75182663e-06],\n",
- " [-4.87180569e-06, -6.24898075e-06, -6.55202075e-06, ...,\n",
- " 5.55317092e-06, 3.26847521e-06, 1.41650901e-06]],\n",
- "\n",
- " [[-6.68879466e-06, -5.83036353e-06, -6.33139371e-06, ...,\n",
- " -3.02851049e-06, -1.49503057e-06, -1.73883541e-06],\n",
- " [-1.39779820e-06, 2.71355520e-06, 4.90296588e-06, ...,\n",
- " -1.47693572e-06, 8.12017788e-07, 2.05727724e-06],\n",
- " [-7.66419635e-06, -1.49342213e-06, 1.16460251e-06, ...,\n",
- " -1.06361294e-05, -1.00209700e-05, -9.94372385e-06],\n",
- "...\n",
- " 1.12481666e-05, 7.05989214e-06, -8.05483069e-07],\n",
- " [-9.64085666e-06, -1.25964652e-06, -1.97373811e-06, ...,\n",
- " -1.05814706e-06, -1.95186931e-06, -9.54784991e-06],\n",
- " [-4.98171266e-06, -3.27382850e-08, 3.72432578e-06, ...,\n",
- " -4.15485829e-06, -3.21691573e-07, 1.77587856e-06]],\n",
- "\n",
- " [[-1.24236976e-05, -1.10022866e-05, -8.13991210e-06, ...,\n",
- " -1.49407751e-05, -9.68169024e-06, -4.65945141e-06],\n",
- " [-7.80729442e-06, -5.94001222e-06, -1.42858391e-06, ...,\n",
- " -1.45217373e-05, -1.18142088e-05, -3.29116460e-06],\n",
- " [-1.36518665e-05, -1.57441154e-05, -1.39138428e-05, ...,\n",
- " -1.35149658e-05, -1.32572923e-05, -1.39585190e-05],\n",
- " ...,\n",
- " [-7.53906534e-06, -3.32810123e-06, -1.02454933e-05, ...,\n",
- " 1.10860965e-05, 7.31980026e-06, -4.69393399e-07],\n",
- " [-9.62956256e-06, -9.51895345e-07, -1.62473589e-06, ...,\n",
- " -1.39337317e-06, -1.53710971e-06, -9.27952806e-06],\n",
- " [-5.64102220e-06, -9.12581299e-08, 3.83309407e-06, ...,\n",
- " -3.82018197e-06, -1.58370312e-08, 2.10416920e-06]]],\n",
- " shape=(264, 32, 64), dtype=float32) vo200
(time, latitude, longitude)
float32
-8.613e-06 -7.711e-06 ... 8.257e-07
array([[[-8.61252374e-06, -7.71141913e-06, -7.60148760e-06, ...,\n",
- " -7.73049578e-06, -6.25076063e-06, -5.65778464e-06],\n",
- " [-3.15472562e-06, -6.60735395e-07, 2.63628408e-08, ...,\n",
- " -3.38631435e-06, -1.05704839e-06, -4.50694188e-07],\n",
- " [-6.33954551e-06, 3.40758379e-06, 7.46477690e-06, ...,\n",
- " -1.33762505e-05, -1.12468369e-05, -9.77465243e-06],\n",
- " ...,\n",
- " [-1.36981207e-05, -8.60868568e-06, -4.29777901e-06, ...,\n",
- " 2.93654030e-05, 3.37336060e-05, 2.92450331e-05],\n",
- " [-3.25847250e-05, -1.53508427e-05, -5.71050259e-06, ...,\n",
- " 1.81595078e-05, 2.15838718e-05, 8.04698357e-06],\n",
- " [-1.02761269e-05, -1.04561732e-05, -1.00877514e-05, ...,\n",
- " 7.23882522e-06, 3.02238686e-06, -4.41718839e-07]],\n",
- "\n",
- " [[-8.41469773e-06, -7.35109234e-06, -7.22294999e-06, ...,\n",
- " -7.57579983e-06, -6.21105346e-06, -5.58580587e-06],\n",
- " [-2.67162022e-06, -2.12126338e-07, 2.57362672e-07, ...,\n",
- " -3.44666250e-06, -9.80686764e-07, -4.03511422e-07],\n",
- " [-5.74952719e-06, 3.91268622e-06, 7.56260397e-06, ...,\n",
- " -1.37611933e-05, -1.07710748e-05, -9.38656649e-06],\n",
- "...\n",
- " 1.84425135e-05, 1.60751242e-05, 1.14849645e-05],\n",
- " [-1.64202847e-05, 7.48040475e-06, 1.73172812e-05, ...,\n",
- " -3.92241054e-06, 4.31578337e-06, -6.72964234e-06],\n",
- " [-5.14931889e-06, 2.92913501e-06, 8.09143421e-06, ...,\n",
- " 1.97042573e-06, 4.75002389e-06, 6.59797934e-07]],\n",
- "\n",
- " [[-1.22333822e-05, -1.07259184e-05, -9.38729772e-06, ...,\n",
- " -1.31301349e-05, -9.19922059e-06, -6.55627082e-06],\n",
- " [-7.30380771e-06, -5.85290081e-06, -4.54320934e-06, ...,\n",
- " -1.40316388e-05, -7.13809777e-06, -2.55099894e-06],\n",
- " [-1.24800226e-05, -1.18644639e-05, -1.00401539e-05, ...,\n",
- " -1.58991625e-05, -1.16920983e-05, -1.25098531e-05],\n",
- " ...,\n",
- " [-1.55381713e-07, -1.55157977e-06, 5.19370587e-07, ...,\n",
- " 1.85984281e-05, 1.67289218e-05, 1.25036813e-05],\n",
- " [-1.71570373e-05, 8.45392788e-06, 1.80762363e-05, ...,\n",
- " -4.93466541e-06, 3.84766645e-06, -6.57037526e-06],\n",
- " [-5.84373811e-06, 3.58584748e-06, 8.79952495e-06, ...,\n",
- " 1.25567431e-06, 4.55356212e-06, 8.25682946e-07]]],\n",
- " shape=(264, 32, 64), dtype=float32) vo250
(time, latitude, longitude)
float32
-9.933e-06 ... -4.897e-06
array([[[-9.93317735e-06, -9.13396980e-06, -9.71076042e-06, ...,\n",
- " -1.01264241e-05, -8.06330536e-06, -7.48375533e-06],\n",
- " [-3.69897589e-06, -1.40405518e-06, -5.00988881e-06, ...,\n",
- " -4.05982746e-06, -6.18064860e-07, -8.84396741e-07],\n",
- " [ 1.46473758e-06, 1.67796716e-05, 1.93331780e-05, ...,\n",
- " -1.10989404e-05, -8.42751797e-06, -7.98204019e-06],\n",
- " ...,\n",
- " [-2.63067450e-05, -2.26168286e-05, -1.80268271e-05, ...,\n",
- " 2.28009685e-05, 2.99152998e-05, 2.24756222e-05],\n",
- " [-3.67554494e-05, -2.26220327e-05, -2.36765845e-05, ...,\n",
- " 9.08584116e-06, 4.49249819e-06, -4.20390461e-06],\n",
- " [-2.13209278e-05, -2.04546905e-05, -2.00351860e-05, ...,\n",
- " -9.09103164e-06, -1.35948494e-05, -1.33777203e-05]],\n",
- "\n",
- " [[-9.79759534e-06, -8.74466787e-06, -9.52537084e-06, ...,\n",
- " -1.01806172e-05, -8.02047362e-06, -7.55694737e-06],\n",
- " [-3.37641313e-06, -1.01121941e-06, -4.90557250e-06, ...,\n",
- " -4.23721667e-06, -5.15810825e-07, -9.58060127e-07],\n",
- " [ 1.94473614e-06, 1.70874300e-05, 1.94757977e-05, ...,\n",
- " -1.16589081e-05, -7.94694097e-06, -7.68451264e-06],\n",
- "...\n",
- " 1.64033845e-05, 2.30826481e-05, 1.19818333e-05],\n",
- " [-4.86831050e-06, 2.68754993e-05, 2.86960385e-05, ...,\n",
- " -3.64584594e-06, 8.43763519e-06, -4.15863178e-06],\n",
- " [-1.21810626e-05, -1.77717993e-07, 8.07829747e-06, ...,\n",
- " -8.14647501e-06, -5.28209966e-06, -5.23918425e-06]],\n",
- "\n",
- " [[-1.30218032e-05, -1.05959161e-05, -8.72744840e-06, ...,\n",
- " -1.58217663e-05, -1.03218208e-05, -7.39046754e-06],\n",
- " [-1.04747442e-05, -7.99705049e-06, -7.71547275e-06, ...,\n",
- " -1.61853968e-05, -7.53318909e-06, -3.30403600e-06],\n",
- " [-1.04206620e-05, -6.02920409e-06, -7.49949550e-06, ...,\n",
- " -1.90712726e-05, -1.45955910e-05, -1.37979659e-05],\n",
- " ...,\n",
- " [-2.13998919e-06, 3.40712722e-06, -5.97976759e-06, ...,\n",
- " 1.67235976e-05, 2.36498290e-05, 1.26234181e-05],\n",
- " [-5.85661473e-06, 2.80625427e-05, 3.07546834e-05, ...,\n",
- " -4.79677874e-06, 8.72633427e-06, -2.80934546e-06],\n",
- " [-1.27200738e-05, 9.09230948e-08, 9.00646410e-06, ...,\n",
- " -8.91387299e-06, -5.68536689e-06, -4.89710146e-06]]],\n",
- " shape=(264, 32, 64), dtype=float32) vo300
(time, latitude, longitude)
float32
-1.582e-05 -1.247e-05 ... -9.4e-06
array([[[-1.58177609e-05, -1.24731232e-05, -1.21521807e-05, ...,\n",
- " -4.24503196e-06, -1.85762929e-06, -3.37044639e-07],\n",
- " [-1.68974620e-05, -8.90727733e-06, -8.63940659e-06, ...,\n",
- " -2.19615595e-06, 1.57358045e-07, -4.92053641e-06],\n",
- " [ 9.01493604e-06, 4.12799745e-05, 4.92029249e-05, ...,\n",
- " -1.99481528e-05, -1.40721786e-05, -1.92262360e-06],\n",
- " ...,\n",
- " [-4.45687838e-05, -3.82499711e-05, -2.39865403e-05, ...,\n",
- " 1.33007816e-05, 3.68166257e-05, 3.57447861e-05],\n",
- " [-3.52433017e-05, -2.31428130e-05, -1.81124215e-05, ...,\n",
- " 7.32428816e-07, 1.92422867e-05, 1.61585449e-05],\n",
- " [-2.28767858e-05, -2.44230723e-05, -2.17541037e-05, ...,\n",
- " -8.09019184e-07, -4.49801337e-06, -9.57953489e-06]],\n",
- "\n",
- " [[-1.54421850e-05, -1.14759750e-05, -1.18580683e-05, ...,\n",
- " -4.36231630e-06, -1.23545396e-06, -1.55479029e-07],\n",
- " [-1.63520963e-05, -7.85164775e-06, -8.04864885e-06, ...,\n",
- " -2.15739783e-06, 5.42599082e-07, -4.97961128e-06],\n",
- " [ 9.81272751e-06, 4.24931386e-05, 5.01467803e-05, ...,\n",
- " -2.17456072e-05, -1.44772193e-05, -1.25631504e-06],\n",
- "...\n",
- " 2.93942503e-05, 3.71205606e-05, 2.19729900e-05],\n",
- " [-1.19328424e-05, 1.49668595e-05, 1.95048342e-05, ...,\n",
- " -3.63422623e-06, 2.22799590e-05, 1.17535419e-05],\n",
- " [-1.75385649e-05, -1.00172610e-05, -7.85511020e-06, ...,\n",
- " -6.60577325e-06, -4.34047433e-06, -1.05046011e-05]],\n",
- "\n",
- " [[-2.81691664e-05, -2.19559279e-05, -1.19681608e-05, ...,\n",
- " -2.41881407e-05, -1.42210774e-05, -3.82139024e-06],\n",
- " [-2.35167554e-05, -1.82072945e-05, -1.35731516e-05, ...,\n",
- " -2.64708287e-05, -1.22241090e-05, -8.44095757e-06],\n",
- " [-1.12140642e-05, 5.70823886e-07, 2.26114616e-06, ...,\n",
- " -1.99268870e-05, -9.89972341e-06, -3.08600647e-07],\n",
- " ...,\n",
- " [-2.37021868e-05, -2.58204127e-05, -2.84568960e-05, ...,\n",
- " 2.91269680e-05, 3.87890650e-05, 2.27987857e-05],\n",
- " [-1.18017842e-05, 1.74030829e-05, 2.21112241e-05, ...,\n",
- " -4.61896161e-06, 2.24042542e-05, 1.29067994e-05],\n",
- " [-1.84090950e-05, -9.37359619e-06, -7.22930008e-06, ...,\n",
- " -5.90475383e-06, -3.42060230e-06, -9.39999154e-06]]],\n",
- " shape=(264, 32, 64), dtype=float32) vo400
(time, latitude, longitude)
float32
-1.292e-05 -1.172e-05 ... 1.204e-06
array([[[-1.29196742e-05, -1.17220316e-05, -1.19897195e-05, ...,\n",
- " -9.57903194e-06, -2.84901216e-06, -2.28436875e-06],\n",
- " [-1.08187069e-05, 2.40976851e-06, 6.11289897e-06, ...,\n",
- " -6.95636754e-06, -4.53939629e-06, -2.19820686e-06],\n",
- " [ 1.23212558e-05, 3.06359034e-05, 4.66000929e-05, ...,\n",
- " -1.21714356e-05, -7.34621972e-06, 1.03200819e-06],\n",
- " ...,\n",
- " [-3.43225402e-05, -3.11916265e-05, -1.56926035e-05, ...,\n",
- " 8.23188566e-06, 4.37416893e-05, 4.63786564e-05],\n",
- " [-1.90839146e-05, -7.42331667e-06, 4.91684295e-06, ...,\n",
- " -7.21137076e-06, 1.12869902e-05, 1.81244013e-05],\n",
- " [-1.01557816e-05, -2.28911595e-05, -2.77638137e-05, ...,\n",
- " -5.55854922e-06, -5.42362159e-06, -1.86316583e-06]],\n",
- "\n",
- " [[-1.25841343e-05, -1.11411591e-05, -1.16712963e-05, ...,\n",
- " -9.35147909e-06, -2.34105482e-06, -1.91567960e-06],\n",
- " [-1.04167111e-05, 2.87975763e-06, 6.17620753e-06, ...,\n",
- " -7.03176102e-06, -4.30546515e-06, -2.13404837e-06],\n",
- " [ 1.31773040e-05, 3.15972175e-05, 4.73353612e-05, ...,\n",
- " -1.30946119e-05, -7.17725925e-06, 1.54173449e-06],\n",
- "...\n",
- " 1.70662825e-05, 3.95925817e-05, 2.69708435e-05],\n",
- " [-1.15320108e-05, -7.99863665e-06, -3.96606538e-06, ...,\n",
- " -1.96592391e-05, 5.45318471e-07, 2.47856769e-06],\n",
- " [-9.53635572e-06, -1.37123825e-05, -2.25207696e-05, ...,\n",
- " -6.01347710e-06, -9.19678314e-07, 5.46993533e-07]],\n",
- "\n",
- " [[-2.06719214e-05, -2.01905896e-05, -1.68419538e-05, ...,\n",
- " -2.40903828e-05, -1.55691250e-05, -8.49753906e-06],\n",
- " [-1.90664541e-05, -1.37838906e-05, -6.64251957e-06, ...,\n",
- " -2.04410098e-05, -1.14227441e-05, -7.09499454e-06],\n",
- " [ 1.30642934e-06, -8.85547934e-07, 6.33745640e-06, ...,\n",
- " -3.62729952e-06, -6.17490514e-07, -4.89783724e-06],\n",
- " ...,\n",
- " [-1.11761756e-05, -2.82467900e-05, -3.12846350e-05, ...,\n",
- " 1.89743623e-05, 4.10739303e-05, 2.89424825e-05],\n",
- " [-1.20919585e-05, -7.29475869e-06, -3.10461292e-06, ...,\n",
- " -2.01513958e-05, 3.55670636e-07, 2.72143870e-06],\n",
- " [-1.02457252e-05, -1.37890183e-05, -2.23926872e-05, ...,\n",
- " -5.74769820e-06, 4.56891485e-08, 1.20443383e-06]]],\n",
- " shape=(264, 32, 64), dtype=float32) vo500
(time, latitude, longitude)
float32
-5.498e-06 -6.385e-06 ... 4.115e-06
array([[[-5.49765673e-06, -6.38514575e-06, -8.49599292e-06, ...,\n",
- " -2.09123391e-06, -1.24025928e-06, -1.54968802e-06],\n",
- " [-7.80706978e-06, 3.34182914e-06, 6.71847238e-06, ...,\n",
- " -9.39491747e-06, -1.15478942e-05, -7.23819494e-06],\n",
- " [ 1.35781893e-05, 2.51182082e-05, 3.23099885e-05, ...,\n",
- " -7.21529523e-06, 3.92574839e-06, -5.86859187e-07],\n",
- " ...,\n",
- " [-1.37925690e-05, -2.69698812e-05, -1.81762607e-05, ...,\n",
- " 3.68869005e-05, 3.86472420e-05, 2.79501000e-05],\n",
- " [-7.25434529e-06, -1.38576725e-05, -3.66787526e-06, ...,\n",
- " 3.22002779e-06, -1.88621925e-06, 1.30270128e-05],\n",
- " [-1.74511806e-05, -2.15923537e-05, -1.96157889e-05, ...,\n",
- " 1.20995992e-07, -1.98395446e-06, 2.31481272e-06]],\n",
- "\n",
- " [[-5.60033504e-06, -6.46559602e-06, -8.52878475e-06, ...,\n",
- " -1.95618895e-06, -1.14453496e-06, -1.64964058e-06],\n",
- " [-7.70504994e-06, 3.72154227e-06, 7.06254377e-06, ...,\n",
- " -9.73364240e-06, -1.14746035e-05, -6.99315524e-06],\n",
- " [ 1.37819443e-05, 2.56381172e-05, 3.20670006e-05, ...,\n",
- " -7.70158294e-06, 4.27373607e-06, -2.37973836e-08],\n",
- "...\n",
- " 6.41944894e-07, 2.20046713e-05, 1.70859239e-05],\n",
- " [ 2.03362051e-05, 3.12692209e-05, 4.54361725e-05, ...,\n",
- " -1.26727164e-05, -5.09529127e-06, 1.34765978e-05],\n",
- " [-1.51042595e-05, -1.03617222e-05, -5.17934495e-06, ...,\n",
- " -5.04035143e-06, -1.12540351e-06, 3.59454771e-06]],\n",
- "\n",
- " [[-6.93699712e-06, -1.04657101e-05, -9.78613843e-06, ...,\n",
- " -1.21408748e-05, -5.94908533e-06, -4.52754603e-06],\n",
- " [-1.32652494e-05, -4.83793519e-06, -2.45075171e-06, ...,\n",
- " -1.90108385e-05, -1.61312037e-05, -9.37379809e-06],\n",
- " [ 7.47447029e-06, 7.52562210e-06, 1.46494394e-05, ...,\n",
- " -1.03740604e-06, 9.15451528e-06, 9.28727786e-07],\n",
- " ...,\n",
- " [-4.11968176e-06, -1.27946469e-05, -1.76699941e-05, ...,\n",
- " 1.08204654e-06, 2.22963281e-05, 1.79439758e-05],\n",
- " [ 1.98534035e-05, 3.15091456e-05, 4.69771621e-05, ...,\n",
- " -1.38805362e-05, -5.72305726e-06, 1.36195013e-05],\n",
- " [-1.61949720e-05, -1.05007175e-05, -4.23585607e-06, ...,\n",
- " -5.85370071e-06, -7.10794211e-07, 4.11530618e-06]]],\n",
- " shape=(264, 32, 64), dtype=float32) vo600
(time, latitude, longitude)
float32
-4.675e-06 ... -2.075e-05
array([[[-4.67472364e-06, -5.19897458e-06, -6.39551172e-06, ...,\n",
- " 3.59224032e-07, -5.80658252e-07, -8.52908670e-07],\n",
- " [-6.94074106e-06, -2.80479162e-06, 8.72347528e-07, ...,\n",
- " -1.20070863e-05, -1.11454856e-05, -3.69419081e-06],\n",
- " [ 5.97798862e-06, 2.18430396e-05, 3.03341221e-05, ...,\n",
- " 7.27139150e-06, 3.18168327e-06, 8.38809319e-06],\n",
+ " 315. , 320.625, 326.25 , 331.875, 337.5 , 343.125, 348.75 , 354.375]) latitude
(latitude)
float64
-87.19 -81.56 ... 81.56 87.19
array([-87.1875, -81.5625, -75.9375, -70.3125, -64.6875, -59.0625, -53.4375,\n",
+ " -47.8125, -42.1875, -36.5625, -30.9375, -25.3125, -19.6875, -14.0625,\n",
+ " -8.4375, -2.8125, 2.8125, 8.4375, 14.0625, 19.6875, 25.3125,\n",
+ " 30.9375, 36.5625, 42.1875, 47.8125, 53.4375, 59.0625, 64.6875,\n",
+ " 70.3125, 75.9375, 81.5625, 87.1875]) Data variables: (5)
2m_temperature
(time, longitude, latitude)
float32
236.5 244.0 245.0 ... 258.8 258.4
long_name : 2 metre temperature short_name : t2m units : K array([[[236.49297, 243.99544, 244.99043, ..., 270.63403, 262.3728 ,\n",
+ " 259.10233],\n",
+ " [239.97308, 247.19217, 247.39627, ..., 271.20563, 262.80783,\n",
+ " 257.53256],\n",
+ " [240.80215, 247.16916, 245.88608, ..., 271.0322 , 262.4672 ,\n",
+ " 256.8669 ],\n",
" ...,\n",
- " [-1.73008493e-06, -7.12072642e-06, -2.95547579e-06, ...,\n",
- " 1.84562323e-05, 3.26659865e-05, 4.39442047e-05],\n",
- " [ 9.64113838e-07, 1.70337662e-05, 1.38937103e-05, ...,\n",
- " -4.80983908e-06, -7.60212060e-07, 1.58370713e-05],\n",
- " [-2.13226303e-05, -2.39254059e-05, -2.71653589e-05, ...,\n",
- " -1.81964733e-05, -2.05969482e-05, -1.98852667e-05]],\n",
- "\n",
- " [[-4.67027303e-06, -5.27693965e-06, -6.25331177e-06, ...,\n",
- " 1.99381248e-07, -7.65737695e-07, -8.97560994e-07],\n",
- " [-6.71031012e-06, -2.60915226e-06, 1.11072404e-06, ...,\n",
- " -1.22406636e-05, -1.11017061e-05, -3.53200494e-06],\n",
- " [ 6.45640557e-06, 2.25073127e-05, 3.04663117e-05, ...,\n",
- " 6.06795311e-06, 2.93498329e-06, 8.74289708e-06],\n",
+ " [244.1036 , 255.26552, 261.05124, ..., 257.5507 , 253.59381,\n",
+ " 256.6308 ],\n",
+ " [242.0441 , 251.30324, 254.96422, ..., 262.84924, 257.9915 ,\n",
+ " 257.13498],\n",
+ " [237.07947, 244.28609, 246.01987, ..., 268.0018 , 260.644 ,\n",
+ " 258.2435 ]],\n",
+ "\n",
+ " [[236.5786 , 244.4628 , 245.6234 , ..., 270.53403, 262.3146 ,\n",
+ " 259.1815 ],\n",
+ " [240.2038 , 248.03514, 248.35916, ..., 271.09744, 262.74158,\n",
+ " 257.8318 ],\n",
+ " [241.15205, 248.26486, 247.05284, ..., 270.9144 , 262.4176 ,\n",
+ " 257.29208],\n",
"...\n",
- " 1.22829279e-05, 2.00003306e-05, 3.08168346e-05],\n",
- " [ 1.57461855e-05, 3.72185714e-05, 3.91511312e-05, ...,\n",
- " -1.88179838e-05, -1.21407393e-05, 5.92325523e-06],\n",
- " [-1.93653832e-05, -2.08094516e-05, -2.38174980e-05, ...,\n",
- " -2.32898055e-05, -2.60910183e-05, -2.07996218e-05]],\n",
- "\n",
- " [[-8.20807600e-06, -7.34163041e-06, -7.06189803e-06, ...,\n",
- " -6.18582180e-06, -2.71429712e-06, -1.06563186e-06],\n",
- " [-1.29147520e-05, -1.06595890e-05, -6.53590178e-06, ...,\n",
- " -2.24153300e-05, -1.55515863e-05, -7.53595214e-06],\n",
- " [ 1.66514610e-06, 9.49524929e-06, 1.36059480e-05, ...,\n",
- " 2.66022721e-06, -9.45913143e-07, 1.36365679e-06],\n",
+ " [243.67586, 255.71983, 262.34485, ..., 250.60135, 248.48769,\n",
+ " 254.62851],\n",
+ " [241.23451, 251.1166 , 255.86014, ..., 257.71585, 254.12888,\n",
+ " 256.29703],\n",
+ " [236.54637, 244.05612, 246.44415, ..., 265.81216, 258.48868,\n",
+ " 258.35843]],\n",
+ "\n",
+ " [[235.79008, 242.74011, 243.53357, ..., 268.8204 , 260.8587 ,\n",
+ " 259.4945 ],\n",
+ " [238.96007, 245.4364 , 245.3356 , ..., 269.6177 , 261.45895,\n",
+ " 258.47775],\n",
+ " [239.96486, 245.7662 , 244.3209 , ..., 270.04184, 261.56912,\n",
+ " 258.1629 ],\n",
" ...,\n",
- " [ 8.92603384e-06, 3.47651167e-06, 3.99505734e-06, ...,\n",
- " 1.28571955e-05, 2.14543797e-05, 3.25972869e-05],\n",
- " [ 1.58784442e-05, 3.85889216e-05, 4.11716173e-05, ...,\n",
- " -2.07705871e-05, -1.26987679e-05, 5.09780875e-06],\n",
- " [-1.97196678e-05, -2.08651218e-05, -2.41705347e-05, ...,\n",
- " -2.39760739e-05, -2.58960099e-05, -2.07474550e-05]]],\n",
- " shape=(264, 32, 64), dtype=float32) vo700
(time, latitude, longitude)
float32
1.607e-05 3.897e-05 ... -1.521e-05
array([[[ 1.60656127e-05, 3.89730230e-05, 2.57785268e-05, ...,\n",
- " -2.25460317e-05, -4.37476683e-06, 2.97684687e-06],\n",
- " [-2.30078513e-05, -2.29813668e-05, -1.59488391e-05, ...,\n",
- " -1.77562688e-05, -5.63328740e-07, -5.17151511e-06],\n",
- " [ 1.29214131e-05, 1.24166436e-05, 2.25033327e-05, ...,\n",
- " 7.29707745e-06, -2.10626822e-05, 2.10840008e-05],\n",
+ " [243.64996, 255.75363, 262.33215, ..., 252.82956, 250.23228,\n",
+ " 254.72418],\n",
+ " [240.8307 , 250.74837, 255.76857, ..., 258.57623, 255.03053,\n",
+ " 256.34116],\n",
+ " [236.11156, 243.62656, 246.33026, ..., 265.81302, 258.76938,\n",
+ " 258.35748]]], shape=(44, 64, 32), dtype=float32) u_component_of_wind850
(time, longitude, latitude)
float32
-4.186 -3.587 ... -2.488 -3.97
long_name : U component of wind short_name : u standard_name : eastward_wind units : m s**-1 level : 850 array([[[ -4.1858892 , -3.587463 , -4.2987833 , ..., -1.1263884 ,\n",
+ " -2.55757 , -0.9370079 ],\n",
+ " [ -3.3736548 , -2.6664906 , -5.521324 , ..., -3.5051637 ,\n",
+ " -5.182822 , -1.6794147 ],\n",
+ " [ -2.6483505 , -1.3648071 , -4.9216313 , ..., -5.994747 ,\n",
+ " -6.405018 , -1.9832735 ],\n",
" ...,\n",
- " [ 3.56523265e-06, -8.37919106e-06, -3.38994869e-06, ...,\n",
- " 1.88804506e-06, 8.36094478e-06, 1.88900085e-05],\n",
- " [ 1.72662731e-05, 2.48330834e-05, 1.45365730e-05, ...,\n",
- " -2.34030849e-05, -1.61571952e-05, 3.56790497e-06],\n",
- " [-1.46103384e-05, -1.82015829e-05, -2.04140488e-05, ...,\n",
- " -1.65912206e-05, -1.93179185e-05, -1.96233232e-05]],\n",
- "\n",
- " [[ 1.56786828e-05, 3.89608722e-05, 2.59418539e-05, ...,\n",
- " -2.27273886e-05, -4.23182792e-06, 2.94936262e-06],\n",
- " [-2.30943442e-05, -2.29796060e-05, -1.62032447e-05, ...,\n",
- " -1.81319192e-05, -6.39692644e-07, -5.10827113e-06],\n",
- " [ 1.30835751e-05, 1.26262603e-05, 2.27623168e-05, ...,\n",
- " 6.65600237e-06, -2.07495723e-05, 2.18222121e-05],\n",
+ " [ -6.038775 , -5.0663447 , -3.3299882 , ..., 0.70627856,\n",
+ " -1.470422 , -1.3724096 ],\n",
+ " [ -5.39817 , -4.7213745 , -4.65135 , ..., 0.6357357 ,\n",
+ " -1.2668686 , -1.6745554 ],\n",
+ " [ -4.9072123 , -4.0170836 , -4.115983 , ..., 0.558324 ,\n",
+ " -0.6644819 , -1.2584102 ]],\n",
+ "\n",
+ " [[ -4.1244206 , -3.6186252 , -4.3826265 , ..., -1.019135 ,\n",
+ " -2.1545465 , -0.06559411],\n",
+ " [ -3.2407022 , -2.6691558 , -5.717553 , ..., -3.065143 ,\n",
+ " -4.497243 , -0.25168392],\n",
+ " [ -2.4876995 , -1.2915251 , -5.326667 , ..., -5.203665 ,\n",
+ " -5.6521072 , -0.58216727],\n",
"...\n",
- " 9.17812122e-06, 2.02606352e-05, 2.78255611e-05],\n",
- " [ 2.70798864e-05, 4.50864718e-05, 3.21508924e-05, ...,\n",
- " -1.82651438e-05, -1.26998657e-06, 1.73559074e-05],\n",
- " [-1.27626045e-05, -1.25525339e-05, -1.15628372e-05, ...,\n",
- " -1.13473725e-05, -1.24338139e-05, -1.53574911e-05]],\n",
- "\n",
- " [[ 1.09138746e-05, 2.97809747e-05, 1.99224996e-05, ...,\n",
- " -3.03462748e-05, -9.56705844e-06, 1.20353684e-06],\n",
- " [-2.96821436e-05, -3.77587130e-05, -3.25547044e-05, ...,\n",
- " -2.70315213e-05, -7.48027196e-06, -1.09224229e-05],\n",
- " [ 1.04349765e-05, 6.79587583e-06, 1.18038824e-05, ...,\n",
- " 9.20399816e-06, -2.44491403e-05, 1.49859297e-05],\n",
+ " [ -4.305207 , -4.1710596 , -1.8739895 , ..., 1.2974044 ,\n",
+ " 0.7146434 , -2.9960947 ],\n",
+ " [ -3.9366071 , -3.5665693 , -2.427466 , ..., 1.9381996 ,\n",
+ " -0.58237857, -5.4161468 ],\n",
+ " [ -4.1150093 , -3.1352158 , -2.3487055 , ..., 1.8960111 ,\n",
+ " -0.9524081 , -4.689809 ]],\n",
+ "\n",
+ " [[ -4.4266458 , -3.2723486 , -2.6592326 , ..., 2.5341039 ,\n",
+ " -1.473506 , -5.4164505 ],\n",
+ " [ -3.8931699 , -2.5919302 , -2.7144575 , ..., 2.4843485 ,\n",
+ " -3.8676648 , -9.335806 ],\n",
+ " [ -3.3092957 , -1.9724313 , -2.5077243 , ..., 0.7921741 ,\n",
+ " -4.729248 , -10.464307 ],\n",
" ...,\n",
- " [ 2.94991219e-06, -2.64542086e-06, -1.55531961e-06, ...,\n",
- " 9.78382195e-06, 1.99879923e-05, 2.82899309e-05],\n",
- " [ 2.63208858e-05, 4.57113601e-05, 3.34709257e-05, ...,\n",
- " -1.97393674e-05, -1.79675317e-06, 1.72754189e-05],\n",
- " [-1.28730453e-05, -1.24395638e-05, -1.10025403e-05, ...,\n",
- " -1.17172813e-05, -1.25436154e-05, -1.52143430e-05]]],\n",
- " shape=(264, 32, 64), dtype=float32) vo850
(time, latitude, longitude)
float32
-5.099e-06 4.26e-06 ... -7.604e-06
array([[[-5.09851543e-06, 4.25979988e-06, 7.30697366e-06, ...,\n",
- " -3.99582223e-06, -4.83284020e-06, -1.94271706e-06],\n",
- " [-2.36987107e-05, -1.48668169e-05, -2.17044926e-05, ...,\n",
- " 2.18559785e-06, -1.16168917e-06, -2.18306850e-05],\n",
- " [ 1.17729242e-05, 1.71986976e-05, 1.95891189e-05, ...,\n",
- " 2.81024604e-05, -1.33557287e-05, 2.23416305e-06],\n",
+ " [ -4.788376 , -4.0687027 , -1.5385171 , ..., 1.6170261 ,\n",
+ " -0.5330723 , -2.217165 ],\n",
+ " [ -4.493115 , -3.6241035 , -2.0161042 , ..., 1.965108 ,\n",
+ " -2.6434839 , -4.431243 ],\n",
+ " [ -4.4657683 , -3.2236114 , -2.119166 , ..., 1.7421714 ,\n",
+ " -2.4880126 , -3.9697182 ]]], shape=(44, 64, 32), dtype=float32) v_component_of_wind850
(time, longitude, latitude)
float32
-4.593 -5.611 ... -9.369 -6.638
long_name : V component of wind short_name : v standard_name : northward_wind units : m s**-1 level : 850 array([[[ -4.593346 , -5.6112647 , -3.90551 , ..., -5.0127707 ,\n",
+ " -1.293798 , 1.0591576 ],\n",
+ " [ -4.975447 , -5.931802 , -5.628667 , ..., -7.3649983 ,\n",
+ " -2.0574841 , 1.0401986 ],\n",
+ " [ -5.0495477 , -5.8281035 , -4.673428 , ..., -7.374159 ,\n",
+ " -1.6652148 , 0.5609478 ],\n",
" ...,\n",
- " [-5.68992937e-06, -7.71532268e-06, 1.50659798e-06, ...,\n",
- " 1.08752620e-05, 2.61049627e-05, 2.41732996e-05],\n",
- " [ 7.67187430e-06, 1.46834791e-05, 1.87269616e-05, ...,\n",
- " 2.89689160e-06, -1.85108024e-06, 2.36250798e-05],\n",
- " [-1.04789715e-05, -1.55814214e-05, -1.83293123e-05, ...,\n",
- " -5.28241344e-06, -7.68959762e-06, -9.61441856e-06]],\n",
- "\n",
- " [[-5.07652931e-06, 4.19001935e-06, 7.27121096e-06, ...,\n",
- " -4.07381003e-06, -4.87626085e-06, -1.98189400e-06],\n",
- " [-2.36428077e-05, -1.47440442e-05, -2.16278568e-05, ...,\n",
- " 2.08713300e-06, -1.12060047e-06, -2.16761164e-05],\n",
- " [ 1.18046937e-05, 1.73680255e-05, 1.96577639e-05, ...,\n",
- " 2.55397936e-05, -1.36032586e-05, 2.36910432e-06],\n",
+ " [ -4.275611 , -4.434415 , -3.1053717 , ..., -0.23756182,\n",
+ " 2.2387843 , 2.2705307 ],\n",
+ " [ -4.5716553 , -4.503073 , -3.2084048 , ..., -2.453352 ,\n",
+ " -0.7645015 , 0.77341646],\n",
+ " [ -4.3253117 , -4.763934 , -3.7707174 , ..., -2.4482236 ,\n",
+ " -0.9621418 , -0.18027163]],\n",
+ "\n",
+ " [[ -4.450817 , -5.567875 , -3.8301501 , ..., -3.6118891 ,\n",
+ " 0.152408 , 2.0945005 ],\n",
+ " [ -4.718539 , -5.816726 , -5.3322783 , ..., -5.9727464 ,\n",
+ " -0.6123982 , 2.060267 ],\n",
+ " [ -4.750449 , -5.4869 , -4.0427027 , ..., -6.8084106 ,\n",
+ " -0.9323347 , 1.4602757 ],\n",
"...\n",
- " 2.04116204e-05, 3.60080267e-05, 2.50640805e-05],\n",
- " [ 5.67553479e-06, 3.73785770e-05, 2.74250669e-05, ...,\n",
- " -4.44159195e-06, 2.44654075e-07, 2.43543545e-05],\n",
- " [-1.91836989e-05, -1.73316985e-05, -1.66227001e-05, ...,\n",
- " -1.07070919e-05, -9.27996371e-06, -7.38287690e-06]],\n",
- "\n",
- " [[-5.59832188e-06, 2.84507723e-06, 6.56677594e-06, ...,\n",
- " -5.81790346e-06, -5.96327209e-06, -2.58991827e-06],\n",
- " [-2.47222943e-05, -1.77131242e-05, -2.44796829e-05, ...,\n",
- " -2.68612143e-06, -4.38006873e-06, -2.40914287e-05],\n",
- " [ 9.63813818e-06, 1.24083472e-05, 1.22562888e-05, ...,\n",
- " 2.31387821e-05, -1.45210788e-05, -4.94050482e-07],\n",
+ " [ -2.9812531 , -3.3905964 , -3.7297 , ..., -10.727001 ,\n",
+ " -17.872026 , -11.459132 ],\n",
+ " [ -3.03366 , -3.0307467 , -3.0277953 , ..., -10.682076 ,\n",
+ " -18.537663 , -10.007051 ],\n",
+ " [ -3.381934 , -3.404514 , -2.9671173 , ..., -7.9683933 ,\n",
+ " -8.840809 , -6.3570013 ]],\n",
+ "\n",
+ " [[ -3.4359968 , -3.981023 , -1.838513 , ..., -4.367267 ,\n",
+ " -7.906282 , -4.6819816 ],\n",
+ " [ -3.68803 , -4.0637484 , -2.5274076 , ..., -2.850971 ,\n",
+ " -4.3440557 , -4.0187187 ],\n",
+ " [ -4.1003385 , -4.67226 , -1.9327258 , ..., -0.9395902 ,\n",
+ " -1.0444239 , -3.0993543 ],\n",
" ...,\n",
- " [ 1.62875847e-06, 1.27311978e-07, -3.52532561e-06, ...,\n",
- " 2.09568461e-05, 3.72396462e-05, 2.61166097e-05],\n",
- " [ 5.58188367e-06, 3.87735017e-05, 2.98271334e-05, ...,\n",
- " -4.82751739e-06, -4.82667019e-07, 2.40440513e-05],\n",
- " [-1.99845144e-05, -1.76051726e-05, -1.68003389e-05, ...,\n",
- " -1.17527543e-05, -9.63683578e-06, -7.60429884e-06]]],\n",
- " shape=(264, 32, 64), dtype=float32) vo925
(time, latitude, longitude)
float32
-1.709e-06 6.071e-06 ... -1.359e-05
array([[[-1.70908152e-06, 6.07145466e-06, 5.06805964e-06, ...,\n",
- " -8.15191834e-06, -1.29935097e-06, -3.38820814e-06],\n",
- " [-1.87184305e-05, -1.49821526e-05, -1.81008545e-05, ...,\n",
- " -1.25819952e-06, -1.68731140e-06, -2.40663558e-05],\n",
- " [ 1.08247932e-05, 1.36268518e-05, 2.01080402e-05, ...,\n",
- " -2.41275279e-06, -1.59759038e-05, 3.37248457e-06],\n",
+ " [ -2.6537066 , -2.7854679 , -3.4258733 , ..., -13.671005 ,\n",
+ " -18.498419 , -11.15188 ],\n",
+ " [ -2.7698455 , -2.6574244 , -2.5876875 , ..., -12.063265 ,\n",
+ " -18.477201 , -10.030993 ],\n",
+ " [ -3.2525032 , -3.4029148 , -2.758657 , ..., -7.528962 ,\n",
+ " -9.368509 , -6.637761 ]]], shape=(44, 64, 32), dtype=float32) vorticity850
(time, longitude, latitude)
float32
-4.668e-06 -7.884e-06 ... 1.551e-05
array([[[-4.66781421e-06, -7.88397847e-06, 3.87467622e-07, ...,\n",
+ " 2.28327281e-06, -4.61164382e-06, -2.72184434e-06],\n",
+ " [-1.43438729e-06, -1.11371901e-06, 1.23372865e-05, ...,\n",
+ " 9.11664756e-06, -2.37055929e-06, -1.60936142e-05],\n",
+ " [ 2.97042789e-07, -3.43221564e-06, 2.29408633e-05, ...,\n",
+ " 9.93963749e-06, -2.16775948e-06, -1.84742730e-05],\n",
" ...,\n",
- " [ 5.34270703e-06, -5.44914383e-06, -6.80222456e-08, ...,\n",
- " 1.62725701e-05, 1.20132700e-05, 1.11076743e-05],\n",
- " [ 7.78948379e-06, 1.85330155e-05, 2.04364042e-05, ...,\n",
- " 7.85285520e-05, 2.97206352e-05, 2.02996380e-05],\n",
- " [-2.22644521e-05, -2.44297480e-05, -3.06585898e-05, ...,\n",
- " -9.62816284e-06, -1.00432935e-05, -1.32403111e-05]],\n",
- "\n",
- " [[-1.75089963e-06, 6.00256317e-06, 5.00193210e-06, ...,\n",
- " -8.05247237e-06, -1.23235804e-06, -3.36757012e-06],\n",
- " [-1.87107198e-05, -1.48714025e-05, -1.80146963e-05, ...,\n",
- " -1.28322426e-06, -1.60950367e-06, -2.40931022e-05],\n",
- " [ 1.09376260e-05, 1.37436073e-05, 2.01153889e-05, ...,\n",
- " -2.64746268e-06, -1.58339662e-05, 3.61655111e-06],\n",
+ " [-8.55834151e-06, -1.48300569e-05, 4.29627426e-06, ...,\n",
+ " 6.32401134e-06, -2.31587546e-05, -1.92965636e-05],\n",
+ " [-5.80811547e-06, -8.76293871e-06, 2.64754385e-06, ...,\n",
+ " -7.85278871e-07, -3.26664713e-06, -1.09848625e-05],\n",
+ " [-3.74011870e-06, -1.08071372e-05, 6.09391373e-06, ...,\n",
+ " 1.76484991e-06, 1.89903062e-06, -6.20839410e-06]],\n",
+ "\n",
+ " [[-4.38422012e-06, -7.30473312e-06, 2.04157629e-07, ...,\n",
+ " 1.88011086e-06, -6.69804467e-06, -7.54892653e-06],\n",
+ " [-2.02604883e-06, 6.04058641e-07, 1.22014262e-05, ...,\n",
+ " 5.38168297e-06, -7.66230914e-06, -2.30765145e-05],\n",
+ " [-1.47381252e-06, -5.09201982e-07, 2.25623116e-05, ...,\n",
+ " 6.15558565e-06, -5.80962933e-06, -2.47661865e-05],\n",
"...\n",
- " 4.85247765e-05, 2.10990274e-05, 2.24000742e-05],\n",
- " [ 2.06705463e-05, 3.93726623e-05, 4.05417413e-05, ...,\n",
- " 8.20284258e-05, 3.43270440e-05, 3.19918618e-05],\n",
- " [-2.32530983e-05, -2.16450244e-05, -2.53044436e-05, ...,\n",
- " -1.08347494e-05, -1.18736525e-05, -1.34758211e-05]],\n",
- "\n",
- " [[-2.44515627e-06, 4.47369894e-06, 3.98876455e-06, ...,\n",
- " -9.60640773e-06, -2.99195381e-06, -4.08171309e-06],\n",
- " [-2.14504471e-05, -1.73651752e-05, -2.07835965e-05, ...,\n",
- " -1.94571567e-06, -2.96713279e-06, -2.36509513e-05],\n",
- " [ 9.74245177e-06, 1.06442858e-05, 1.46617722e-05, ...,\n",
- " 4.29054353e-06, -1.33842768e-05, 3.40620636e-06],\n",
+ " -1.60767740e-06, -1.19341566e-05, 1.94821077e-05],\n",
+ " [-7.97210578e-06, -1.06884545e-06, 2.98195550e-06, ...,\n",
+ " -1.82485583e-05, 4.12515874e-05, 1.66130012e-05],\n",
+ " [-8.04904994e-06, -9.72684029e-06, 4.15240766e-06, ...,\n",
+ " -5.67211237e-06, 5.95707679e-05, 1.51832119e-05]],\n",
+ "\n",
+ " [[-6.93490574e-06, -9.97892130e-06, -4.00248496e-07, ...,\n",
+ " 3.81886548e-06, 3.63669606e-05, 2.29683155e-05],\n",
+ " [-7.56604277e-06, -7.59010936e-06, 3.87645059e-06, ...,\n",
+ " 1.22996162e-05, 6.59572688e-05, 3.82999715e-05],\n",
+ " [-7.16548720e-06, -8.52904850e-06, 9.87056956e-06, ...,\n",
+ " 4.47142884e-06, 3.99389210e-05, 3.78882469e-05],\n",
" ...,\n",
- " [ 2.95264908e-06, -3.45337048e-06, 8.33385911e-06, ...,\n",
- " 5.12896768e-05, 2.23770949e-05, 2.21288392e-05],\n",
- " [ 2.08693491e-05, 3.91144349e-05, 4.08702763e-05, ...,\n",
- " 8.04138690e-05, 3.35507175e-05, 3.17486774e-05],\n",
- " [-2.37658605e-05, -2.20015754e-05, -2.56537223e-05, ...,\n",
- " -1.10032543e-05, -1.23018581e-05, -1.35949094e-05]]],\n",
- " shape=(264, 32, 64), dtype=float32) vo1000
(time, latitude, longitude)
float32
-2.693e-06 4.238e-06 ... -1.537e-05
array([[[-2.69305474e-06, 4.23820984e-06, 6.78350807e-06, ...,\n",
- " -6.31746479e-06, -2.21334312e-06, -3.78844084e-06],\n",
- " [-1.96811598e-05, -1.56560109e-05, -1.83812590e-05, ...,\n",
- " -3.01450359e-06, -2.80387349e-06, -2.17013367e-05],\n",
- " [ 1.15569919e-05, 1.34945840e-05, 1.88137547e-05, ...,\n",
- " -8.33891647e-07, -1.41094933e-05, 2.80727454e-06],\n",
+ " [-7.68914379e-06, -8.82371114e-06, 5.95090160e-06, ...,\n",
+ " 6.49006506e-06, -1.10482197e-05, 1.60735035e-05],\n",
+ " [-8.02477643e-06, -6.09670769e-06, 5.23596918e-06, ...,\n",
+ " 2.27787154e-06, 3.08201597e-05, 1.20725799e-05],\n",
+ " [-8.20159585e-06, -1.25619663e-05, 3.79278390e-06, ...,\n",
+ " 6.51572827e-06, 4.59154762e-05, 1.55130838e-05]]],\n",
+ " shape=(44, 64, 32), dtype=float32) geopotential850
(time, longitude, latitude)
float32
1.223e+04 1.214e+04 ... 1.27e+04
long_name : Geopotential short_name : z standard_name : geopotential units : m**2 s**-2 level : 850 array([[[12229.907 , 12140.51 , 11849.215 , ..., 13522.416 ,\n",
+ " 13626.592 , 13554.021 ],\n",
+ " [12439.601 , 12494.355 , 12164.46 , ..., 13560.872 ,\n",
+ " 13870.563 , 13824.657 ],\n",
+ " [12580.649 , 12757.442 , 12431.359 , ..., 13422.58 ,\n",
+ " 13932.293 , 13929.339 ],\n",
" ...,\n",
- " [-2.71359249e-06, -2.71818908e-06, -1.46689217e-06, ...,\n",
- " 4.06399195e-05, 1.28374322e-05, 1.29206283e-05],\n",
- " [ 1.34296324e-05, 1.05795780e-05, 2.38612993e-05, ...,\n",
- " -5.59317505e-06, -4.85952769e-05, 2.35217267e-05],\n",
- " [-1.30938879e-05, -1.82783006e-05, -1.77845395e-05, ...,\n",
- " -1.78276750e-05, -1.70978001e-05, -2.14692536e-05]],\n",
- "\n",
- " [[-2.68940312e-06, 4.19475828e-06, 6.75421597e-06, ...,\n",
- " -6.24908216e-06, -2.23582470e-06, -3.72456748e-06],\n",
- " [-1.96460005e-05, -1.56399492e-05, -1.82806398e-05, ...,\n",
- " -2.89808941e-06, -2.53437929e-06, -2.15743366e-05],\n",
- " [ 1.16150159e-05, 1.36310737e-05, 1.88173344e-05, ...,\n",
- " -1.03838408e-06, -1.41721521e-05, 3.22751612e-06],\n",
+ " [12309.661 , 12184.936 , 11881.604 , ..., 14002.253 ,\n",
+ " 13965.859 , 13794.094 ],\n",
+ " [12344.302 , 12274.85 , 11930.288 , ..., 13823.576 ,\n",
+ " 13858.448 , 13730.576 ],\n",
+ " [12273.3125, 12175.853 , 11861.043 , ..., 13562.694 ,\n",
+ " 13581.064 , 13495.474 ]],\n",
+ "\n",
+ " [[12247.364 , 12154.977 , 11851.11 , ..., 13596.071 ,\n",
+ " 13614.864 , 13516.466 ],\n",
+ " [12472.628 , 12521.872 , 12164.217 , ..., 13692.8955,\n",
+ " 13869.6875, 13776.074 ],\n",
+ " [12616.788 , 12776.641 , 12408.397 , ..., 13559.133 ,\n",
+ " 13937.364 , 13887.595 ],\n",
"...\n",
- " 1.44216938e-05, 8.88057002e-06, 1.48106928e-05],\n",
- " [ 9.33089996e-06, 1.13915012e-05, 2.93439825e-05, ...,\n",
- " -1.95967223e-05, -5.51227167e-05, 3.03893194e-05],\n",
- " [-1.31377319e-05, -1.20217273e-05, -1.07106453e-05, ...,\n",
- " -1.65332767e-05, -1.45874465e-05, -1.52745451e-05]],\n",
- "\n",
- " [[-3.45979720e-06, 3.83079532e-06, 6.21779827e-06, ...,\n",
- " -6.35540437e-06, -2.07081825e-06, -3.53245628e-06],\n",
- " [-2.18221030e-05, -1.82018648e-05, -2.07817247e-05, ...,\n",
- " -4.25223107e-06, -4.28519616e-06, -2.24556497e-05],\n",
- " [ 1.05187919e-05, 1.11305608e-05, 1.58490693e-05, ...,\n",
- " 3.17375770e-06, -1.04893943e-05, 5.35433992e-06],\n",
+ " [12608.966 , 12659.414 , 12528.369 , ..., 11978.686 ,\n",
+ " 11980.377 , 12479.177 ],\n",
+ " [12565.589 , 12621.938 , 12466.475 , ..., 11936.297 ,\n",
+ " 11935.055 , 12433.782 ],\n",
+ " [12387.424 , 12364.823 , 12178.912 , ..., 12320.801 ,\n",
+ " 12279.287 , 12626.3125]],\n",
+ "\n",
+ " [[12404.349 , 12320.647 , 12107.519 , ..., 12308.512 ,\n",
+ " 12327.066 , 12686.988 ],\n",
+ " [12691.435 , 12736.254 , 12499.081 , ..., 11661.757 ,\n",
+ " 11736.697 , 12368.048 ],\n",
+ " [12820.859 , 12934.728 , 12654.364 , ..., 11457.143 ,\n",
+ " 11564.381 , 12232.825 ],\n",
" ...,\n",
- " [-2.65100653e-06, 1.47715537e-06, 1.00680199e-05, ...,\n",
- " 1.48587078e-05, 9.14545944e-06, 1.53036435e-05],\n",
- " [ 7.88433135e-06, 1.15611656e-05, 2.96262187e-05, ...,\n",
- " -2.09991413e-05, -5.69483091e-05, 3.03289962e-05],\n",
- " [-1.35848877e-05, -1.21000130e-05, -1.05705039e-05, ...,\n",
- " -1.69013874e-05, -1.48510571e-05, -1.53735891e-05]]],\n",
- " shape=(264, 32, 64), dtype=float32) Indexes: (3)
PandasIndex
PandasIndex(DatetimeIndex(['2017-01-01 00:00:00', '2017-01-01 01:00:00',\n",
- " '2017-01-01 02:00:00', '2017-01-01 03:00:00',\n",
- " '2017-01-01 04:00:00', '2017-01-01 05:00:00',\n",
- " '2017-01-01 06:00:00', '2017-01-01 07:00:00',\n",
- " '2017-01-01 08:00:00', '2017-01-01 09:00:00',\n",
- " ...\n",
- " '2017-01-11 14:00:00', '2017-01-11 15:00:00',\n",
- " '2017-01-11 16:00:00', '2017-01-11 17:00:00',\n",
- " '2017-01-11 18:00:00', '2017-01-11 19:00:00',\n",
- " '2017-01-11 20:00:00', '2017-01-11 21:00:00',\n",
- " '2017-01-11 22:00:00', '2017-01-11 23:00:00'],\n",
- " dtype='datetime64[ns]', name='time', length=264, freq=None)) PandasIndex
PandasIndex(Index([-87.1875, -81.5625, -75.9375, -70.3125, -64.6875, -59.0625, -53.4375,\n",
- " -47.8125, -42.1875, -36.5625, -30.9375, -25.3125, -19.6875, -14.0625,\n",
- " -8.4375, -2.8125, 2.8125, 8.4375, 14.0625, 19.6875, 25.3125,\n",
- " 30.9375, 36.5625, 42.1875, 47.8125, 53.4375, 59.0625, 64.6875,\n",
- " 70.3125, 75.9375, 81.5625, 87.1875],\n",
- " dtype='float64', name='latitude')) PandasIndex
PandasIndex(Index([ 0.0, 5.625, 11.25, 16.875, 22.5, 28.125, 33.75, 39.375,\n",
- " 45.0, 50.625, 56.25, 61.875, 67.5, 73.125, 78.75, 84.375,\n",
- " 90.0, 95.625, 101.25, 106.875, 112.5, 118.125, 123.75, 129.375,\n",
- " 135.0, 140.625, 146.25, 151.875, 157.5, 163.125, 168.75, 174.375,\n",
- " 180.0, 185.625, 191.25, 196.875, 202.5, 208.125, 213.75, 219.375,\n",
- " 225.0, 230.625, 236.25, 241.875, 247.5, 253.125, 258.75, 264.375,\n",
- " 270.0, 275.625, 281.25, 286.875, 292.5, 298.125, 303.75, 309.375,\n",
- " 315.0, 320.625, 326.25, 331.875, 337.5, 343.125, 348.75, 354.375],\n",
- " dtype='float64', name='longitude')) Attributes: (1)
"
+ " [12620.8125, 12662.178 , 12517.044 , ..., 12115.576 ,\n",
+ " 12116.673 , 12579.016 ],\n",
+ " [12588.276 , 12635.966 , 12463.043 , ..., 12071.72 ,\n",
+ " 12066.569 , 12538.73 ],\n",
+ " [12407.565 , 12374.606 , 12175.925 , ..., 12407.938 ,\n",
+ " 12376.332 , 12702.602 ]]], shape=(44, 64, 32), dtype=float32) Indexes: (3)
PandasIndex
PandasIndex(DatetimeIndex(['2017-01-01 00:00:00', '2017-01-01 06:00:00',\n",
+ " '2017-01-01 12:00:00', '2017-01-01 18:00:00',\n",
+ " '2017-01-02 00:00:00', '2017-01-02 06:00:00',\n",
+ " '2017-01-02 12:00:00', '2017-01-02 18:00:00',\n",
+ " '2017-01-03 00:00:00', '2017-01-03 06:00:00',\n",
+ " '2017-01-03 12:00:00', '2017-01-03 18:00:00',\n",
+ " '2017-01-04 00:00:00', '2017-01-04 06:00:00',\n",
+ " '2017-01-04 12:00:00', '2017-01-04 18:00:00',\n",
+ " '2017-01-05 00:00:00', '2017-01-05 06:00:00',\n",
+ " '2017-01-05 12:00:00', '2017-01-05 18:00:00',\n",
+ " '2017-01-06 00:00:00', '2017-01-06 06:00:00',\n",
+ " '2017-01-06 12:00:00', '2017-01-06 18:00:00',\n",
+ " '2017-01-07 00:00:00', '2017-01-07 06:00:00',\n",
+ " '2017-01-07 12:00:00', '2017-01-07 18:00:00',\n",
+ " '2017-01-08 00:00:00', '2017-01-08 06:00:00',\n",
+ " '2017-01-08 12:00:00', '2017-01-08 18:00:00',\n",
+ " '2017-01-09 00:00:00', '2017-01-09 06:00:00',\n",
+ " '2017-01-09 12:00:00', '2017-01-09 18:00:00',\n",
+ " '2017-01-10 00:00:00', '2017-01-10 06:00:00',\n",
+ " '2017-01-10 12:00:00', '2017-01-10 18:00:00',\n",
+ " '2017-01-11 00:00:00', '2017-01-11 06:00:00',\n",
+ " '2017-01-11 12:00:00', '2017-01-11 18:00:00'],\n",
+ " dtype='datetime64[ns]', name='time', freq=None)) PandasIndex
PandasIndex(Index([ 0.0, 5.625, 11.25,\n",
+ " 16.875, 22.5, 28.125,\n",
+ " 33.75, 39.375, 45.0,\n",
+ " 50.625, 56.25, 61.87499999999999,\n",
+ " 67.5, 73.125, 78.75,\n",
+ " 84.375, 90.0, 95.625,\n",
+ " 101.25, 106.875, 112.5,\n",
+ " 118.125, 123.74999999999999, 129.375,\n",
+ " 135.0, 140.625, 146.25,\n",
+ " 151.875, 157.5, 163.125,\n",
+ " 168.75, 174.375, 180.0,\n",
+ " 185.625, 191.25, 196.875,\n",
+ " 202.5, 208.125, 213.75,\n",
+ " 219.375, 225.0, 230.62499999999997,\n",
+ " 236.25, 241.875, 247.49999999999997,\n",
+ " 253.125, 258.75, 264.375,\n",
+ " 270.0, 275.625, 281.25,\n",
+ " 286.875, 292.5, 298.125,\n",
+ " 303.75, 309.375, 315.0,\n",
+ " 320.625, 326.25, 331.875,\n",
+ " 337.5, 343.125, 348.75,\n",
+ " 354.375],\n",
+ " dtype='float64', name='longitude')) PandasIndex
PandasIndex(Index([ -87.18750000000003, -81.56250000000001, -75.9375,\n",
+ " -70.31249999999999, -64.68750000000001, -59.0625,\n",
+ " -53.4375, -47.8125, -42.1875,\n",
+ " -36.5625, -30.937499999999996, -25.312500000000004,\n",
+ " -19.687499999999996, -14.062499999999991, -8.437499999999996,\n",
+ " -2.812500000000003, 2.812500000000003, 8.437500000000009,\n",
+ " 14.062500000000004, 19.687499999999996, 25.312500000000004,\n",
+ " 30.93750000000001, 36.562499999999986, 42.1875,\n",
+ " 47.8125, 53.4375, 59.062500000000014,\n",
+ " 64.68750000000001, 70.3125, 75.9375,\n",
+ " 81.56249999999997, 87.18750000000003],\n",
+ " dtype='float64', name='latitude')) Attributes: (1)
"
],
"text/plain": [
- " Size: 115MB\n",
- "Dimensions: (time: 264, latitude: 32, longitude: 64)\n",
+ " Size: 2MB\n",
+ "Dimensions: (time: 44, longitude: 64, latitude: 32)\n",
"Coordinates:\n",
- " * time (time) datetime64[ns] 2kB 2017-01-01 ... 2017-01-11T23:00:00\n",
- " * latitude (latitude) float64 256B -87.19 -81.56 -75.94 ... 81.56 87.19\n",
- " * longitude (longitude) float64 512B 0.0 5.625 11.25 ... 343.1 348.8 354.4\n",
- "Data variables: (12/53)\n",
- " u50 (time, latitude, longitude) float32 2MB -4.516 -4.181 ... -7.626\n",
- " u100 (time, latitude, longitude) float32 2MB -4.504 -3.801 ... -1.783\n",
- " u150 (time, latitude, longitude) float32 2MB -4.168 -3.161 ... -0.1854\n",
- " u200 (time, latitude, longitude) float32 2MB -4.082 -3.166 ... 3.008\n",
- " u250 (time, latitude, longitude) float32 2MB -3.733 -3.103 ... 2.488\n",
- " u300 (time, latitude, longitude) float32 2MB -3.452 -2.377 ... 3.883\n",
- " ... ...\n",
- " vo500 (time, latitude, longitude) float32 2MB -5.498e-06 ... 4.115e-06\n",
- " vo600 (time, latitude, longitude) float32 2MB -4.675e-06 ... -2.075e-05\n",
- " vo700 (time, latitude, longitude) float32 2MB 1.607e-05 ... -1.521e-05\n",
- " vo850 (time, latitude, longitude) float32 2MB -5.099e-06 ... -7.604e-06\n",
- " vo925 (time, latitude, longitude) float32 2MB -1.709e-06 ... -1.359e-05\n",
- " vo1000 (time, latitude, longitude) float32 2MB -2.693e-06 ... -1.537e-05\n",
+ " * time (time) datetime64[ns] 352B 2017-01-01 ... 2017-01...\n",
+ " * longitude (longitude) float64 512B 0.0 5.625 ... 348.8 354.4\n",
+ " * latitude (latitude) float64 256B -87.19 -81.56 ... 87.19\n",
+ "Data variables:\n",
+ " 2m_temperature (time, longitude, latitude) float32 360kB 236.5 ....\n",
+ " u_component_of_wind850 (time, longitude, latitude) float32 360kB -4.186 ...\n",
+ " v_component_of_wind850 (time, longitude, latitude) float32 360kB -4.593 ...\n",
+ " vorticity850 (time, longitude, latitude) float32 360kB -4.668e...\n",
+ " geopotential850 (time, longitude, latitude) float32 360kB 1.223e+...\n",
"Attributes:\n",
- " level-dtype: int32"
+ " level-dtype: int64"
]
},
- "execution_count": 32,
+ "execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
@@ -7120,7 +5351,7 @@
},
{
"cell_type": "code",
- "execution_count": 33,
+ "execution_count": 31,
"id": "3fd145ba-4761-4d41-aa14-7dbf8042bb9f",
"metadata": {
"tags": []
@@ -7132,13 +5363,13 @@
"Text(0.5, 1.05, 'Predictions')"
]
},
- "execution_count": 33,
+ "execution_count": 31,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6kAAAFACAYAAABeCzrQAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAlrpJREFUeJzt/XmcVMW9/4+/eu9Zm1lghmHXKKIoGowC3gSIBiQCRs01hgTBeIm5PhRRiUtyPxc0KsY9FzV63XC7IfnF5boFwSuKRBBl+SlicAkI6Azr7Euv9f1jpE/Vu+ecnh6amWHm9Xw8+vHo01WnTlWdep3q6nP69XYppRQIIYQQQgghhJBugLurK0AIIYQQQgghhByEi1RCCCGEEEIIId0GLlIJIYQQQgghhHQbuEglhBBCCCGEENJt4CKVEEIIIYQQQki3gYtUQgghhBBCCCHdBi5SCSGEEEIIIYR0G7hIJYQQQgghhBDSbeAilRBCCCGEEEJIt4GLVEIIIb2eJUuWwOVyJV9erxcDBw7EJZdcgq+++uqwH3/o0KGYPXt2cvutt96Cy+XCW2+9lVE57777LhYuXIiampqUtAkTJmDChAmHVE9CCCGkM/B2dQUIIYSQ7sITTzyB4447Ds3NzVi1ahUWLVqEt99+Gx999BHy8vI6rR7f/va3sWbNGhx//PEZ7ffuu+/ipptuwuzZs9GnTx8j7cEHH8xiDQkhhJDDBxephBBCyDeMHDkSp556KgBg4sSJiMfj+N3vfocXX3wRP/vZz1LyNzU1ITc3N+v1KCwsxJgxY7JaZqYLXkIIIaSr4OO+hBBCiA0HF4pffvklZs+ejfz8fHz00UeYNGkSCgoKcOaZZwIAIpEIbrnlFhx33HEIBALo27cvLrnkEuzdu9coLxqN4rrrrkN5eTlyc3PxL//yL1i3bl3Kce0e933vvfcwbdo0lJSUIBgM4uijj8a8efMAAAsXLsSvf/1rAMCwYcOSjy4fLKOtx30PHDiAyy+/HAMGDIDf78dRRx2F3/72twiHw0Y+l8uFK664Ak8//TRGjBiB3NxcjBo1Cq+88oqRb+/evfjlL3+JQYMGJfvhjDPOwBtvvNHuPieEEEJ4J5UQQgix4fPPPwcA9O3bF59++ikikQimT5+Oyy67DDfccANisRgSiQTOPfdcvPPOO7juuuswbtw4fPnll1iwYAEmTJiADz74ADk5OQCAOXPm4KmnnsL8+fPxgx/8AJs3b8b555+P+vr6tHV5/fXXMW3aNIwYMQL33HMPBg8ejO3bt2P58uUAgH/7t3/DgQMHsHjxYjz//PPo378/APs7qC0tLZg4cSK++OIL3HTTTTjppJPwzjvvYNGiRdi0aRNeffVVI/+rr76K999/HzfffDPy8/Nxxx134LzzzsPWrVtx1FFHAQBmzpyJDRs24NZbb8Wxxx6LmpoabNiwAfv37+/YCSCEENI7UYQQQkgv54knnlAA1Nq1a1U0GlX19fXqlVdeUX379lUFBQWqqqpKzZo1SwFQjz/+uLHvn/70JwVAPffcc8bn77//vgKgHnzwQaWUUp988okCoK6++moj37PPPqsAqFmzZiU/W7lypQKgVq5cmfzs6KOPVkcffbRqbm62bcedd96pAKht27alpI0fP16NHz8+uf3QQw8pAOovf/mLke/3v/+9AqCWL1+e/AyAKisrU3V1dcnPqqqqlNvtVosWLUp+lp+fr+bNm2dbP0IIIaQ98HFfQggh5BvGjBkDn8+HgoICTJ06FeXl5fjb3/6GsrKyZJ4LLrjA2OeVV15Bnz59MG3aNMRiseTr5JNPRnl5efJx25UrVwJAyn9bL7zwQni9zg82ffrpp/jiiy9w6aWXIhgMZqGlwJtvvom8vDz8+Mc/Nj4/6DL8f//3f8bnEydOREFBQXK7rKwM/fr1w5dffpn87LTTTsOSJUtwyy23YO3atYhGo1mpKyGEkN4FF6mEEELINzz11FN4//33sXHjRnz99df48MMPccYZZyTTc3NzUVhYaOyze/du1NTUwO/3w+fzGa+qqirs27cPAJKPvJaXlxv7e71elJSUONbr4H9bBw4ceMhtPMj+/ftRXl4Ol8tlfN6vXz94vd6UR3TbqmMgEEBzc3Ny+89//jNmzZqFRx99FGPHjkVxcTEuvvhiVFVVZa3ehBBCej78TyohhBDyDSNGjEi6+7aFXNABQGlpKUpKSrBs2bI29zl49/HgIq+qqgoDBgxIpsdisbT/2ezbty8AYNeuXc4NyICSkhK89957UEoZ7dqzZw9isRhKS0szLrO0tBT33Xcf7rvvPuzYsQMvvfQSbrjhBuzZs8e2fwghhBAJ76QSQgghh8DUqVOxf/9+xONxnHrqqSmv4cOHA0DSWffZZ5819v/LX/6CWCzmeIxjjz0WRx99NB5//PEU512dQCAAAMbdTTvOPPNMNDQ04MUXXzQ+f+qpp5Lph8LgwYNxxRVX4Ac/+AE2bNhwSGURQgjpXfBOKiGEEHIIXHTRRXj22Wfxwx/+EFdddRVOO+00+Hw+7Nq1CytXrsS5556L8847DyNGjMDPf/5z3HffffD5fDjrrLOwefNm3HXXXSmPELfFAw88gGnTpmHMmDG4+uqrMXjwYOzYsQOvv/56cuF74oknAgD+8Ic/YNasWfD5fBg+fLjxX9KDXHzxxXjggQcwa9YsbN++HSeeeCJWr16N2267DT/84Q9x1llnZdQPtbW1mDhxImbMmIHjjjsOBQUFeP/997Fs2TKcf/75GZVFCCGkd8NFKiGEEHIIeDwevPTSS/jDH/6Ap59+GosWLYLX68XAgQMxfvz45MIRAB577DGUlZVhyZIl+K//+i+cfPLJeO6553DRRRelPc7kyZOxatUq3HzzzZg7dy5aWlowcOBATJ8+PZlnwoQJuPHGG/Hkk0/ikUceQSKRwMqVK1PiowJAMBjEypUr8dvf/hZ33nkn9u7diwEDBmD+/PlYsGBBxv0QDAZx+umn4+mnn8b27dsRjUYxePBgXH/99bjuuusyLo8QQkjvxaWUUl1dCUIIIYQQQgghBOB/UgkhhBBCCCGEdCO4SCWEEEIIIYQQ0m3gIpUQQgghhBBCSLeBi1RCCCGEEEIIId0GLlIJIYQQQgghhHQbuEglhBBCCCGEENJt4CKVEEIIIYQQQki3gYtUQgghhBBCCCHdBi5SCSGEEEIIIYR0G7hIJYQQQgghhBDSbeAilRBCCCGEEEJIt4GLVEIIIYQQQggh3QYuUgkhhBBCCCGEdBu4SCWEEEIIIYQQ0m3gIpUQQgghhBBCSLeBi1RCCCGEEEIIId0GLlIJIYQQQgghhHQbuEjthbz11ltwuVyoqanp6qoQcsRDPRHSs6HGCSGk8+EitYczYcIEzJs3z/hs3LhxqKysRCgU6ppKdZBoNIrrr78eJ554IvLy8lBRUYGLL74YX3/9tZEvHA7jyiuvRGlpKfLy8jB9+nTs2rXLyHPrrbdi3LhxyM3NRZ8+fVKOtWTJErhcrjZfe/bscazn22+/jdGjRyMYDOKoo47CQw89ZKR//PHHuOCCCzB06FC4XC7cd9997Wq/UgoLFy5ERUUFcnJyMGHCBHz88cdGnv/+7//GhAkTUFhYyC9VhwHqiXpqT5sOvt56663D2obq6mrMnDkToVAIoVAIM2fOTNH8jh07MG3aNOTl5aG0tBRz585FJBJJW/aDDz6IYcOGIRgMYvTo0XjnnXcy7r8jEWqcGm9PmzLV+COPPILvfve7KCoqQlFREc466yysW7cubRuocdKb4SK1F+L3+1FeXg6Xy9XVVcmIpqYmbNiwAf/v//0/bNiwAc8//zw+/fRTTJ8+3cg3b948vPDCC1i6dClWr16NhoYGTJ06FfF4PJknEongX//1X/Hv//7vbR7rJz/5CSorK43X5MmTMX78ePTr18+2jtu2bcMPf/hDfPe738XGjRvxm9/8BnPnzsVzzz1ntOOoo47C7bffjvLy8na3/4477sA999yD+++/H++//z7Ky8vxgx/8APX19UbZZ599Nn7zm9+0u1xyaFBPvVNPsk1jx47FnDlzjM/GjRt3WNswY8YMbNq0CcuWLcOyZcuwadMmzJw5M5kej8dxzjnnoLGxEatXr8bSpUvx3HPP4dprr3Us989//jPmzZuH3/72t9i4cSO++93vYsqUKdixY0dG/ddToMap8UPV+FtvvYWf/vSnWLlyJdasWYPBgwdj0qRJ+OqrrxzbQI2TXo0iPZZZs2YpAMZr27ZtauXKlQqAqq6uVkop9cQTT6hQKKRefvlldeyxx6qcnBx1wQUXqIaGBrVkyRI1ZMgQ1adPH3XFFVeoWCyWLD8cDqtf//rXqqKiQuXm5qrTTjtNrVy5slPbuG7dOgVAffnll0oppWpqapTP51NLly5N5vnqq6+U2+1Wy5YtS9n/YNvTsWfPHuXz+dRTTz3lmO+6665Txx13nPHZZZddpsaMGdNm/iFDhqh777037fETiYQqLy9Xt99+e/KzlpYWFQqF1EMPPZSSX55jcuhQT61QT20zfvx4ddVVV3VaG7Zs2aIAqLVr1yY/W7NmjQKg/vGPfyillHrttdeU2+1WX331VTLPn/70JxUIBFRtba1t2aeddpr61a9+ZXx23HHHqRtuuEEplXn/HSlQ461Q422TLY0rpVQsFlMFBQXqySeftM1DjZPeDu+k9mD+8Ic/pPzyN2jQoDbzNjU14b/+67+wdOlSLFu2DG+99RbOP/98vPbaa3jttdfw9NNP47//+7/x17/+NbnPJZdcgr///e9YunQpPvzwQ/zrv/4rzj77bHz22We2dZoyZQry8/MdX5lQW1sLl8uVfPxo/fr1iEajmDRpUjJPRUUFRo4ciXfffTejsnWeeuop5Obm4sc//rFjvjVr1hjHBoDJkyfjgw8+QDQa7fDxt23bhqqqKqPsQCCA8ePHH1K7SPuhnlqhnjIjW204+OihXm4oFMLpp5+e/GzMmDEIhULJNqxZswYjR45ERUWFcexwOIz169cnP3O5XFiyZAmA1jtm69evT6nzpEmTkuX21OsRNd4KNZ4ZHWlDU1MTotEoiouLk59R44SYeLu6AuTwEQqF4Pf7kZubm/YRmWg0ij/+8Y84+uijAQA//vGP8fTTT2P37t3Iz8/H8ccfj4kTJ2LlypX4yU9+gi+++AJ/+tOfsGvXruTFcf78+Vi2bBmeeOIJ3HbbbW0e59FHH0Vzc3NW2tfS0oIbbrgBM2bMQGFhIQCgqqoKfr8fRUVFRt6ysjJUVVV1+FiPP/44ZsyYgZycHMd8VVVVKCsrSzl2LBbDvn370L9//w4d/2Dd2yr7yy+/7FCZJDOoJwvqKbNjZaMNoVAIw4cPN8pt6zHKfv36JdvX1rGLiorg9/uN8zd8+PDk/y337duHeDzeZp31cg9+JvMcydcjatyCGs/sWJm24YYbbsCAAQNw1llnJT+jxgkx4SKVAAByc3OTky3QeiEaOnSo8SttWVlZ0gBhw4YNUErh2GOPNcoJh8MoKSmxPc6AAQOyUt9oNIqLLroIiUQCDz74YNr8SqkO/59ozZo12LJlC5566injc71vfv7znyeNEuRxlFJtfm7Hs88+i8suuyy5/be//Q0ej8e27CPtf1K9AerJnt6op0NtAwCcd955OO+88xzLPVi2/nl78vzjH/9oV53lZ735ekSN20ONO7fhjjvuwJ/+9Ce89dZbCAaDyc+pcUJMuEglAACfz2dsu1yuNj9LJBIAgEQiAY/Hg/Xr1ycng4M4PX40ZcqUFAc5SUNDg2N6NBrFhRdeiG3btuHNN99M/iIMAOXl5YhEIqiurjZ+Gd6zZw/GjRvnWK4djz76KE4++WSMHj3a+HzTpk3J9wfrUF5envLr8549e+D1eh2/iOhMnz7deLxnwIABqKysBND666b+q+yePXtSfukkXQ/1ZE9v01M22mBX7u7du1M+37t3b7IN5eXleO+994z06upqRKNR23aWlpbC4/G0WWe9XKB3X4+ocXuocfs23HXXXbjtttvwxhtv4KSTTkpbLjVOejNcpPZw/H6/4dCXLU455RTE43Hs2bMH3/3ud9u936E+unRwsv3ss8+wcuXKlAlg9OjR8Pl8WLFiBS688EIAQGVlJTZv3ow77rgj4+M1NDTgL3/5CxYtWpSS9q1vfSvls7Fjx+Lll182Plu+fDlOPfXUlC8wdhQUFKCgoMD4bNiwYSgvL8eKFStwyimnAGj9X8nbb7+N3//+9+1tDjlEqCfqKVOy0Qa7cmtra7Fu3TqcdtppAID33nsPtbW1ycXF2LFjceutt6KysjL5RXP58uUIBAIpC4iD+P1+jB49GitWrDDu6qxYsQLnnnsugJ59PaLGqfFMaW8b7rzzTtxyyy14/fXXceqpp7arXGqc9Go606WJdD5z5sxR3/nOd9S2bdvU3r17VTwet3Uq1FmwYIEaNWqU8dmsWbPUueeem9z+2c9+poYOHaqee+459c9//lOtW7dO3X777erVV189LG2JRqNq+vTpauDAgWrTpk2qsrIy+QqHw8l8v/rVr9TAgQPVG2+8oTZs2KC+//3vq1GjRhkui19++aXauHGjuummm1R+fr7auHGj2rhxo6qvrzeO+eijj6pgMKgOHDjQrjr+85//VLm5uerqq69WW7ZsUY899pjy+Xzqr3/9azJPOBxOHq9///5q/vz5auPGjeqzzz5zLPv2229XoVBIPf/88+qjjz5SP/3pT1X//v1VXV1dMk9lZaXauHGjeuSRRxQAtWrVKrVx40a1f//+dtWfOEM9UU92erJz/sxWG55//nk1fPhwo+yzzz5bnXTSSWrNmjVqzZo16sQTT1RTp05NpsdiMTVy5Eh15plnqg0bNqg33nhDDRw4UF1xxRVGOcOHD1fPP/98cnvp0qXK5/Opxx57TG3ZskXNmzdP5eXlqe3bt2fUf0ci1Dg1fjg0/vvf/175/X7117/+1TgPev9R44SYcJHaw9m6dasaM2aMysnJSWunr9OeCTcSiaj//M//VEOHDlU+n0+Vl5er8847T3344YeHpS3btm1LCQ9w8KXb+Dc3N6srrrhCFRcXq5ycHDV16lS1Y8eOlLakK0cppcaOHatmzJiRUT3feustdcoppyi/36+GDh2q/vjHP7arHePHj3csN5FIqAULFqjy8nIVCATU9773PfXRRx8ZeRYsWNBm2U888URGbSBtQz1RT3Z6svsCm602PPHEE0r+rrx//371s5/9TBUUFKiCggL1s5/9LCWExpdffqnOOecclZOTo4qLi9UVV1yhWlpajDxttemBBx5QQ4YMUX6/X337299Wb7/9dsb9dyRCjVPjh0PjQ4YMafM4CxYsSOahxgkxcSn1zb+7CSGEEEIIIYSQLoZxUgkhhBBCCCGEdBu4SCWEEEIIIYQQ0m3gIpUQQgghhBBCSLeBi1RCCCGEEEIIId0GLlIJIYQQQgghhHQbuEglhBBCCCGEENJt8HZ1BbobiUQCX3/9NQoKCuByubq6OoQQDaUU6uvrUVFRAbc789/YqG9Cui/UNyE9m0PVeFfR0tKCSCTSrrx+vx/BYPAw16h3wEWq4Ouvv8agQYO6uhqEEAd27tyJgQMHZrwf9U1I94f6JqRn01GNdwUtLS0YNiQfVXvi7cpfXl6Obdu2caGaBbhIFRQUFAAAhtz4n3AHg0j4lZnBbW7rW0r+KKTn9Yj9nH5AcoljKpd9ssiKhMOvxzJJHscJvQ5yN6diUo7pcHyRVzk1xakOcdFfMbGt9ZFLXHNc2r6uRJr6aOdXnk/lEdvu9vW147gAzIbLCjn1Z7qbCk5jyrE+Yjth339ueR70vpfjVtvUy0mEW7D99puTOs0UqW8ApsYd9A2I8+OxvzYcynl0HNuHom89PeUYUnwOeZ2Q7dbrcCg3tmQddJ12UN+teR0OKTWtn1+h75Tru32xRj84XeNS93O+Xjr2r9P5zOBC60rYj9WU8xBzGFM2hzks+vaJA2vnqqP6TskrcZjDU/QtNd3e+TTdeDDOuUiU4769Gk/Rt0zP5DuF/l4U5DQvSw3H284HZKbvlPPrafs9ACin704Ocko3ZRvpsi/bq2+5nWZ+0a9rKfqW2zHtfQZ9rXOoGu8KIpEIqvbEsW39EBQWOE/udfUJDBv9JSKRCBepWYCLVMHBR4TcwWDrJJdukap/4eAitR3HdDh+Zy1SjQkP9mnZXKTKLzw29OhFavTQF6nJzzr4KF+KvgFT4w76BrhITUt3WKS2U9/AYVykOrW1Jy1Stf7LxiI1uZ1NfTstUjuo75S8KRXhIjUtHV2kOvzY2WmLVKd29qRFasp3KYe0di5Sk/mPwMfx8/JbX07EM5kvSVq4SCWEEEIIIYQQGxJQSKT5RSddOskMLlIJIYQQQgghxIaoiiOqnBehUZXhLWXiCBephBBCCCGEEGID76R2PlykEkIIIYQQQogNCSjEuUjtVLhItcFXD3giQDzQfneKFG8Cn5YmzBuk46BhrJPuD+XtNVaQ+VKaon0g/6Sf4upm767ndJwUgwEnoyl775z0xlN6ujS88JoFK92EQZj5uMN6xjTGAFofqXQGWw7mPHZlAkgxkNAdcmXdXTHRKdpxEgFnYxfDMCGD85liCOW1d86Mi7zuqFbfhEiLWAf16OckjKxwUN+AqXHlSmcyYb1PiKunrnFHfQPpNd5e9GKd9C3TxVh2cshNMVlxMhCTlwZpMOSEPnZEf7lk/2kHSsi26OZdYVMTbjl+HAxtUozT9KKE1FJc4J2M0vS+ddA3YGrc0Iusj6yDvMao9p9Pve+VW1w7vWJc69OWqI9LnHvD4Ea009PyzZvDrG8gVeMGDvpO0bTPfrymaK+j31ud5nAnfQPG2Eo1wElj1qZXwRj3zvOwY9/KseOzBqLLLUVsbib0+os50t1iVcItw1hGHerjZJoF89qV8Iv6edupb8A4Dyn6joi26PWVfeCXc4q+YebVr13pDKL0A6XM73KIaWWlmtJp70U7vS3aRpY03hXwTmrnw0UqIYQQQgghhNgQVaod/0nlIjWbcJFKCCGEEEIIITbE2/G4b7p0khlcpBJCCCGEEEKIDXGVPg4q46RmFy5SCSGEEEIIIcSGBFL/0t9WHpI9uEglhBBCCCGEEBtiyoWodJNqIw/JHlyk2uCrb3UVdeWZn0t3SLfucCYNFbXejeWaAzeaZ27Hc+2dAqUzsGHF5+DCK+vjlk62mrOcOyoOERPbDj8PSQdP3dU44Rdp+rZDswDTWU7+F91VYFYwkGfZ+gX9ZmM8Dm66LnFQ5XCBaQ77jO143LK6UxGzE5Q8L3paXNjtRTR3wmYzzdtg75Inz1HK+PNoDqh+Md4CZt5YvnWCE7mmbZ9LczZ0e82BIMw/4fNblfL7zApGoublJhq1+iwhnEvjNdZA8TVaaU7jMBN090/dlVDqQG7rJMS4j2sad9I3ACR0d0jpFCnHq+5GneLCq7130DcAuLXTkaJ36WTr4MKd8Iltvz7OhCuvvpliFSn6REt355o2ncE8czsnYDXAIyqf0NTmTuvEaOWV4zMSM09wPGylp+hbai+hdZp0GNbcSL31Di6YEBqXTRHnRXexlY62hr7zzP5y+YXetfnHLcaiV+T1eqzteMKsUCxi9mdc13idOYi8BzWepUfldH3LWxv62HfLa6jDuJdzuL4dzxVjUGpad66WLshC04beZd3D+pxtr+/WdO0Yaa6b+rVMiW+FcW3OlvN5iiO2o+mtuDZofZaTb36xCvjNxng091+nOVrO5xJ9jEaFvsNhs+Eqps87wiFad/YXc78nLDRdp+ndSd9wduV1msOjhWL86RoPCL17xLbWZ16fmN9FXr3dUdFfxhzeaKYdjjm8K4jDhbhDhI+DeUj24CKVEEIIIYQQQmzgIrXz4SKVEEIIIYQQQmxIKJfxxI9dHpI9uEglhBBCCCGEEBt4J7Xz4SKVEEIIIYQQQmyIKQ+i8s/CKXm4SM0mXKQSQgghhBBCiA28k9r5cJFKCCGEEEIIITbElRvxNHdS41lyKCetcJFqQ6BOweNXKXbi7piw5G+xtqX7ecKrhWZIsXU3y034rO1YjkgTtu9OOOnHHbHfdgtbcBleQy9XhqCQ4UziOZrdvrTi1x6FcMXFL07Szl4/Zp4Z+iBHhKQIBuxjhcSFfbxXs1XP8Zn7ubWT6HObxywMmJ3bEhMdoRGJe2zTwiLURVO91YGqRYSrEH3kbdTeN0HkNTtQD0MRyTfzxnLM7USOFmYmKEJSGBb1ZtrR/fYZ29XNucn3URGSoiBohhloCFsDu64210jTbeq9DdrnIgRURzmobwDwaKFaZEgAX7P9jCM1najV3stwAT5zW9e4ksNIHlIPi+HwI63Ut8chzIyTvgEzDEVUhOGKB0XYJj3sjKygHk4j5VIg8mrjzi1DIYhQKHr4iBZxIvzaGPULfQc85gn2aSFUEkGzPin6LrDeyvA0CfHruR7OpqE+aKSpsH1oC6lpXe8ydIO87uqhVmK5IknTtyfXIa4SAG/A6pNj+u410vY2mReSsNYPIb8ZX6MpYvZffZ110VGiLb5vNC5DvHUUO30Dpsb1+bs10Xqbqm85Z2vv/SL8jnnKjbxpoqQYEkoJ8aKHz5H6TglBpr2X+pZh47T6Oupbhl4ypwMz3I+8VjlcuyIyXJEM06btq4c9AoC8gHXhyxHh5/J84qKoERPzU1TM2br+pRlOi67vBvNkJ8KmMPXz4hH69oltvT+lvuV1OFpgFSzDxulzuEtcO30B8xp4XL89yfdf1xcaaS1RU8N6/zb6zC+mzY3Wtqo3z6dxHcuSxruCBFxIyNhfKXm4Ss0mXKQSQgghhBBCiA0R5YFP/sKTkqeTKtNL4CKVEEIIIYQQQmxovZOaJgQN/5OaVbhIJYQQQgghhBAbEnAjzsd9OxUuUgkhhBBCCCHEhvYZJ3GRmk24SCWEEEIIIYQQG6LKg2ia/6RGuUbNKlyk2tBQ4YIn4ELENDtLcWP0a45//nozr+62KV0EgwdMhzVPWHNqE06gceEqq7u2xjNw/nVyDZXuoxDuhLobbFw4w0o3wITPXqW6Q6V0J5ToP1i5G4XzXtS0rwxHNRdR4RwpDUdVyOr7fv1qjbSj+1hutSFfs5HmFvaJMc0i1S0OWh0xrfj2tVj1bfKaJ013MmxpNN30pMOkXgVv2KyPR/xj39dkbae4VEvX4BbrQJE+0vrRehsJmu380ltkbB9TavXfmOJ/mvUTA3B7S0ny/Wf5fY20Xbl9ku8bXJajaKJZnNwO0tC/Vd8AELEOlTJ2/MLR06c5DXtMM1PjfASrTbdFj5i5dHfduHAGTXHP9tv/x8UYkg7unoB53YC4bki3Z90dVnfrBoCE394RVbp9uoVbsrGbEKarwapwImxegJoTZgUNF2ZRnaYCzcl2cLWRNrigxtgu8lu2kz5x8mW8O5/WuH3CLvtA2LweNUatDo4Jp9LmRktryittV81NXdOp+jbzept1J2XpGmyvbznmdY1v9xYbaUcV7ze2xxRvgx07W8xrw2d5lsYrc82JteEb6+Rs6bux3NJ3uI+ZprfXX2evb2+z8/U1WJ2wTVMee3fvTPQt0esu9R0T7tR6VADpNpzi2K1p3FHf4vSkuPsq+3nY1WCOdaW5waY4/YvvBnpbm/qYB/UOrEu+ryioM9L655jze45meS4de30ixMH+iKXpA2Gzwxo0fStRTl2TOWknfJqbN0zkuPFo3xnF1w94xbauca/43hDpY9VBnqNwrtnOf3qteXho0QEjzUnfXwlhfVJTlny/J6/ASGvQrNGzpfGuIN6Ox33jfNw3q3CRSgghhBBCCCE2JJQbiTSP+yb4uG9W4SKVEEIIIYQQQmzgndTOh4tUQgghhBBCCLEhBnfa/6TGuEjNKlykEkIIIYQQQogN7XP3dU4nmcHeJIQQQgghhBAbEnC165UJq1atwrRp01BRUQGXy4UXX3zRSJ89ezZcLpfxGjNmjJEnHA7jyiuvRGlpKfLy8jB9+nTs2rXLyFNdXY2ZM2ciFAohFAph5syZqKmpMfLs2LED06ZNQ15eHkpLSzF37lxEIhF0JVykEkIIIYQQQogNB++kpntlQmNjI0aNGoX777/fNs/ZZ5+NysrK5Ou1114z0ufNm4cXXngBS5cuxerVq9HQ0ICpU6ciHresnWfMmIFNmzZh2bJlWLZsGTZt2oSZM2dabYvHcc4556CxsRGrV6/G0qVL8dxzz+Haa6/NqD3Zho/72tA8OAZ3TgzuPNMLPRExn0eP9LN+NXE3mWluLeyHtLr315ld79XCCbgSMqSLua+ugYSMFqIXK7Qiw9Xoj9bHAyJvrlmHeJ5mG55jepq7PKaluNLD9MREJbQwE94aM80tf7DR2+nQBwDg08L/yLAXcWH5H9Gs7w8EzdARI4qttp1asN1IOxAzw05URkLJ983iIDUR0/O/JWal1zSa4TSiES0khU+EwQiaDY3lWP3gEyGPgo3mvi4t7IkrZg4Up7AHniYRykAbGy19zbSg3+zs4QW7k+9/mP+RkRaBWYd/+q2QFIOCpvX9lpyK5PtNngFWvZvCtvXOhOYhrfoGAFeu1QYVNfs7WiLGaLO17W4x03wN+rkx25oSPkCTkBJXYTm2Db3LvNrpSAh9p4S60IakDCsTF2EJdI27vA76BkyNi1BRHq2PPKIPUnDrYTpECJUGkVXrP3kNjIStD6oLzNAR3uI9xraucanvPVERJiWmXTdEyJnmqNnZ1Y1WeiQiTpoWoismzkMsV4ZEsbZlWCO3CF/hLrDarV8nABihbTzN4loqxkmLNqcF/eb8d0Ko0tieUvAh7PhHoL+xPShohQP6R265kfahtzVvtvTdpOlbzlfQwp2k6tvqQ9lPcvz6NY076RsQupWnRuhdz+uUJvWeModrYytF37liDtc1LkNZRTWBSX3XmRU0+iEl0oj9uPOKcEop/acd1i3msvoCaz4Nlprz0Un55t2kJq3TqvTYYwDCcVOnetgZPeQMAOxvstJawqaAXF5xbdVC9EXz7PUNmBp3h80O1PUty5Jh9nKb9GupmdbiEWNeC70j9T2pYLOx7YdVv0+D/Yy0oUErPNXH+RVG2kc+61oQbwpjB45M2meclNkidcqUKZgyZYpjnkAggPLy8jbTamtr8dhjj+Hpp5/GWWedBQB45plnMGjQILzxxhuYPHkyPvnkEyxbtgxr167F6aefDgB45JFHMHbsWGzduhXDhw/H8uXLsWXLFuzcuRMVFa3n7+6778bs2bNx6623orCwsM3jH254J5UQQgghhBBCbIgpD6JpXrFv7v7U1dUZr3C44z/AvfXWW+jXrx+OPfZYzJkzB3v2WD+2rl+/HtFoFJMmTUp+VlFRgZEjR+Ldd98FAKxZswahUCi5QAWAMWPGIBQKGXlGjhyZXKACwOTJkxEOh7F+/foO1/1Q4SKVEEIIIYQQQmw4GCc13QsABg0alPz/ZygUwqJFizp0zClTpuDZZ5/Fm2++ibvvvhvvv/8+vv/97ycXvVVVVfD7/SgqKjL2KysrQ1VVVTJPv379Usru16+fkaesrMxILyoqgt/vT+bpCvi4LyGEEEIIIYTYEIcL8TTGSAfTd+7caTwiGwgE7HZx5Cc/+Uny/ciRI3HqqadiyJAhePXVV3H++efb7qeUgstl1VV/fyh5OhveSSWEEEIIIYQQGzK5k1pYWGi8OrpIlfTv3x9DhgzBZ599BgAoLy9HJBJBdXW1kW/Pnj3JO6Pl5eXYvXt3Sll79+418sg7ptXV1YhGoyl3WDsTLlIJIYQQQgghxIaocqf9T2r0MMdJ3b9/P3bu3In+/VvNqEaPHg2fz4cVK1Yk81RWVmLz5s0YN24cAGDs2LGora3FunXrknnee+891NbWGnk2b96MykrLPGv58uUIBAIYPXr0YW2TE3zc14bTTvgCvjw/YsI6Urq2RuNWen3E/KWkJWLZqrW0mBZrTfWmW5zuGuqKC3dV4fgK3T3OLaz4tLxuv2mRF8gxnRp9Xiu9b65pT1jbbLZTJxI1h01YtM1wSJWOx1HNkU64crrN6hkOfy6/c17D0Vc+meDglioJaAUdH/jKSKsQffTX+pOS79fXDjHSDjSZ7p/7DhQk3yeazf5zaX3iko7M+ea5b9Eao8QjGNF8s1yP5pYsHY5jpsGw0Weyb3UXRlVouice3We/sT00uC/5/otoqZFW4mk0tgs0u8xcYe08IKfGqk+5NcYjDRF8gkPn1OO3wZfXOqgSmjXigbBwXhb6r2uxdBGJmmktzdYgbWo0O1zXN2BqPOETGhbukLrGlUc4ugYskQRzzT7U9Q0AJTktyfd1DvoGgKjmoOmobwDQr11R+8eCUjQrTVe1w/haRF7h2K1rWF5HdAdUqSe3sC49xm/9ujwo93Mj7XlN3wCwvtnSuO7uCQD7qk1n4HiTVQlXRFRCO4eJfLMTWoQDti7MWK69vgGz/2Jm9Qz3zxR9iyPGtTodFTJdt4cF9hrbX8X6JN/3cZsWrX2E3nPdlhu6rm8AwDdG35HGCD7GoXPqCW3rGzA1rruuA6YuosJFNtxs5m3WruNO+gaExh30DZga9wTNga/P4X6fmRbKMUVT0yQv8hZyDo+Ere1EWIxBJ32LTX1sOTocA3C32OdN0bQ2/0tHbI/2PcftMufLY/zmnaEB3rrk+1eEvjc2DzK2KxusRzX315qCijVYY8Elr4fiGq3rKeyy1zcARPM0x+gW4cgv53CtSvI7jUvXuBhuiRyzj4b2se7ASX3XJ8zvtHku66JT6Da/D/m0k9g/WGvWVXPRjgYjsPcE7960J8RMpiFoGhoa8Pnn1tyzbds2bNq0CcXFxSguLsbChQtxwQUXoH///ti+fTt+85vfoLS0FOeddx4AIBQK4dJLL8W1116LkpISFBcXY/78+TjxxBOTbr8jRozA2WefjTlz5uDhhx8GAPzyl7/E1KlTMXz4cADApEmTcPzxx2PmzJm48847ceDAAcyfPx9z5szpMmdfgItUQgghhBBCCLFFwYVEmv+kqjTpkg8++AATJ05Mbl9zzTUAgFmzZuGPf/wjPvroIzz11FOoqalB//79MXHiRPz5z39GQYF14+Pee++F1+vFhRdeiObmZpx55plYsmQJPB7rh45nn30Wc+fOTboAT58+3YjN6vF48Oqrr+Lyyy/HGWecgZycHMyYMQN33XVXRu3JNlykEkIIIYQQQogNh+NO6oQJE6CUfJ7F4vXXX09bRjAYxOLFi7F48WLbPMXFxXjmmWccyxk8eDBeeeWVtMfrTI6Y/6QuXLgQLpfLeOnBbZVSWLhwISoqKpCTk4MJEybg44+z8eAQIYQQQgghpLeS/v+orS+SPY6YRSoAnHDCCaisrEy+Pvroo2TaHXfcgXvuuQf3338/3n//fZSXl+MHP/gB6uvru7DGhBBCCCGEkCOZhHK160WyxxH1uK/X6zXunh5EKYX77rsPv/3tb5Nxg5588kmUlZXhf/7nf3DZZZd1dlUJIYQQQgghPYAE3EikubeXLp1kxhHVm5999hkqKiowbNgwXHTRRfjnP/8JoNUNq6qqKvmHYKA1cO748ePx7rvvOpYZDodRV1dnvAghPQPqm5CeC/VNCOks4srVrhfJHkfMndTTTz8dTz31FI499ljs3r0bt9xyC8aNG4ePP/44GYBWBpwtKyvDl19+6VjuokWLcNNNN6V8flnZW8grcKNFmb7fe2OmFfPnYeuYVeGQkfZ1i7W9v9kMSdLSxyw3mtBCi4hBnus3Yw3keC1/cbfL/MO1V7Ng93tMX/d8b9jYLgtaj0I3xMwYL7uDZjsbolZ6gwi1Ew6YMQ0amqz0iGhLQnteX7WYaTJsgu4mL8MmxEUEjYTW1IQIVxMX23o4APkrzf6IVYmahHnOyj2m5frxQStETUL8WV5u5/itBsjwPmE9VFG92bdun3kOlWXohqZiId+wCIOghQtwy9AB4n/6Zl+beY2miHAJlU0FxvYGvxWmY6AYQ6Ve89H7vtr2Uf49Rtpxga+T73MLrfHfmJPAUrQfO33/e/mbyCtobZiucSd9A6bGdX0DwN5ma+y0RE19y4lL13iOzxzcQa+5rWvcL+K26BovFHFb+gYajO26qDXudgfN89YkQnHoGnfSNwBElLWtEkLvXms7LiJixGUkDi2ihgy3EBdRuBJauoiSgITfKlh+XaiJmJXYH7fOWV8RMuWYgBn8PFFoCUHqOyjOoa7x5rB5AYrUWRV2B0RsnXyznKYi7f9NIjSIOyxap4U9cUkfDq3/ZHgUqWmXFiLl60ZTD+/7hxnbg4OWBkp9Ut/mgvGogKXx4cGvjbS8bzTeWB/HX9B+MtU3AFRpYXM+bzH1vTdi6cJJ3wDQrF23peNnPGGOjzxtDnfSN2BqPFfkzdc0XuI3Q/7URM2xvTdghUVqiZtzRV1YzEFBK72hWegb1viVjzLq+gaAmD5lOugbAPToXnGhYfm3Pj1kmjidgNbXdSJEoJzDS5Sl8W8FzPA08ULRFq2Cfq9Z+bpcTd8tpr6jDea2R9O4q8D8LtdcZJ6X5hYt3I+Yz1PmcB05n+saF+NLiZCGeqidtYGjjLQDeeaYL9aukX085vjT9a2/B4AphVbexvo4/n+y/kcI7Xmcl4/7Zpcj5k7qlClTcMEFFyRj/7z66qsAWh/rPYjLJb8IqpTPJDfeeCNqa2uTr507d2a/8oSQLoH6JqTnQn0TQjqLWDtMk2I0TsoqR8ydVEleXh5OPPFEfPbZZ/jRj34EAKiqqkL//v2Tefbs2ZNyd1USCAQQCAQc8xBCjkyob0J6LtQ3IaSzSKj0d0oT9tFkSAc4Yu6kSsLhMD755BP0798fw4YNQ3l5OVasWJFMj0QiePvttzFu3LgurCUhhBBCCCHkSCah3O16kexxxNxJnT9/PqZNm4bBgwdjz549uOWWW1BXV4dZs2bB5XJh3rx5uO2223DMMcfgmGOOwW233Ybc3FzMmDGjq6tOCCGEEEIIOUJJwJXy//O28pDsccQsUnft2oWf/vSn2LdvH/r27YsxY8Zg7dq1GDKk1ajluuuuQ3NzMy6//HJUV1fj9NNPx/Lly1FQUJCmZEIIIYQQQghpm2jCA1fC+T+n0TTpJDOOmEXq0qXOnp4ulwsLFy7EwoULs3K8o31hFPjc2B4zndD2u8xt3bE0Kv4w3aDZynrFfm6xrRMTg9zvMZ3lCryWw1+h13T07Oe3HBXDCdMGLyAscvXHEkp85q8/JT7T6XJ/1HJ5axZ2uQfCpoNevfYfoeqg6ThY57PyRgrEYxHCGVTpjpQiDRHhZKvlVT7xp4Cg6Yiqu1n6vOZ52N1kOSI+WfUvRtrokOkUrZ9DeT5HFFQa20Ny9yfff9XSx0hr0p2VxV+oY8IlslZzL5T/jYjFzXETibf/Yqm7xEbFMRs1t0e/x2xnns90K9Qv0HHx2Esc9tt93KZTYLnX2i5zW5epOr+9bjLhoL4B4J9Razw46Rsw29Qs9OV1GA+SSMJqU9Bj6rJAaDrfa/Vxub/GSNM1LvUtr0dFXkvTxX5T39IZtDFmnXMnfQNAbdAak3V+M2803+qviNRwisO0lu6gbwBQmgMtcqS+rbd+4Y69u9H80fLZ3WOT778d2mGkyf7Uz6nU96DcamP7q2bLGbYhKhy7y6y6Sw3XCndSnajQczjW/uk7oLmTSvf4OuHmGtCSc4W+m4Xtsj7G5HhrEfrop7n/lntM5+kyT+u+h1vfAOBzWX1R5qu1LcNJ3wDgzrO25SN+ETGH6xovEC770pVb17jTHO6kbwAo9Vt9nKLvoHnOdY2n6Dug6dtnr28AiOiusmn+m6e710rHaeURO+dpOhaXEZ82J1UJfS/56gxj+9tFlrFWgcfsd4+o8AmFlgP1kDxTlzubipLv6xz0LamPOv9/WneFbhH6dov66XfsZCQHnYYW85jCZB0FAasf9HkJAJqE7XKB28orXbP7uq3vnqn6tupanyWNdwUJtMPdl3dSs8oRs0glhBBCCCGEkM5GteNxX8VFalbhIpUQQgghhBBCbGCc1M6Hi1RCCCGEEEIIsSHWjv+kyr/rkUODi1RCCCGEEEIIsYHuvp0PF6mEEEIIIYQQYgMf9+18uEglhBBCCCGEEBu4SO18uEi1Ic/lR77LjaFeEWJDmaEGdJt9GXKjTrN9l3bihX7T/rxUCwkRF48L5HtMy/pcj1WnkKfZSPt56OPk+ydrRxppg3wHzHLcVrm7YyEjTdqxh7zWcZoSZgiaYaYrPfZHrDAuX+eY5TYVWjblNS2mGXpz1LQ0bwlrfRsXISlcZv28XsuCXYadcLJnz/ObfauHZ9DD0QDARtcgY3tQjjUWjg7uMdKKPWY4gNq41UkJEYpFt7OXF7hcvzn+glo4ovJgnZGWJ0IbBLVwBdK+PuQ1Q74Ua5bxB+Jmu7e3lCbfy/9bDM8VoXb8+5LvZTtlSIoKr9V/JWIcF2jdkNDqnkgX16CdFLgCKHS11u8on9Vvcdjru/X4VsVqI+b4bYpZefNF6I5+ARHKRivHSd+t6da14ueFHxlpT9SenHxf4asx0vRQGwBwIGadVxkiR44HPfTAUC18EmCGowKA3TmFyfcthWZIjwMt1rh30jdgalzq2yNCHwX8VtuCXrOduoZkCBX5KNbeZqstH7oGGmkyrMxxOVZIir4iNJHetwAQ1+qwK1FkpBmhI9xm3eW1qiJo9Wcfn3mOPDIkiqYNeT77eKztxoQZVkLXN2CGGDsqZ6+RdlTAvM7p7Ywqc44r95pjoVirg4w+lm3s9A2YGu+ovgFT41LfUfFdQA8jleM2x6QMhTJD0/ij1acaafq4c8M8//ocIykW4WlqY2bbBudY3w2qY2Y57dU3YIZFamoxvyckZAgqDX3+BoCg39SF1221VYkpIOCz8rrFdUOGdPq0wYrxVpFTY6Qdl2POZXp4Iid9J5Sp75g493r4IanvgaIOusZ9LjOv1Ls+L+j6BsxxvSNcYqTJ728DApYejvKb+pa0KGvfvh7z+0cftzWHF7jNunq0pYb7CH4cNpZww5VwvnjJsIHk0OAilRBCCCGEEEJsUEj/n9Ps/IxODsJFKiGEEEIIIYTYwMd9Ox8uUgkhhBBCCCHEBi5SOx8uUgkhhBBCCCHEBi5SOx8uUgkhhBBCCCHEhng7jJPiNE7KKlyk2hBWMYSVG3FhJdfHbToFlngtV1TdDQ4AEvnWLyphJZwslb2DryynRewbdFlucdIB7pnaE9rMBwBDffuM7f0Jy9nyF4W7jbRHau2F1t9nul7miT5pCVoOcLuFu+++qOWStzdSYKTVRu3dFOWvU9IlT3fQ8woXvIDHdArUyXGbfRROWJKQbrn1MdMpUHfBlOcoV/RJQDuOdHcs0pyd5TGk+2d/zdF3aMB03qwQ56XArbv/me65fUQdEtowrxLuvkM1x96gSzhTuk1nSt0VOqJMJ2B5zvSx6xOujFHdqdRlnZOAOLcdpVlF4VOpY7xEtKfeazoY1iesMRoXFqX62JHOxvKc6xp30jdg9tMzdScaablaudJtUbo0/7xwe/L9o7XH2B4DAMq0dheIsSMdUfdp7p+6vgHTCbg6YroCS7dUXePSsVfXN2Bq3Oe2d++W+pHu1LrGG2Om6204bk6Pertzheu71Lt+PS8JNBhp+nXOL+ouHbuHBi3tDfKZLsvyuqu7a8p5SmePcIEdIK4buit0gUvoW+hPd7SXaUHhLh3U0uPCXiTwjcazpe+D83db6BqX+m7SnY8LYabFhVutpnEnfctyA257fQPAM7Wjku+l86/uwi4d+X9e+Jmx/WTdcNtjlAp3an0syev2gVxL03siZqdIp29d4w1Rs78kusalvqVufdq4kMY1Xq1tMVH3POGcrs/Z8jtFVOyrj315DdSjHTQHzOuY/B6ja1y6QA8Nmpoe6Le2C91yzhYO+GLM6eyPW3UoF2NRzuG52rbUsHTs9rmssqS+C9z237MCh2EO7woScKU1TkqXTjKDi1RCCCGEEEIIsYGP+3Y+XKQSQgghhBBCiA1KuaDSLELTpZPM4MPThBBCCCGEEGJDPOFu1ysTVq1ahWnTpqGiogIulwsvvviibd7LLrsMLpcL9913n/F5OBzGlVdeidLSUuTl5WH69OnYtWuXkae6uhozZ85EKBRCKBTCzJkzUVNTY+TZsWMHpk2bhry8PJSWlmLu3LmIROwfK+8MuEglhBBCCCGEEBvUN4/7Or0yvZPa2NiIUaNG4f7773fM9+KLL+K9995DRUVFStq8efPwwgsvYOnSpVi9ejUaGhowdepUxOPW/6FnzJiBTZs2YdmyZVi2bBk2bdqEmTNnJtPj8TjOOeccNDY2YvXq1Vi6dCmee+45XHvttRm1J9vwcV9CCCGEEEIIsUEBEF6qbebJhClTpmDKlCmOeb766itcccUVeP3113HOOecYabW1tXjsscfw9NNP46yzzgIAPPPMMxg0aBDeeOMNTJ48GZ988gmWLVuGtWvX4vTTTwcAPPLIIxg7diy2bt2K4cOHY/ny5diyZQt27tyZXAjffffdmD17Nm699VYUFgonuU6Cd1IJIYQQQgghxIaD7r7pXgBQV1dnvMJhe8d1x2MmEpg5cyZ+/etf44QTTkhJX79+PaLRKCZNmpT8rKKiAiNHjsS7774LAFizZg1CoVBygQoAY8aMQSgUMvKMHDnSuFM7efJkhMNhrF+/vkN1zwa8k2rDzhiQHwPikBbcpn12H3dT8v1RgT1GWshjpclwEBI9lIe0AQ+hydjWre+lbbpub18bN63QX6k72fb4a8woCQgKm3zdst4jwoVIe/s8d72WZtqS66EadBt3AKiNmfXVw/Z4XfbhS1rrpIU3sAk90BayHJ9mo94UN0NSSNe2HM02vykh7fbN8+2BVb9ib6ORpocZkOXIcAX6OBniN0MKlXjMk5inhTLJFaEufOL3vqjLapu0utfDnOjtSEdcWLHLUCt1CSvczn4RRaRQDxOhHb8hlh37+oP6bsUaL6n6NvtiqN8K+1Mg0mq10B5x8fufDNWj68IMJJEavkbXuAxPox/zrfoRcOLDpkHW8cV46OczQ3Ho9ZPHlKGZ9GuFDMWia7zWZ457ee1ya9cVJ31LnPQur2Oy3FTdWgRESIV6bbzGY+YxpS50jcswIk0B65hS37kirIQe/kmGGHIKAeER+ta1WCjOkV/0iX4eZLvkuNaR+tb7CwD2x61yZfic+m+2s6XvL2MK+bGDxzPrrGvcSd9yLNeK0D068rzJeU//LiDDejjO4THzmH9vODb5Xs5Ht7eUiTpY57W/v8axfrpOClzNtmnyWpAyh2sal2H3nOZwqUuJU1gPvb/kuJf69rmtcy/rI8cr7COqIKSFpMnNMc+9rm9ZP6nZIX4zjFxfj/XdKSiuP4UuOcastsq5Nk8bj36XGYLGLb6/6RpP1bdZB13jHdE3kD2NdwXxhBtoZ5zUQYMGGZ8vWLAACxcuzPiYv//97+H1ejF37tw206uqquD3+1FUVGR8XlZWhqqqqmSefv36pezbr18/I09ZmXkNKSoqgt/vT+bpCrhIJYQQQgghhBAblGrH477fpO/cudN4RDYQCNjsYc/69evxhz/8ARs2bIDLldl/XZVSxj5t7d+RPJ0NH/clhBBCCCGEEBsOhqBJ9wKAwsJC49WRReo777yDPXv2YPDgwfB6vfB6vfjyyy9x7bXXYujQoQCA8vJyRCIRVFdXG/vu2bMneWe0vLwcu3fvTil/7969Rh55x7S6uhrRaDTlDmtnwkUqIYQQQgghhNiQySI1G8ycORMffvghNm3alHxVVFTg17/+NV5//XUAwOjRo+Hz+bBixYrkfpWVldi8eTPGjRsHABg7dixqa2uxbt26ZJ733nsPtbW1Rp7NmzejsrIymWf58uUIBAIYPXp01tqUKXzclxBCCCGEEEJsiCdcQMJ5ERpPky5paGjA559/ntzetm0bNm3ahOLiYgwePBglJSVGfp/Ph/LycgwfPhwAEAqFcOmll+Laa69FSUkJiouLMX/+fJx44olJt98RI0bg7LPPxpw5c/Dwww8DAH75y19i6tSpyXImTZqE448/HjNnzsSdd96JAwcOYP78+ZgzZ06XOfsCXKQSQgghhBBCiC2t/0l1XoSm+8+q5IMPPsDEiROT29dccw0AYNasWViyZEm7yrj33nvh9Xpx4YUXorm5GWeeeSaWLFkCj8cyZXv22Wcxd+7cpAvw9OnTjdisHo8Hr776Ki6//HKcccYZyMnJwYwZM3DXXXdl1qAsw0WqDTtixciNeRAXA1K6n7UkLLcz6Xqru3RKVzzpVind9tpLQJTr1tztEm5nMYW1uruFK550nTTdc81ypXOx3tbGhPkcvu5kKB39pFNgVFkOddLBU7r9RRNWufIcSRdEnQZl1i+mlRNV9q6QABDT2hJNCMdG6VaoVUGea8Pp1WM6OUvnR8NpV9RHuu21uKzzu18Y6sn+1B0+I+KY0rVTR9ZBd65MKSfhVI45/moSlqul7hTYFIsDOHSnuYP6BlLHs06LMp0andyN9fEs9S5dZp1IiEnO0In4g0YcpnOsjuxv/VxJN1K/GJP6tUvqW+pWP44cr3peqW/pSKlrSOo7Rf/aOXPSe1jqUtRPT5ftkteNhLJ3VXe6nstrqen0aq9vAHBr403XBAD4YNZXOmTr6PpuEe6ycozbHR9IdZ7WNe6kb8DUeE3CHG8132g8W/reFeuT1Less46ss9vBRdpJw+n07XSNkeNOH8+5HvuwFXJsS9dWfV953ZJ9sj9maVy2Re8jqTU5tot81nHk2E4oe9fyTPQu0esXE8eMOjixej1S77J++rXBfs6WafnCzVuvu+xbp3nPr4RGYEY/0Pss5Zqszdmp84B5TF3jTvpuqyy7cu30DWRP411Bex7nzfRx3wkTJkBlsLLdvn17ymfBYBCLFy/G4sWLbfcrLi7GM88841j24MGD8corr7S7Lp0BF6mEEEIIIYQQYoP65pUuD8keXKQSQgghhBBCiA2H404qcabD7r7vvPMOfv7zn2Ps2LH46quvAABPP/00Vq9enbXKEUIIIYQQQkiXknBBpXmlM1YimdGhRepzzz2HyZMnIycnBxs3bkQ43Pq8eX19PW677basVpAQQgghhBBCuopW46T0L5I9OrRIveWWW/DQQw/hkUcegc9n/ZF63Lhx2LBhQ9YqRwghhBBCCCFdSWfHSSUd/E/q1q1b8b3vfS/l88LCQtTU1BxqnQghhBBCCCGke6Bcra90eUjW6NAitX///vj8888xdOhQ4/PVq1fjqKOOyka9upxd0SLkRLwpluvSyt0xPIfm8yXt2KVNuRE6RtixR0TIAL0OMvSBtG63qw9g2panWr6b2zVxM/yBU1693KaEGd4gaoRtMftE9rVuJx+Oy1AS9nklTvb/su4xh/7L8diHGagT9vBOISqkXbzbIU3SFLNC5uyOOQdY7uutT76vj5v1k7b5BR77UCb62JBj0ymvPJ8Sp3AuOgdghUdojnYsVJPkoL4Bs56yTlFlf4mU4Sr0c17gbrFNk9tSe07XnHR9auznEE5Dhn85EMu3yekcVgZwDkHjFCpGalbXuKxfJNH+qUrXu9S3DGWhh+3wuZ1DUugE3OZ1v0n0ic9tP07167AcQ7q+AWeNF3sazX21cF+yXDkedZzCf6SbX+T51pHjxAxjZobLqnW1zi/NsSzpO1aMnGjrmJHn3GeE43Gav52vBQWeZi3NXt+AOYc7hVMBnDWunysZckaih3Q6gDwjzRM393UKDWfM2aJdTqFinMI9yXSncE/p0PtEfqeQOpBh5JzQ6ydD9OljWR5Dfs/S01P0HQ3ZHr/IK/Utw6FZx9HHosTpO2FK3gzC9znpGzDrWqt9f8yWxrsClWh9pctDskeHHve97LLLcNVVV+G9996Dy+XC119/jWeffRbz58/H5Zdfnu06EkIIIYQQQkiXwMd9O58O3Um97rrrUFtbi4kTJ6KlpQXf+973EAgEMH/+fFxxxRXZriMhhBBCCCGEdB00RupUOhwn9dZbb8Vvf/tbbNmyBYlEAscffzzy8+0fGSOEEEIIIYSQIw3GSe18OrxIBYDc3Fyceuqp2aoLIYQQQgghhHQvaJzU6bR7kXr++ee3u9Dnn3++Q5UhhBBCCCGEkG6FQvrHfXvp48Dvv/8+7rvvPrz77ruoqqqCy+VCWVkZxo0bh6uvvrrDNzTbvUgNhSwXMqUUXnjhBYRCoeSB169fj5qamowWs92Z5kQAKuFNcZl0cp3TXS4B0+1Mus7lusPGdr1wO2zvMZ1wctYF0ri+CYcy3ZnPydFR4uTwF0tIR0R7h+GIyCv31R3+YgmzHCcXRJmmu/h5hdtnc9w8v/o5dcfNDgu4zb73ObgB6nXwpHFs1JGuxbJPdqI4+V669OV7I8Z2P19du49r1CGN268TTi6nOrqLYDhLv1KGlQ+ubxw3MxrPDi6zejlBn+kE3RK3dxGV+s6kT8PaNUdef9K5iOrIfXWdyjHpNO6cNOyUBpjO2in6lsd0uHbpepKunCl618adPIZsp94n8tqQ6tjdMU1L9DrIPvlSldjuJ53IS30NWt3abz+Zbu5xKsvJ5dQurSXRfi060ZzwQyUOuvu2f/50uhbItIDb6mOpH+mSajrZOtdH139YlKsfJ52+Ey4rvSFuuspmcs1z0ndKXsO13Hl+0jWczmVf6thIc9nPI26XKNeIuGCmNcfNOVvXuJO+DwV5DvXz8mWzqW/pwp3nsb5DlvhMJ2AdJ5f3dGRb30D2NN4lcJHaJi+++CIuvPBCnHnmmbjqqqtQVlYGpRT27NmD5cuX44wzzsBf/vIXnHvuuRmX3e5F6hNPPJF8f/311+PCCy/EQw89BI+ndcDF43FcfvnlKCx0DotBCCGEEEIIIUcMfNy3Tf7jP/4DN998M2644YaUtHnz5uH3v/89fvOb33RokdqhW3SPP/445s+fn1ygAoDH48E111yDxx9/vCNFEkIIIYQQQki342Cc1HSv3sbnn3/u+BTtj370I3zxxRcdKrtDi9RYLIZPPvkk5fNPPvkEiUQvPEOEEEIIIYSQnsnBO6npXr2Mo48+Gi+++KJt+v/+7//iqKOO6lDZHXL3veSSS/CLX/wCn3/+OcaMGQMAWLt2LW6//XZccsklHaoIIYQQQgghhHQ3XKr1lS5Pb+Pmm2/GRRddhLfffhuTJk1CWVkZXC4XqqqqsGLFCixfvhxLly7tUNkdWqTeddddKC8vx7333ovKykoAQP/+/XHdddfh2muv7VBFCCGEEEIIIaTbQeOkNrnggguwatUq/OEPf8A999yDqqoqAEB5eTnGjh2Lt99+G2PHju1Q2R1apLrdblx33XW47rrrUFfX6gpKwyRCCCGEEEJIj4PGSbaMHTu2wwtRJzq0SNXpqYvTqHLDozwZhXVwsp2PCcv3A7F8Y9vJJlzagHsMG3X7sDJhES5D1s8Jp9Axaa3vtTo0S2t+h5AK0mJdT2+K2YfwAEzLeie7egDwuh3+N61VISL6T7Zbt6EPipAP0lI/rJ1DXyYhIESfpGub3b4yBJK0rN8TtXTsFvGHdPv9dNb7juNY1F3vMaf9oi6r7i2JLIWgSXjh+mZsRo2wCR0L9yTLqY3ntnu/dCFB9LA3cjw4haRIQIZx0EJixe31DTiHqJDHkaEb7PI66RsAWuL201FHw0qlaF3sltCv0TDr4xZ94nfHrHLFOIm4zLxeEbLCDjkvOCH1I/szrPVfH1+zkbYvas43OjK8htw26iD6Xdetk75l3tRyD4agyY6+D87fQGrYKNlvOrr+ZX3lNbQ6ltehukm9yzAz+nHCyn7ekyFeJLqGZfi0THDSt0TXuwwj4xSG61DCxnmN+UqGubItJqV+CRFWyghrJ68NRugq5zlDLyfdOTP2SxOWR9f43kiBbf184hoor00erf+c9A2YGk9IPWvjLWVO04rNlsa7hARSwjO2mYdkjQ4tUocNGwaXy36g/fOf/+xwhQghhBBCCCGk28DHfdvk008/xTHHHJNcF65evRp33XUXPvvsM/Tv3x9XXnllh8LPAB109503bx6uuuqq5Ovyyy/H2LFjUVtbi1/+8pcdqkg2efDBBzFs2DAEg0GMHj0a77zzTldXiRBCCCGEEHIkQnffNhkxYgT27t0LAHjrrbcwfvx4JBIJ/OxnP0OfPn1w/vnn4/XXX+9Q2R26k3rVVVe1+fkDDzyADz74oEMVyRZ//vOfMW/ePDz44IM444wz8PDDD2PKlCnYsmULBg8e3KV1I4QQQgghhBxZ0N23bZSyGn3LLbfgV7/6FR544IHkZzfeeCNuu+02TJ48OeOyO/4HrDaYMmUKnnvuuWwWmTH33HMPLr30Uvzbv/0bRowYgfvuuw+DBg3CH//4xy6tFyGEEEIIIeQIRLXz1YvZsmULLr74YuOzmTNn4uOPP+5QeYdsnKTz17/+FcXFxdksMiMikQjWr1+PG264wfh80qRJePfdd9vcJxwOIxwOJ7cPuhUTQo58qG9Cei7UNyGks3ChHXdSO6Um3Y/6+noEg0Hk5OQgEAgYaX6/H83NzTZ7OtOhReopp5xiGCcppVBVVYW9e/fiwQcf7FBFssG+ffsQj8dRVlZmfF5WVpaM2yNZtGgRbrrpppTP48qdsdOnR9h6OTnUSfdMJ8dBt6iH7poo99OdAZ0cOtPVT7bFo+WVrpxxSLdPn21eHemeK3FyEY6IcqU7oI7fY7rZGe6fGTjtylPktK90t9Mdfb3SRVB3QM3AKTAdupPgcfmVRtqeiOnKrdfB7WCKJh08U8eJfV4n5Fi12zdd/0jao++OOvpK50O9D9NqT2tfuuPr51y6jTu5w0qXZiNNaD/lWqBtSg1Lp1CnMemk/6zpW+hJ13sm+k7nWq7jkQ6jLvtrTIrrcgbjTdewvM7Kco7Lt+a4PcLtUx+PHqktUR3dFTqlXbB3/k3nRK7X4XDrO5rwwvPN/JLJNdPJrTjlGBk4Mxs4OPLLcp3cYOUYlHn1dOkoH01xjtUchePtd0OW+nZyvZU60DXu5JwPmBqXmpbzqROZji+rPk7f7eQ8YB7D6Rw61Uf2yfC83cZ2lTaHp/Sfds4ScXEMOWy1XX0u6cltj9O8JdM8Gbghd2sYgsaWY489FkDrenD9+vU4+eSTk2kff/wxBgwY0KFyOzRazj33XON1/vnnY8GCBdi8eXO3ME6SzsNKKVs34htvvBG1tbXJ186dOzujioSQToD6JqTnQn0TQjqNw/C476pVqzBt2jRUVFTA5XLhxRdfNNIXLlyI4447Dnl5eSgqKsJZZ52F9957z8gTDodx5ZVXorS0FHl5eZg+fTp27dpl5KmursbMmTMRCoUQCoUwc+ZM1NTUGHl27NiBadOmIS8vD6WlpZg7dy4ikUjaNqxcuRJvvvkm3nzzTaxcuRLf/e53jfTt27djzpw57e8UjQ7dSV24cGGHDna4KS0thcfjSblrumfPnpS7qwcJBAIpt6YJIT0D6puQngv1TQjpLFyJ1le6PJnQ2NiIUaNG4ZJLLsEFF1yQkn7sscfi/vvvx1FHHYXm5mbce++9mDRpEj7//HP07dsXQGvElZdffhlLly5FSUkJrr32WkydOhXr16+Hx9N663zGjBnYtWsXli1bBgD45S9/iZkzZ+Lll18GAMTjcZxzzjno27cvVq9ejf3792PWrFlQSmHx4sWObRg/frxjup3Zbnvo0CLV4/GgsrIS/fr1Mz7fv38/+vXrh3i8/Y9fZBO/34/Ro0djxYoVOO+885Kfr1ixosMxegghhBBCCCG9mMMQJ3XKlCmYMmWKbfqMGTOM7XvuuQePPfYYPvzwQ5x55pmora3FY489hqeffhpnnXUWAOCZZ57BoEGD8MYbb2Dy5Mn45JNPsGzZMqxduxann346AOCRRx7B2LFjsXXrVgwfPhzLly/Hli1bsHPnTlRUVAAA7r77bsyePRu33norCgvNv4i1RTweTy6KAWDdunVIJBI45ZRTOvxjYoce99XthnXC4TD8fn+HKpItrrnmGjz66KN4/PHH8cknn+Dqq6/Gjh078Ktf/apL60UIIYQQQgg5Asngcd+6ujrjpRu8dZRIJIL//u//RigUwqhRowAA69evRzQaxaRJk5L5KioqMHLkyKRh7Jo1axAKhZILVAAYM2YMQqGQkWfkyJHJBSoATJ48GeFwGOvXr3es1/bt2zF69GgEAgGcc845qKurww9+8AOMGTMG48aNw4gRI/Dpp592qM0Z3Un9r//6LwCt//l89NFHkZ+fn0yLx+NYtWoVjjvuuA5VJFv85Cc/wf79+3HzzTejsrISI0eOxGuvvYYhQ4Z0ab0IIYQQQgghRx6ZxEkdNGiQ8fmCBQs6/FfJV155BRdddBGamprQv39/rFixAqWlpQCAqqoq+P1+FBUVGfvohrFVVVUpT74CQL9+/Yw88m+RRUVF8Pv9tsazB5k/fz4KCgrw4osv4umnn8YPf/hD+Hw+7Ny5E263G5dccgmuv/56vPDCCxm3PaNF6r333gug9U7qQw89ZNzW9fv9GDp0KB566KGMK5FtLr/8clx++eVdXQ1CCCGEEELIkU4G7r47d+40HpE9lP/OT5w4EZs2bcK+ffvwyCOP4MILL8R7773X5sIzWQ1hGNuWeWxH8rTFqlWrsHz5cpx88sn47ne/i6KiIqxatSrp6Hvbbbfhhz/8Ydp2tkVGi9Rt27YBaO2w559/PmXl3pOIKQ+i37yc0K2/fcKuX4ao6ChhEarFKbxBWFnhIZws6QEgmtBDnzgPQt02XNanMW4+4h3RLOxjwm7cKeyNtPxvimmhbKRlvkNIipTwGqJcPd3viRlpur29tJ2X6H0ScJvlyG3dJl+eBx15zpzC/aQNbaElf9FkXsyKfY22eWX/yTAzOrKdQbdlYS/7z0lLqbb97rTvD4WYpu1MQknoGpfjyucQCkHm1cM6RFPCOIi82nmWIWf08SLHldSpk/W/DG+ih4eSIWdaxLauRa/bIeyN6IOGmHndcNJ0SllaW2V/6RoOesyQCnJM6n3mFCoCMMe6HPc+h3ZL9ONIfcvQIG7tHzkyFIhHzDefN/VNvi/xN5n1gx5axbmuen/qegaAgNjWw9mkC5GjtzRbOrZDwZXsL6kvJ3zGdTphm5YpeugoeT2V1x992yk0iwwVI/tfR5YjryONmhalvvV9nfQNAG4trz5/tx6z4+dcP64MOaNrXF4DncIIST3JcEu6xjuqb8DUuFPoH7mvW5zOLzR9A0CxX8zhGk7fMaT+dY1LfcvvtJnM4T2RTIyTCgsL2/U/zvaQl5eHb33rW/jWt76FMWPG4JhjjsFjjz2GG2+8EeXl5YhEIqiurjbWZHv27MG4ceMAAOXl5di9e3dKuXv37k3ePS0vL09xDa6urkY0GrU1nj1IS0sLQqEQAKCgoAAejwcFBVYYtMLCQjQ1Ndnt7kiHRtXKlSt79AKVEEIIIYQQQgAclhA0HaqGUsn/uI4ePRo+nw8rVqxIpldWVmLz5s3JRerYsWNRW1uLdevWJfO89957qK2tNfJs3rwZlZWVyTzLly9HIBDA6NGjHetzwgkn4PHHHwcAPPnkkygpKcHSpUuT6X/605+ScVQzpd13Uq+55hr87ne/Q15eHq655hrHvPfcc0+HKkMIIYQQQggh3Yp2/Cc100VqQ0MDPv/88+T2tm3bsGnTJhQXF6OkpAS33norpk+fjv79+2P//v148MEHsWvXLvzrv/4rACAUCuHSSy/Ftddei5KSEhQXF2P+/Pk48cQTk26/I0aMwNlnn405c+bg4YcfBtAagmbq1KkYPnw4AGDSpEk4/vjjMXPmTNx55504cOAA5s+fjzlz5qS9I7xw4UL86Ec/wh133AGPx4PXX38d//Zv/4b/+7//g8fjwfvvv4//+Z//yaxjvqHdi9SNGzciGm19FGDDhg1pn1EmhBBCCCGEkCOewxCC5oMPPsDEiROT2wdvAs6aNQsPPfQQ/vGPf+DJJ5/Evn37UFJSgu985zt45513cMIJJyT3uffee+H1enHhhReiubkZZ555JpYsWWL4Bj377LOYO3du0gV4+vTpuP/++5PpHo8Hr776Ki6//HKcccYZyMnJwYwZM3DXXXelbcPkyZOxZcsWbNiwAaeeeiqGDBmCVatW4YEHHkBTUxNuu+02o42Z0O5F6sqVK5Pv33rrrQ4djBBCCCGEEEKOJDL5T2p7mTBhgm1YTwB4/vnn05YRDAaxePFiLF682DZPcXExnnnmGcdyBg8ejFdeeSXt8dpi2LBhuPTSSzF+/HgsWLAAZWVluPnmmwG0/rf1+9//Pt58882My+3Qf1J/8YtfoL6+PuXzxsZG/OIXv+hIkYQQQgghhBBCjjDeeust3H///fjRj36ExkbL2CsSieDtt9/uUJkZufse5Mknn8Ttt99uuDcBQHNzM5566qnkH2iPZLyuOHwud6pDpljX6w57zaKMPK8VvFc6+sVlOdpxpIOadGoLwHRg08lxR6y6pnGrDENzzxUOiLLd+rZ0/6uLmtba9RFrW4k66G660uExEjOP6dLane83AyEHhSuvToq7r4Pjn3T/089ZioOncLpzciqW6Ps6nheZ5PAzUjpXWj1dnt/jciqN7U9bypPvpaOn3kcpjpeiT3Ld9gGrZV7DDdChS3TXSrfDec+Eg/oGnN00m4Vzte4Om+ORTqdWmtS3LFc/Zjp96+MsxxUx0vRy5THjLnlMazsi9C0dUJs0t0/pwlsXDtrWISDOj+7oKfUt9VMQaEm+ly6iUqem26eDo7AYr4XeFmNbd+2U7p5OyOu507UgRe/6ZpqfiXW3dklUuCHrY+qYoBnX7osWy91bXtckuk59Im+Bu0VmT5I65tv/G/hBjas0dWsvLqjkmHHSYopzfsI6j7luU2vyHDtdN5yuzbL/Zbm5msZl3Z2IinlZb5u8/jeJ61pDVNN7xD5UhnTDd5rDXaJdhQFz7JhO+mZev0fMtfqcLd3nte0CqW+habndXjLRd9xl9ok+juT5dHL3TYncIMbqMTmWW+s/W0z3/oBLd9kXLvSyT7Tx6KRvAAhq5TqNzRS3fu2ily2NdwmH4XHfnsYbb7yByy67DGPGjMHLL7+MoUOHHlJ5Gd1JraurQ21tLZRSqK+vR11dXfJVXV2N1157zTFuDyGEEEIIIYQcSbhU+169mf79++Ptt9/GSSedhO985zuH/PfQjO6k9unTBy6XCy6Xq007YZfLhZtuuumQKkQIIYQQQggh3QYFpAkz3avvpB401A0EAnj22Wdxyy234Oyzz8b111/f4TIzWqSuXLkSSil8//vfx3PPPYfi4uJkmt/vx5AhQ1BRUdHhyhBCCCGEEEJId6I9d0p7851UaQD1H//xHxgxYgRmzZrV4TIzWqSOHz8eQGscn0GDBsHt7pDvEiGEEEIIIYQcGfA/qY5s27YNffv2NT674IILcNxxx+GDDz7oUJkdMk4aMmQIAKCpqQk7duxAJGIaDJx00kkdqgwhhBBCCCGEdCd4J9WZg2tDyQknnGDEdc2EDi1S9+7di0suuQR/+9vf2kyPxzvmoNadCHmbEfRGU9xM6+Oms2WDslzx8r3mYl26A+pURQqNbd3JzSeO6RGOero7YIoTq7avk8MaAPgS+nky2yWd5CKaO2BEOAVKF7pY3EpvEY6eUS24cK7P7J9Q0PRH1l3pcr1mO/3CIS5iOBma7ZbudrrjaEL0Sa7m2FrkbTTSAqKvnZwCndwdnc6LTJPupKZLsL27Z7o66G6+AFDmq0u+/ypSZKSV+KxwU7LNutufTJd5nZyBpVuqTovmcNrszY4z4EF9A4Anbh07xfVSjI+A5gbr5ILspG/AHJMpLtIe6Zhsfx3Rkec76Da3G7Rrl3T3lZrWt1OcS+Nm3paoVVbEa6bl+a26F+U02dYdAPK164GTvtuqk12a1Ijs6yKfpfGgS7p524+1qDLrI6+t+nFlmhNODtjy/LYk7J1/vxBun6W+huT7r8J9jLQSn3mdy/VYDt1O+gZMDbiFhqVrdXs0frj1DZgab1Cmk22+5k7uc9s7zALA/mhe8r2TvgHnOVvOKx7tOE7jSupb9ncsaqU3Sb3H7edwJ337vGY5ur4Bcw5PcS12mMOl+7Ccl3Vk3rhWjrxWhrzmdwp9/Mp+T3Vottqaib6dXK3TuQvrmk7n3r+9pTT5Xn5X0TVe7q8z0pzGn5O+AVPjHdE3kD2NdwkJpP9PaoZxUokzHXped968eaiursbatWuRk5ODZcuW4cknn8QxxxyDl156Kdt1JIQQQgghhJAuge6+nU+H7qS++eab+N///V985zvfgdvtxpAhQ/CDH/wAhYWFWLRoEc4555xs15MQQgghhBBCOh/+J7XT6dCd1MbGxmQ81OLiYuzduxcAcOKJJ2LDhg3Zqx0hhBBCCCGEdCWqnS+SNTq0SB0+fDi2bt0KADj55JPx8MMP46uvvsJDDz2E/v37Z7WChBBCCCGEENJV8HHfzqdDj/vOmzcPlZWVAIAFCxZg8uTJeOaZZ+D3+/Hkk09mtYKEEEIIIYQQ0lW4Eq2vdHlI9ujQIvVnP/tZ8v0pp5yC7du34x//+AcGDx6M0tJShz0JIYQQQggh5AiC/0ntdNq9SL3mmmvaXeg999zTocp0J/p56pDr9aAmjQW/EUZD/IRS4GmxLT8srNzrYjm2eXOErXomIQKciGoW9nI/GU5AJyVMis9UZaHPql9M5G2IWvb/Xrd5jOKAGaKi1G+FTcjxmO2UNMasUAJ1MTOcTkvcDNWgh9eQYQUGBfYn358c3GHuJyzh98atMCNxYV/flDBDG+h28kGHtjiFlQCcx1tc9LVehwOxPCNN2u3vjlptiYoQPg1af+Z6zLHocZv9p9dP2tcXuM1wAHlauAePOA+6rb/ed42e7IS3OqhvAIbGa125Rj4ZRkEnX+hbb0M6fevty9f03Fa5Rp+67MdOXPx7Q57jTK4NusZlHxQWVhvbup50fQOAXztfffzm+e8XqDe29TAd8pjNQsO6xqW+9RAVMoTTYE3fADBK07geJgEAqmIhYzuh9a/Uqex7/TzJcBpOGncK2+SkbyBV4zr7ovlWfVLK8cvsWgWc66dv9/GYYTBS5iZYeaNoO1zW4dY3ABxwWf3UUX0Dpsad5m/ADIXipG+5LcN66OPs0PRt7qvPxX38Zv3aq+/Wfa12OukbMPte6rtZhALT02U4Kj1k34CAeW06MbDT2NbHXVWsj5Em5/D6hHVOZX/pc7jUpQwdo58zqQk5h0e0sDdhcZ1w0netw/hriAds0wDzGpnu+6SucSd9J8T1sEVrV7Y03iVwkdrptHuRunHjxnblc7naHxOOEEIIIYQQQrozrm9e6fKQ7NHuRerKlSsPZz0IIYQQQgghpNvB/6R2Ph36TyohhBBCCCGE9Ar4uG+nw0UqIYQQQgghhDjBRWinwkUqIYQQQgghhNjQnjiojJOaXbhITYN0N8t1h21ypjqs+bz2bpX9/HXGdpHPck1rEm5s0h1Sd2eMu0wXNd1hTTrHSXR3yIBwYg05jIxUl76E2NZcToUTX6PPOmZTzHTwkw6+uutpqa/BSJPHDHstJ7z6uOnuWxM1HVul+69OX6/lSDgmYLZT9ueOmOUM+kW0j5G2M1pibOvOoU5jqsAtXfGEi6h27uW4kOh9JI/ZoMwxFosLG08N3blSuljmeU09lPqs/pPHzBPa0V0QW6QboOZsGNWcAZvi2XcG1OvppG/A1Lh0N9THvZO+AaAhbj8GpfsqtPpJF1m/yxqj0glUd6cETI0XekynXenmneO2dxH2us1zoGtcd9kGTI3neU1naKl3p7EjnS6LfFa51ULfut494rpb7DXPw1jjNJj12RH70tj+LFqUfP9VtNhIk469eYamzTGla7wx4ey86aRxn8u8Pulu2tLRU3c8lsjrYSOsfXM8on7CCFg/pnQ5lWNVd1ZtUWZBB53TmxKHV98AUOC23GulY6/uoOrkuguYGpf6lnO4jpO+W+tkaVHOOXqak74BU+NS334xh+v94KRv6cLbJPSua9xJ34DZn9IRV/ZfXdxq6/6IdGC32tbXa153zwiKvtbaqc/fALBV0zcARKNWu2sT5jFzYbUz1yGKA2BeG6SepWb08+ukb8DUuNS3fj7ltUBuG+7yDvqW9e2IvoHDo/HOgv9J7Xy4SCWEEEIIIYQQO/if1E6Hi1RCCCGEEEIIsYGP+3Y+XKQSQgghhBBCiB28k9rpcJFKCCGEEEIIITbwP6mdDxephBBCCCGEEGIH76R2OtL6jBBCCCGEEELIN7iUatcrE1atWoVp06ahoqICLpcLL774YjItGo3i+uuvx4knnoi8vDxUVFTg4osvxtdff22UEQ6HceWVV6K0tBR5eXmYPn06du3aZeSprq7GzJkzEQqFEAqFMHPmTNTU1Bh5duzYgWnTpiEvLw+lpaWYO3cuIhHTlb+z4Z1UGzY0DUXA7UNcmZbhMqRBQAtD4RPW7bVxy7Y8X9iUy/AVfTxNyfdR7T2QalOuh46p1izzAWF3rpxDlOi27zKvtMkPeCw79ByPOWhleB29LBliIaJZpUs79nDcHI5NCcvGvEWZaUGY9uw60ra/j8/sT91i36mPqhPmOct1mXWIOuzrFDpAhgPQkSFnnNJr42YIAqewB9LiX4YGqo1aZck+0cOIxBLmuOgTMEOZ6CFImvxmffbFCoxtfazWibboYQZ0zUUaIgA24lB5v3EYAq7UvnbSN2BqvD5hhu7QQ1s46RsAij1WyAqpA6kZXeMy1InT+JXnXM8r9S3DTugad9I3ADRrYzImw2vo+UT4Crkd9ljbHnf7J/pCr3MICCeqE9b4DcDsL6lvt/YTebrwTzqyr53CzujXPMCcQ+S5l+jnW+q7PmqNVVl3GQosooWjyveZ13oZviIcsOp0wJ1vpMlrdm3Masu+iJn3YN+26vv/j0NF17ccrz63df31ivAvesgNeS50fQOmxqW+4x4zJI3e5/L86/0CAJXacVPmZe2+QlRci+U4i2vHTAl7JsLDyH7Q0XUqQ52kXAu0vDIcVYH4DuTz6POw8/2SHLc1Dvv47LUnNVKXMOcnnxayL+ygb8Cca+MZ6F2OG6f66fpuK13HaQ6Xfa2fl6a4WZ+WmKlLXePNIq+ubwCo8Vj1lWHB9PBs+6Pm91L9/GZL413CYbiT2tjYiFGjRuGSSy7BBRdcYKQ1NTVhw4YN+H//7/9h1KhRqK6uxrx58zB9+nR88MEHyXzz5s3Dyy+/jKVLl6KkpATXXnstpk6divXr18PjaR03M2bMwK5du7Bs2TIAwC9/+UvMnDkTL7/8MgAgHo/jnHPOQd++fbF69Wrs378fs2bNglIKixcvzqxRWYSLVEIIIYQQQgix4XC4+06ZMgVTpkxpMy0UCmHFihXGZ4sXL8Zpp52GHTt2YPDgwaitrcVjjz2Gp59+GmeddRYA4JlnnsGgQYPwxhtvYPLkyfjkk0+wbNkyrF27FqeffjoA4JFHHsHYsWOxdetWDB8+HMuXL8eWLVuwc+dOVFRUAADuvvtuzJ49G7feeisKCwsza1iW4OO+hBBCCCGEEGLDQeOkdC8AqKurM17hcDgrdaitrYXL5UKfPn0AAOvXr0c0GsWkSZOSeSoqKjBy5Ei8++67AIA1a9YgFAolF6gAMGbMGIRCISPPyJEjkwtUAJg8eTLC4TDWr1+flbp3BC5SCSGEEEIIIcQO1c4XgEGDBiX//xkKhbBo0aJDPnxLSwtuuOEGzJgxI3lns6qqCn6/H0VFRUbesrIyVFVVJfP069cvpbx+/foZecrKyoz0oqIi+P3+ZJ6ugI/7EkIIIYQQQogNmTzuu3PnTuMR2UDA3ougPUSjUVx00UVIJBJ48MEH0+ZXSsHlsv6brL8/lDydDe+kEkIIIYQQQogdGdxJLSwsNF6HskiNRqO48MILsW3bNqxYscJY/JaXlyMSiaC6utrYZ8+ePck7o+Xl5di9e3dKuXv37jXyyDum1dXViEajKXdYOxPeSbXhla0j4c4NQrpJuz2mM2sgYLnM5gVMJ8SSXMvhr9BnPo9e5Dfd/8oDdcn30olPOvjuDVvOiPtazLSasOWwFomZbnAS3TVYuvRJR8+A12pnvt9sSx+/6dqnO4W2CAfPhqjlHheNm/XbC7MtXzdZQvR7TJHke+0dhiPCgTAonAzztH3zPGZbPm0pT77fFSk20nLdZt6o5l55QJ4j4V6pn1/Zt/tiVjs/qBtipOnnEwCC2nnY32w6AzZGTGe+gE8bm8KlM9dr9smuulDyfZMop7nJ3q0wJ9cst29+Q/J9gd/sv/qIeZHe32j1WX2N2RY0a+dQ669Ec8edXHX+9ukJcOe2Op7qGncJV9lAwOynwhxrDJTkmBou1HRQKvRd6DVdJvM1R9pq4YR4QGxXajo40GL2UyTurHE7lNC7rm/A1LiTvgEgorlM6voGgLDmJCmdf792m0YM+tiW10u3cMvWryt+UZ9cr7WvdP7dFu5rbD8Z7WPt5zbHsnTT3BOx6rs7Yta9zF9nbHv8Vn13J0JG2sa6Qcn3dRHTIdrvMduyXzvfzRHzWqrrGzA1Ll15d9b1Sb5vDDvrWyWssRGU+i5sMLZ3+q1HzFqEO/veRvMaWHNAG9ctYtx+I7ts6fu1rZq+E2Ju81rnJhiU+tY07KBvACjWXOOlg7x0stXnhwMRoe9mcyztbbL6TTqx6qRz3fZoLsa6ozEA5Ik5vFhzafd7zHEV0c5rQ8zZKVb/TvG1y2zX595SY7uP3zqmbIv83uDV9C/nc73vd0XNOefJOnMM6o7M0kl/j9C0rvFSvznu9e9oldo1BAA211cY2zURaw4Pir7dL67nusad9A2YGv+q3rzG6BpvajbPWSImIjfkWH1SUmCO+T6BEmNbv4YfaDLrvr/G6ut4sxi32unNlsa7BKXgSqS5lZphCJp0HFygfvbZZ1i5ciVKSsxzMnr0aPh8PqxYsQIXXnghAKCyshKbN2/GHXfcAQAYO3YsamtrsW7dOpx22mkAgPfeew+1tbUYN25cMs+tt96KyspK9O/fHwCwfPlyBAIBjB49OqttygQuUgkhhBBCCCHEhsPh7tvQ0IDPP/88ub1t2zZs2rQJxcXFqKiowI9//GNs2LABr7zyCuLxePJuZ3FxMfx+P0KhEC699FJce+21KCkpQXFxMebPn48TTzwx6fY7YsQInH322ZgzZw4efvhhAK0haKZOnYrhw4cDACZNmoTjjz8eM2fOxJ133okDBw5g/vz5mDNnTpc5+wJcpBJCCCGEEEKIPYchTuoHH3yAiRMnJrevueYaAMCsWbOwcOFCvPTSSwCAk08+2dhv5cqVmDBhAgDg3nvvhdfrxYUXXojm5maceeaZWLJkSTJGKgA8++yzmDt3btIFePr06bj//vuT6R6PB6+++iouv/xynHHGGcjJycGMGTNw1113ZdagLMNFKiGEEEIIIYTYoIeYccqTCRMmTIByeETYKe0gwWAQixcvxuLFi23zFBcX45lnnnEsZ/DgwXjllVfSHq8z4SKVEEIIIYQQQmw4HItU4gwXqYQQQgghhBBih1LpjZGybJzU2+EilRBCCCGEEEJsOBzGScQZLlJtyFuXA08gmHLrXm4nNBfzRhEGqS5ohTtIiCge0UKzIFeJZQnvD5rW49GIsHmvtgrzNohQt7rdvoi/q7ymevQIC0qE3nDFXWLber9bRA9I5IhOybHqr4diAAC/FtLDLY4pbehjcatt4WbTLj4RFZXQ9pVhRDx+M6xDcaFlWV+UY4YO0K3ua0V4iJgI9+HXQma4xb/lPcLyP1Zg7dsQN8utiVoW9R/uNu3r678uMLZdUS3wsgit4DKd+Y3zn/CLc19ojjE0WfVzxUTIhrB2THEBbgqag357UAuvEDHHpqfFLDe4x9ouOWCWm7vPOmfRPKtusagHO3HoHNQ3YI5t2b6EOexQr526mqDIq2k8WiA0UWSGDwjkWicrJkICxKrNgj31Vro7avahHtXFSd+t25pG5NgxJYLdWrkp+s41x46uL7/fTNM17qRvAAi3WJ2diIrrmriWubSypL6LCrTQIDlm6J9/eswwGHpYpLAIoRIQ4SJ0EqJC0QKzs/XwNTVRM1TDx3utMFd1u0zXRKk9/Tw56RswNa5CDvoWY8gdEdvatT/sN/W9I8cMnwKt691h85wF95nlFu+33ufuNc9ZNLd133gkO/ouWJcDj/8bfTs8fhcX83JtjhXKo1rM5/JaEMvTQmNJfeeb2wltrEcP2OsbADza9VZEbTI0npBRPoT+DbnFpYDMzS9yrfPhykDfHrf9N/K4uMaEW8zOjmsad4lrgwyRpdehT6E5Zxdrc7jUtwyJFdXC03nTPJeph1sZVmB2th7uR+p7yz4zXF7tTmtMpehbdJ8rYv/9LREQfRTSLggipJNL06LUt0foP+q1BvpXuWZbvpIhGLVz5j9gllOozeE5+82+jfutvPGIF7twhHIYjJOIM+70WboHQ4cOhcvlMl433HCDkWfHjh2YNm0a8vLyUFpairlz5yISidiUSAghhBBCCCHOuBKqXS+SPY6oO6k333wz5syZk9zOz9eCB8fjOOecc9C3b1+sXr0a+/fvx6xZs6CUcnS8IoQQQgghhBA7+Lhv53NELVILCgpQXl7eZtry5cuxZcsW7Ny5ExUVrY9M3n333Zg9ezZuvfXWLg1GSwghhBBCCDlC4eO+nc4R87gvAPz+979HSUkJTj75ZNx6663Go7xr1qzByJEjkwtUAJg8eTLC4TDWr1/fFdUlhBBCCCGEHOEcvJOa7kWyxxFzJ/Wqq67Ct7/9bRQVFWHdunW48cYbsW3bNjz66KMAgKqqKpSVmX9YLyoqgt/vR1VVlW254XAY4bBlWlRXV3d4GkAI6XSob0J6LtQ3IaTTSKjWV7o8JGt06SJ14cKFuOmmmxzzvP/++zj11FNx9dVXJz876aSTUFRUhB//+MfJu6sA4HK5UvZXSrX5+UEWLVrUZh36fBGF1+uBr9Y0XnKHTYtFd53mHtncYhbis7o3URoykpr7my5qDf0th9eYmYSAMKHzhLW0WuGe22C54AmDPMSC5o3zhO645hcOj8JJ0ttiCS8eMPNG8kxnuZjuxpoDMy3X+iCcZ4o5IZyA9fv80hXPJx0Rta53C2PLuHBpPJBjdfA+oQB9X3+tcMUTp1c3Vo4J08uWMtO98usy6/wX55vuhC0xqxINdcL5sdFsp7fRpb03j+kNm9sJ3aFVnLNovel6qLu7es3qGe1OMUQU2lIu66Be0V/eZvN8++utg/oazP7yNFsnwttk9U8sJi1OnbHV9+cReL2tdfXVa47TYeFOW2e6w6JF62SP0JOm8ZZ+5sBv7G8Owmi+dZ794nkWjziPwWqr0/U+k0h9S+dSXbfSzVeeGz1vNFc41wq9x7XrldR7OFdzIxUO05BupFF9bItxL06Dfn2SLqfV+VaF9os02W5/nb2e6sS+ejvDJaYQ9lSYLtylhQ1W3qhZUH2d1UmeJnt9yzo56RsA4kHtnDUKfWvVle30yL7V+0jq222ee32sepuEvhvMPvLVa67vLeaJ8DW0lpstfYe+aFvfgKnxFH3rRoui7YkS8y9D4VLrPDaVm/3dUmTqXZ+L84SXo65vAAjU2Wtcn6djOVLv9o7dKfoOivkgz9vm+9bjaO+Fo3lLrpzDtW2hb8Tk2NbmCjHnyO8futNtbaH5BalaO6ZLzP2+evG9wZJlynUjLq5dkSKr3L2D8o200gJLRHEhxLoas366xp30DQAebWzI72/xXPG9q0kbY6Kr9XamzOdi/CmP5ibtMvWd8j1QG0e+JvHds9YacF6h73hA+04Ys3dN7+64lLNb+ME8JHt06eO+V1xxBT755BPH18iRI9vcd8yYMQCAzz//HABQXl6ecse0uroa0Wg05Q6rzo033oja2trka+fObBjgE0K6A9Q3IT0X6psQ0mko1b4XyRpdeie1tLQUpaWl6TO2wcaNGwEA/fv3BwCMHTsWt956KyorK5OfLV++HIFAAKNHj7YtJxAIIBAI2KYTQo5cqG9Cei7UNyGks6C7b+dzRPwndc2aNVi7di0mTpyIUCiE999/H1dffTWmT5+OwYMHAwAmTZqE448/HjNnzsSdd96JAwcOYP78+ZgzZw6dfQkhhBBCCCEdg+6+nc4RsUgNBAL485//jJtuugnhcBhDhgzBnDlzcN111yXzeDwevPrqq7j88stxxhlnICcnBzNmzMBdd93VhTUnhBBCCCGEHMm44gquNLdKXXGuUrPJEbFI/fa3v421a9emzTd48GC88sornVAjQgghhBBCSG/ApRRcaf5zmi6dZMYRsUglhBBCCCGEkC6Bj/t2Olyk2uBpjsHjjcHTYMbRcIltaDHa4nv325cXMb28c1SJWa6yYpjEfcJKXgx6d8TywPY2CSv/astS39UsvMYTwjs7rKW7XfZpABLVNdb7iJnmOeFYc9cK6z/AkQIZvsIylA73ETb4Iq9uES/DyrhFOAY9FIJH2KZ7WswO9GmhErzNIkxCnbWzr0ac+4hZCaWFKIiVmLbzB443t+uGWX3yVR8zXo3yWnXwNJiS9DbZW9ZLK3kZXsOjbbtFmuw/I01GAtKHiTgPnojZt3oYChlWxtdo7uxptAp2N4nxlmeZocSDWp9kaQLwtMTh8bbWz9NgdYarSXSMCCsV37PPoUxr32DMNIRzJcxzHg/aG6vr+gZMjXvFmHTr9ZW/4LaItugad9A3ACSiWriQE44xixXhVqL5lm51fQNAOKSFRSkQIT1EiBx9/MpwTzIsj56eMgY1vfsahb4bzDHorbYKcreYfaLcIsRQoRV/48AJ5vmsqzP7ZFeRpX8lYoh5Gqz+StG3U7gIGYpMalpLl/2nI+cTp+uI7Ftfo9hu0MNICX03mRdil6ZxlWue/Ij/mz45HPpuNBvoatQ6p8GMARLfZ83hKm52sLfJ1HQwXGyVmTB9LwI1Qt/aXJGi72ZxnDprsLsbZdwhrYPEPJyC9p0jsf+AWUxUnKuR1hzePMAcy7Fcqy1S35FCERZF03hC+lmJ8auHlZJjUIZF8oaVlleOSe37kJxzDpgF6Rp30jcA1Bxrabym3uyTr/T5Psc8pqvefg6X+pZh2vTxnzIPS/1rZckgi3qYFBlGRobp0fvT12Sv79ZtLXxTswjXpvdtwGekKY81GNyxNDFcujPtce/lndSswkUqIYQQQgghhNjgSii4Emke902TTjKDi1RCCCGEEEIIscGVMO9S2+Uh2YOLVEIIIYQQQgixg4/7djpcpBJCCCGEEEKIHTRO6nS4SCWEEEIIIYQQGxiCpvPhItUGdyQBdyKBWJ8c43NVKpxZNdc+HD/ASEt4Lfc45TX915Qw/1Oa86Ynag5yV9R8yN2tpwtBJDQnVLdw83VFhR2kS9rvafhN90V3vtVut0u0RWx766NamllsQnMu9jabiSkOvprjn69JOGQKN0C31kfSsdcrXWXrLUs9w+kRMBwRIdwdETPLceVaY8OTY7rZBQ+YddDdXKN1potxPGBtqzSKjOVrG8IpEKIpupOgr9kcJ24xxhLa+EyIOii9uuL6Kx2FvS1Wu/11pq2gp9assOtAnVYBMcbjlpui169VICasCjuIO5qAW7UeU9e4Ei7NcmwrTePKI9K0PkzRt9CB7vApg3+7HYKBq4A5dlTCGnfSfRoBYZ+r4zPHq65vwNS4rI2vzv4cJIQzubdFczWVbrSiGN1Z0i0cPOU10aM5onqbhGNvraZv6dYsXI0NjQsHdleO6fbp9ll9L/UdyzHPi1dz8I0HhWu52fUG0XxzW9deijNoo9hutndA1c+L1Lfc1pHXZF3fAODTrvXeGtNJ1bW/VhxIG/Mx0y3VG/imEuIa21EMfYfM86iK9Tm9yEzzDEq+1+dvAIhITXukp6p2fNH/Lq3tKfqWm9o4ky6phsaFhlMeM/RY5bgHVpj1k9c1bV9/rXBDVtZ1RLY57je3Aw6usl4xB3k0x153TLrES2dlq926vgERxUA6mkfNSihN//r8DQDC7BfBamvc5H1tisSn6TuW66xv/dofLRBpQnu6pr3C4dhXY99/cXGpN+Zzeb2R0SK0rk6JdiDd0DWNu/bViINq+i4wL2TuHO17aUxMBEcSCQU4zM/JPCRrcJFKCCGEEEIIITbwTmrnw0UqIYQQQgghhNih0A7jpE6pSa+Bi1RCCCGEEEIIsYPuvp2OO30WQgghhBBCCOmduOKqXa9MWLVqFaZNm4aKigq4XC68+OKLRvrzzz+PyZMno7S0FC6XC5s2bUopIxwO48orr0RpaSny8vIwffp07Nq1y8hTXV2NmTNnIhQKIRQKYebMmaipqTHy7NixA9OmTUNeXh5KS0sxd+5cRCLCx6GT4SKVEEIIIYQQQuw4eCc13SsDGhsbMWrUKNx///226WeccQZuv/122zLmzZuHF154AUuXLsXq1avR0NCAqVOnIq4ZA86YMQObNm3CsmXLsGzZMmzatAkzZ85MpsfjcZxzzjlobGzE6tWrsXTpUjz33HO49tprM2pPtuHjvoQQQgghhBBix2F43HfKlCmYMmWKbfrBheT27dvbTK+trcVjjz2Gp59+GmeddRYA4JlnnsGgQYPwxhtvYPLkyfjkk0+wbNkyrF27FqeffjoA4JFHHsHYsWOxdetWDB8+HMuXL8eWLVuwc+dOVFS0uoHffffdmD17Nm699VYUFhZm1K5swUWqDfE8L1xeL6L5ZhdFc03L9YRT2AmH0B3S2l8PA+AR1u2esFmwbtfuaZahTjRr9AFmOI1onllOXLMmd7LTB8wwGa6ESBNtS2jtjgdEf2lW6S4ZMaPOLMhfZ/0KpNutt1ZYWPxrm94GswO91SJ2Q7UVGiG+v9osVgtx4s41+88dEiINWiF89LABAOBrNG3Wc3db72NBYf+v7ZoQoYogN7ViXcLqXJ4XPUyP7D+3CGukh0CSYUSckCEpvFq7XXFxDK+43PQt0tLMsZkIWHljedZAjWXJvj6e26pvAIbGpb5Twsxo1UyYp9wYgzL8ggzzodv+y3MjHxfyauGX4gGzn3SNR/JFH6aEErI/r/KY+lhK0bcoVw9DkRChEHSNO+kbaEPjOkLvRugTqe/aeqtue/ebxYgQRu4cKwyFu1DEhwiaIbr08F4eMe5z9pl962vQQ77IUEWwR15b9fMg9O4V0Tb0OsmQHu6ofX2ccNJ3a7lWuvIIQfSV4V20OgTNuBix3NZOicWy85XETt8AEMvR6uGgbzmfS/R5OiWMj4wGo4WkkWG75FxhzOEVZpgUfQ6Py1AnGehbhoPSSdF3wD6cibzO+eu1UDbp9O3wZV7XNyA0rukbABL7D1jvxaOJ7oAIIxXSNC71nWNu62HCcvaJ0CxNDiGdxPyph6CR5z7lu5SmcSd9A2ZYLndMhAbSzpNLXB5lODRd4yn6jpjbSovTo/oVmwXpc2OOORHEtRA08SxpvEvIYJFaV1dnfBwIBBAIOIR97CDr169HNBrFpEmTkp9VVFRg5MiRePfddzF58mSsWbMGoVAouUAFgDFjxiAUCuHdd9/F8OHDsWbNGowcOTK5QAWAyZMnIxwOY/369Zg4cWLW694e+LgvIYQQQgghhNiQyX9SBw0alPz/ZygUwqJFiw5LnaqqquD3+1FUZP4oWFZWhqqqqmSefv36pezbr18/I09ZWZmRXlRUBL/fn8zTFRzBP2kQQgghhBBCyGEmgzupO3fuNB6RPRx3UZ2roeByWbfN9feHkqez4Z1UQgghhBBCCLEjodr3AlBYWGi8Dtcitby8HJFIBNXV5l/X9uzZk7wzWl5ejt27d6fsu3fvXiOPvGNaXV2NaDSacoe1M+EilRBCCCGEEELsOAzuvofK6NGj4fP5sGLFiuRnlZWV2Lx5M8aNGwcAGDt2LGpra7Fu3bpknvfeew+1tbVGns2bN6OysjKZZ/ny5QgEAhg9enQntSYVPu5LCCGEEEIIIXaoBJBIpM+TAQ0NDfj888+T29u2bcOmTZtQXFyMwYMH48CBA9ixYwe+/vprAMDWrVsBtN75LC8vRygUwqWXXoprr70WJSUlKC4uxvz583HiiScm3X5HjBiBs88+G3PmzMHDDz8MAPjlL3+JqVOnYvjw4QCASZMm4fjjj8fMmTNx55134sCBA5g/fz7mzJnTZc6+ABeptjQM8MPj96e4fcaFe6Xu1Chd04z71GLcSnc9w+VN/BDjipsFGy6iMdNR0XTWFXUV5otO7oUyb2rj9DqY26Yjpf0x5H38FOdkzS3S1yTcCYV7pX4c6V6pu8MCgKdvvrVftL8oxyoo4TU7IeYT7sia02o8x8yrO54CwnlRdqXhCuvs2KufM+m6Kp0D9V/05LmO+4VjtOb+KB09Hc+hcI1MaOVG/OYAVF7TaVHvI+l4bGxrb+OR7Lj7NlS06hsAYtq4i0nNSIdch79mGONeVNPt1IcJe323lmuNLekorLvpyrSU52S0ctPpW69DekdK2KL/lcVJ34Cp8XRupErToqO+h5iPKbnEF4yERyvHLzQsnJTjQS1vjpmW4qyqD1/pwh3R08zdnK4NTk6ggOnQLa8/hr7DafStlyudncV1Q9e4k74B0yU2mtN2fx1ufbfWw3qfohktq9S67Cd9TKZce1Nc2R2cdxPClVt3exffN4z6pvmbmDlXpHPv1+sj69e+YwBANE93TrbXd+sxNXdaB30DpsZ1fQOmxl3iLpaub8Ccw1P0LeZwfQ5KcXk39G3WPdXFWK8s7NNEWSn6FnWIaXqXeT2aM7H8TiGPqeOkb8DUuJO+UyIYaMVmS+NdQkLBsQOTedrPBx98YDjnXnPNNQCAWbNmYcmSJXjppZdwySWXJNMvuugiAMCCBQuwcOFCAMC9994Lr9eLCy+8EM3NzTjzzDOxZMkSeDQNPvvss5g7d27SBXj69OlGbFaPx4NXX30Vl19+Oc444wzk5ORgxowZuOuuuzJqT7bhIpUQQgghhBBC7FCJ9HdKM7yTOmHCBCiHR4Rnz56N2bNnO5YRDAaxePFiLF682DZPcXExnnnmGcdyBg8ejFdeecUxT2fDRSohhBBCCCGE2JGBuy/JDlykEkIIIYQQQogdh+FxX+IMF6mEEEIIIYQQYkdCIcVgps08JFtwkUoIIYQQQgghdvBx306Hi1RCCCGEEEIIsSORQPo7qZkZJxFnuEi1Ie5zAT5XaggKuS0t7PU03c1bhgAR+xlhJ+QPMdK23CHEi24lL+3hU1zo9e204Uystynhc2S4jVjb7wHTnl3u5xFW6e6ofnxnG3Xdgl1atcfldtA+9o4M/+GEYUMvQmZIu33jERC3gz27T9jMp4S60DfMQ6TU3WVvUe+OmgPHOKeiLXq5KWNK1Dehh8EQaVI7eqggGdpJt7M3+keG+uggcb8L+MZCP6FFMMlI36Iqel6XbGsmP646hiVwqEO6rnEIm+AUIstJ33Jbhl/Q93XUN2BoPG24FT0sUdA+VIyko/qWdfI3tP+LSEr4J00XUt8JMW6Mcy8vgeI64tb6Tw9BIcuR+k5BD8PioG/AbEvCjASUeh3WNK7rG7D66LDoW2pR02m75+828jrt60ia67ZL6KujOF03UjTdTr27IzIUnJlX17iTvgER5spB34CpaanvTDRtHEOcX1kHX6N2PXI4Rkpd/fZzuJO+5XFS9J1y/dTCzMjvaw5hpOQ8obR5WOpbhvPTNS7T2qNvIHsa7xJ4J7XT4SKVEEIIIYQQQuyItyMEDe+kZhUuUgkhhBBCCCHEBqUSUGkWqenSSWZwkUoIIYQQQgghdiiV/r87fNw3q3CRSgghhBBCCCF2qHbESeUiNatwkUoIIYQQQgghdsTjbbiKClSadJIRXKTaEMsBVCDVAS7lRxT98XPpBunk0ufgtJtyTIl21lIcRjMox3TXE4kp7pr2x0xxi9NcD+MiLaE5u8ljxmTBWrpbOlI6OCSmrZ/mYJfi4JmBi5/LqX4pO2tvhSuk3icpDrjSQVI7p2nrbvSvmdmVsB8cjuMmbd/a1y/lnNkn2bZTjqeOclDfQJr2OpzWFM0YiWkqoOs0XZ+2M2+68WDUV+rb4ZhO+gbMcyIdH/X53Enfsn7SaTPF2dapfodB30Aajac471rvZZ/o/SfdPqULvOEg7qhvQO+IDuvbLMZR37J+6W4wGPvZOON2ir7beYx030XbW05KHaQMZP2CDuU4OHSnHx/2+zqNCUd9yzk8oWd2PqbUuCPG9xqhJyeNCBz7L801x64c6WKd4iatf1/LwBE6dfyJvnc4aR11fU/Rt2MNHPI6XCeypfGuQCUSUI4TP/+Tmm24SCWEEEIIIYQQO/i4b6fDRSohhBBCCCGE2JFQ7bhdz0VqNuEilRBCCCGEEEJsUPEEVJr/AfBx3+zCRSohhBBCCCGE2KEScPyzdzIPyRZcpBJCCCGEEEKIDSqhoNI87qv4uG9W4SJVcHCAxSMtrdvSpcxpO42bqUEGLp2O+3aBu6982kFuGz8kOTiMZuJOqLq5u29K/VJ21t46ufsmZJooJwM3144606Z1/7Spj9z3sLj7HtRlBycCqW9A1Fn0d0edf7Pp7tvevIfk7iu3422/B9r4oVi/jshjxu3TjjR3X0eNO7n7JsyCDXdf2ZcO1/Pupm/gMLj7HmZ9y2N3WN9A1tx9M3Ef7qi7b8pYFpEHnOZlR307XUd6q7uvnMP17wkZaC+NiWxG1zLngrT9OsPd9xA13pXEVDjtndIYop1Um96BSx2JI+UwsmvXLgwaNKirq0EIcWDnzp0YOHBgxvtR34R0f6hvQno2HdV4V9DS0oJhw4ahqqqqXfnLy8uxbds2BIMO8aRIu+AiVZBIJLB161Ycf/zx2LlzJwoLC7u6Sl1CXV0dBg0axD7oxX3QHduvlEJ9fT0qKirgdmdyS6iVRCKBr7/+GkopDB48uFu1rTPpjue2s+ntfdAd2099Z4/ueH47k97efqB79sGharyraGlpQSQSaVdev9/PBWqW4OO+ArfbjQEDBgAACgsLu42wuwr2Afugu7U/FAp1eF+3242BAweirq4OQPdrW2fT29sPsA+6W/up7+zS2/ugt7cf6H59cCga7yqCwSAXnl3AkfMzBiGEEEIIIYSQHg8XqYQQQgghhBBCug1cpLZBIBDAggULEAgEuroqXQb7gH3Qk9vfk9vWHnp7+wH2QU9uf09uW3vp7X3Q29sPsA/IkQ+NkwghhBBCCCGEdBt4J5UQQgghhBBCSLeBi1RCCCGEEEIIId0GLlIJIYQQQgghhHQbuEhtgwcffBDDhg1DMBjE6NGj8c4773R1lbLCqlWrMG3aNFRUVMDlcuHFF1800pVSWLhwISoqKpCTk4MJEybg448/NvKEw2FceeWVKC0tRV5eHqZPn45du3Z1Yis6zqJFi/Cd73wHBQUF6NevH370ox9h69atRp6e3gd//OMfcdJJJyXjpo0dOxZ/+9vfkuk9vf1Az9U3QI33do1T3630VI1T371b3wA1TnoZihgsXbpU+Xw+9cgjj6gtW7aoq666SuXl5akvv/yyq6t2yLz22mvqt7/9rXruuecUAPXCCy8Y6bfffrsqKChQzz33nProo4/UT37yE9W/f39VV1eXzPOrX/1KDRgwQK1YsUJt2LBBTZw4UY0aNUrFYrFObk3mTJ48WT3xxBNq8+bNatOmTeqcc85RgwcPVg0NDck8Pb0PXnrpJfXqq6+qrVu3qq1bt6rf/OY3yufzqc2bNyulen77e7K+laLGe7vGe7u+lerZGqe+e7e+laLGSe+Ci1TBaaedpn71q18Znx133HHqhhtu6KIaHR7kBJdIJFR5ebm6/fbbk5+1tLSoUCikHnroIaWUUjU1Ncrn86mlS5cm83z11VfK7XarZcuWdVrds8WePXsUAPX2228rpXpnHyilVFFRkXr00Ud7Rft7i76VosaVosaV6l36Vqr3aJz6pr4P0ts0TnoPfNxXIxKJYP369Zg0aZLx+aRJk/Duu+92Ua06h23btqGqqspoeyAQwPjx45NtX79+PaLRqJGnoqICI0eOPCL7p7a2FgBQXFwMoPf1QTwex9KlS9HY2IixY8f2+Pb3Zn0DvW98A71b471N30Dv1nhvOL+S3qxvoHdqnPQuuEjV2LdvH+LxOMrKyozPy8rKUFVV1UW16hwOts+p7VVVVfD7/SgqKrLNc6SglMI111yDf/mXf8HIkSMB9J4++Oijj5Cfn49AIIBf/epXeOGFF3D88cf3+Pb3Zn0DvWd8H6S3ary36hvo3RrvDedXp7fqG+jdGie9C29XV6A74nK5jG2lVMpnPZWOtP1I7J8rrrgCH374IVavXp2S1tP7YPjw4di0aRNqamrw3HPPYdasWXj77beT6T29/b1Z30DPP78H6a0a7+36Bnq3xnvD+QV6r74Bapz0HngnVaO0tBQejyfl16Q9e/ak/DLV0ygvLwcAx7aXl5cjEomgurraNs+RwJVXXomXXnoJK1euxMCBA5Of95Y+8Pv9+Na3voVTTz0VixYtwqhRo/CHP/yhx7e/N+sb6D3jG+jdGu+t+gZ6t8Z7w/k9SG/WN9C7NU56F1ykavj9fowePRorVqwwPl+xYgXGjRvXRbXqHIYNG4by8nKj7ZFIBG+//Xay7aNHj4bP5zPyVFZWYvPmzUdE/yilcMUVV+D555/Hm2++iWHDhhnpvaEP2kIphXA43OPb35v1DfSO8U2Np9Jb9A30bo33hvNLfbdNb9I46WV0hjvTkcRB+/rHHntMbdmyRc2bN0/l5eWp7du3d3XVDpn6+nq1ceNGtXHjRgVA3XPPPWrjxo1Ja/7bb79dhUIh9fzzz6uPPvpI/fSnP23TunzgwIHqjTfeUBs2bFDf//73jxjr8n//939XoVBIvfXWW6qysjL5ampqSubp6X1w4403qlWrVqlt27apDz/8UP3mN79RbrdbLV++XCnV89vfk/WtFDXe2zXe2/WtVM/WOPXdu/WtFDVOehdcpLbBAw88oIYMGaL8fr/69re/nbQ3P9JZuXKlApDymjVrllKq1b59wYIFqry8XAUCAfW9731PffTRR0YZzc3N6oorrlDFxcUqJydHTZ06Ve3YsaMLWpM5bbUdgHriiSeSeXp6H/ziF79Iju2+ffuqM888Mzm5KdXz269Uz9W3UtR4b9c49d1KT9U49d279a0UNU56Fy6llDq892oJIYQQQgghhJD2wf+kEkIIIYQQQgjpNnCRSgghhBBCCCGk28BFKiGEEEIIIYSQbgMXqYQQQgghhBBCug1cpBJCCCGEEEII6TZwkUoIIYQQQgghpNvARSohhBBCCCGEkG4DF6mEEEIIIYQQQroNXKSSw86ECRMwb968HnPM2bNn40c/+tFhKZuQIxFqnJCeC/VNCOkKvF1dAUIOB88//zx8Pl9ye+jQoZg3b16nT7SEkMMDNU5Iz4X6JoRwkUp6JMXFxV1dBULIYYQaJ6TnQn0TQvi4L+lUqqurcfHFF6OoqAi5ubmYMmUKPvvss2T6kiVL0KdPH7z++usYMWIE8vPzcfbZZ6OysjKZJxaLYe7cuejTpw9KSkpw/fXXY9asWcbjO/qjQhMmTMCXX36Jq6++Gi6XCy6XCwCwcOFCnHzyyUb97rvvPgwdOjS5HY/Hcc011ySPdd1110EpZeyjlMIdd9yBo446Cjk5ORg1ahT++te/ZqfDCDnCoMYJ6blQ34SQzoKLVNKpzJ49Gx988AFeeuklrFmzBkop/PCHP0Q0Gk3maWpqwl133YWnn34aq1atwo4dOzB//vxk+u9//3s8++yzeOKJJ/D3v/8ddXV1ePHFF22P+fzzz2PgwIG4+eabUVlZaUyW6bj77rvx+OOP47HHHsPq1atx4MABvPDCC0ae//iP/8ATTzyBP/7xj/j4449x9dVX4+c//znefvvt9ncMIT0EapyQngv1TQjpNBQhh5nx48erq666Sn366acKgPr73/+eTNu3b5/KyclRf/nLX5RSSj3xxBMKgPr888+TeR544AFVVlaW3C4rK1N33nlncjsWi6nBgwerc889N+WYBxkyZIi69957jXotWLBAjRo1yvjs3nvvVUOGDElu9+/fX91+++3J7Wg0qgYOHJg8VkNDgwoGg+rdd981yrn00kvVT3/6U8d+IaSnQI0T0nOhvgkhXQH/k0o6jU8++QRerxenn3568rOSkhIMHz4cn3zySfKz3NxcHH300cnt/v37Y8+ePQCA2tpa7N69G6eddloy3ePxYPTo0UgkElmtb21tLSorKzF27NjkZ16vF6eeemrycaEtW7agpaUFP/jBD4x9I5EITjnllKzWh5DuDjVOSM+F+iaEdCZcpJJOQ4n/geifH/yPCQDD0Q8AXC5Xyr56fqeynXC73Sn76Y8stYeDk+qrr76KAQMGGGmBQCDjOhFyJEONE9Jzob4JIZ0J/5NKOo3jjz8esVgM7733XvKz/fv349NPP8WIESPaVUYoFEJZWRnWrVuX/Cwej2Pjxo2O+/n9fsTjceOzvn37oqqqypjkNm3aZByrf//+WLt2bfKzWCyG9evXG20KBALYsWMHvvWtbxmvQYMGtatNhPQUqHFCei7UNyGkM+GdVNJpHHPMMTj33HMxZ84cPPzwwygoKMANN9yAAQMG4Nxzz213OVdeeSUWLVqEb33rWzjuuOOwePFiVFdXp/wyqzN06FCsWrUKF110EQKBAEpLSzFhwgTs3bsXd9xxB3784x9j2bJl+Nvf/obCwsLkfldddRVuv/12HHPMMRgxYgTuuece1NTUJNMLCgowf/58XH311UgkEviXf/kX1NXV4d1330V+fj5mzZrVob4i5EiEGiek50J9E0I6E95JJZ3KE088gdGjR2Pq1KkYO3YslFJ47bXXUh4PcuL666/HT3/6U1x88cUYO3Ys8vPzMXnyZASDQdt9br75Zmzfvh1HH300+vbtCwAYMWIEHnzwQTzwwAMYNWoU1q1bZzgQAsC1116Liy++GLNnz8bYsWNRUFCA8847z8jzu9/9Dv/5n/+JRYsWYcSIEZg8eTJefvllDBs2LIOeIaRnQI0T0nOhvgkhnYVLdeSPAIR0IxKJBEaMGIELL7wQv/vd77q6OoSQLEONE9Jzob4JIW3Bx33JEceXX36J5cuXY/z48QiHw7j//vuxbds2zJgxo6urRgjJAtQ4IT0X6psQ0h74uC854nC73ViyZAm+853v4IwzzsBHH32EN954o93GDYSQ7g01TkjPhfomhLQHPu5LCCGEEEIIIaTbwDuphBBCCCGEEEK6DVykEkIIIYQQQgjpNnCRSgghhBBCCCGk28BFKiGEEEIIIYSQbgMXqYQQQgghhBBCug1cpBJCCCGEEEII6TZwkUoIIYQQQgghpNvARSohhBBCCCGEkG4DF6mEEEIIIYQQQroN/x9iw7MCqgWVfQAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6gAAAFACAYAAACxyVHuAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAApkZJREFUeJzsnXd8VFX6/z/TJ73QAlIVqSIoLhjXhiKhWEDXVUEXBTvYsJefgGWxIyqKrgp+d2FRFF0Li2QBQRRZQVgEEcEFYYXQQ0iben9/xMw955nMnZkQIJDP+/WaV+bOOff055x7cu/9PDbDMAwQQgghhBBCCCFHGPuRLgAhhBBCCCGEEAJwg0oIIYQQQgghpJ7ADSohhBBCCCGEkHoBN6iEEEIIIYQQQuoF3KASQgghhBBCCKkXcINKCCGEEEIIIaRewA0qIYQQQgghhJB6ATeohBBCCCGEEELqBdygEkIIIYQQQgipF3CDSgghhBxh2rZti2uvvTZy/MUXX8Bms+GLL76oszxsNhvGjRtXZ+kRQgghhwJuUAkhhDR4pk2bBpvNFvl4vV506NABo0ePxo4dO4508RJmzpw53IQSQgg5qnEe6QIQQggh9YXHHnsM7dq1Q2VlJZYsWYLXXnsNc+bMwZo1a5CamnrYynH22WejoqICbrc7qfPmzJmDyZMn17hJraiogNPJZZ8QQkj9hisVIYQQ8hsDBgzAaaedBgC4/vrr0ahRI7zwwgv4xz/+gauuuioqfllZGdLS0uq8HHa7HV6vt07TrOv0CCGEkEMBH/ElhBBCYnDeeecBADZt2oRrr70W6enp+PnnnzFw4EBkZGRg2LBhAIBwOIwXX3wRXbt2hdfrRbNmzXDTTTdh3759WnqGYeCJJ55Ay5YtkZqaij59+mDt2rVR+cZ6B3XZsmUYOHAgcnJykJaWhpNPPhmTJk0CAFx77bWYPHkyAGiPK1dT0zuoK1euxIABA5CZmYn09HScf/75+Oabb7Q41Y8/f/XVVxgzZgyaNGmCtLQ0DBkyBLt27dLiLl++HAUFBWjcuDFSUlLQrl07jBgxIsHWJoQQQngHlRBCCInJzz//DABo1KgRACAYDKKgoABnnnkmnnvuuchjvzfddBOmTZuG6667Drfffjs2bdqEV155BStXrsRXX30Fl8sFAHj00UfxxBNPYODAgRg4cCC+++479OvXD36/P25ZCgsLceGFF6J58+a44447kJeXh3Xr1uHTTz/FHXfcgZtuugnbtm1DYWEh/vrXv8ZNb+3atTjrrLOQmZmJ++67Dy6XC6+//jrOPfdcLFq0CL1799bi33bbbcjJycHYsWOxefNmvPjiixg9ejTeffddAMDOnTvRr18/NGnSBA888ACys7OxefNmzJ49O/EGJ4QQ0uDhBpUQQgj5jf3792P37t2orKzEV199hcceewwpKSm48MILsXTpUvh8Plx++eWYMGFC5JwlS5bgzTffxPTp0zF06NDI73369EH//v0xa9YsDB06FLt27cIzzzyDQYMG4ZNPPonc3Xz44Yfx5z//2bJcoVAIN910E5o3b45Vq1YhOzs7EmYYBgAgPz8fHTp0QGFhIa6++uq4dX3kkUcQCASwZMkSHH/88QCAP/3pT+jYsSPuu+8+LFq0SIvfqFEjzJs3L1LucDiMl156Cfv370dWVha+/vpr7Nu3D/PmzYs8Jg0ATzzxRNyyEEIIIdXwEV9CCCHkN/r27YsmTZqgVatWuPLKK5Geno4PP/wQxx13XCTOLbfcop0za9YsZGVl4YILLsDu3bsjn549eyI9PR0LFy4EAPzrX/+C3+/Hbbfdpj16e+edd8Yt18qVK7Fp0ybceeed2uYUgJZWooRCIcybNw+DBw+ObE4BoHnz5hg6dCiWLFmCkpIS7Zwbb7xRy+uss85CKBTCL7/8AgCRcn366acIBAJJl4kQQggBeAeVEEIIiTB58mR06NABTqcTzZo1Q8eOHWG3m//LdTqdaNmypXbOhg0bsH//fjRt2rTGNHfu3AkAkY3ciSeeqIU3adIEOTk5luWqftT4pJNOSq5CMdi1axfKy8vRsWPHqLDOnTsjHA5j69at6Nq1a+T31q1ba/Gqy1z9nu0555yDyy67DOPHj8fEiRNx7rnnYvDgwRg6dCg8Hk+dlJsQQsixDzeohBBCyG/06tVLezxV4vF4tA0rUPWoa9OmTTF9+vQaz2nSpEmdlvFI4XA4avy9+hFjm82G999/H9988w0++eQTfP755xgxYgSef/55fPPNN0hPTz+cxSWEEHKUwg0qIYQQchCccMIJ+Ne//oXf//73SElJiRmvTZs2AKruuKqP1e7atStK7bemPABgzZo16Nu3b8x4iT7u26RJE6SmpmL9+vVRYT/++CPsdjtatWqVUFqS008/HaeffjqefPJJzJgxA8OGDcPMmTNx/fXX1yo9QgghDQu+g0oIIYQcBH/84x8RCoXw+OOPR4UFg0EUFxcDqHq/1eVy4eWXX47cdQSAF198MW4ep556Ktq1a4cXX3wxkl41alrVPlllHInD4UC/fv3wj3/8A5s3b478vmPHDsyYMQNnnnkmMjMz45ZLZd++fVpZAKBHjx4AAJ/Pl1RahBBCGi68g0oIIYQcBOeccw5uuukmTJgwAatWrUK/fv3gcrmwYcMGzJo1C5MmTcIf/vAHNGnSBPfccw8mTJiACy+8EAMHDsTKlSvxz3/+E40bN7bMw26347XXXsNFF12EHj164LrrrkPz5s3x448/Yu3atfj8888BAD179gQA3H777SgoKIDD4cCVV15ZY5pPPPEECgsLceaZZ+LWW2+F0+nE66+/Dp/Ph2eeeSbpdnjnnXfw6quvYsiQITjhhBNw4MAB/OUvf0FmZiYGDhyYdHqEEEIaJtygEkIIIQfJlClT0LNnT7z++ut46KGH4HQ60bZtW1x99dX4/e9/H4n3xBNPwOv1YsqUKVi4cCF69+6NefPmYdCgQXHzKCgowMKFCzF+/Hg8//zzCIfDOOGEE3DDDTdE4lx66aW47bbbMHPmTPztb3+DYRgxN6hdu3bFl19+iQcffBATJkxAOBxG79698be//S3KB2oinHPOOfj3v/+NmTNnYseOHcjKykKvXr0wffp0tGvXLun0CCGENExshnwehxBCCCGEEEIIOQLwHVRCCCGEEEIIIfUCblAJIYQQQgghhNQLuEElhBBCCCGEEFIv4AaVEEIIIYQQQki9gBtUQgghhBBCCCH1Am5QCSGEEEIIIYTUC7hBJYQQQgghhBBSL+AGlRBCCCGEEEJIvYAbVEIIIYQQQggh9QJuUAkhhBBCCCGE1Au4QSWEEEIIIYQQUi/gBpUQQgghhBBCSL2AG1RCCCGEEEIIIfUCblAJIYQQQgghhNQLuEElhBBCCCGEEFIv4Aa1AfLFF1/AZrOhuLj4SBeFkGMC2hQhxy60b0IIObxwg3qMc+655+LOO+/UfjvjjDOwfft2ZGVlHZlC1ZK9e/fitttuQ8eOHZGSkoLWrVvj9ttvx/79+7V4W7ZswaBBg5CamoqmTZvi3nvvRTAYjIRv374dQ4cORYcOHWC326PaB6hqN5vNFvUZNGiQZRkrKysxatQoNGrUCOnp6bjsssuwY8cOLc7tt9+Onj17wuPxoEePHgnX/4svvsCpp54Kj8eD9u3bY9q0aVr44sWLcdFFF6FFixaw2Wz46KOPEk6bJA5tijYFAJs3b66xPuqnOr3Vq1fjrLPOgtfrRatWrfDMM89ElaW4uBijRo1C8+bN4fF40KFDB8yZM8ey/Hv37sWwYcOQmZmJ7OxsjBw5EqWlpVqcRPKWJNLm8cbE0Qrtm/YNJG7flZWVuPbaa9GtWzc4nU4MHjw4qhyzZ8/GBRdcgCZNmiAzMxP5+fn4/PPP45af9k0aMtygNkDcbjfy8vJgs9mOdFGSYtu2bdi2bRuee+45rFmzBtOmTcPcuXMxcuTISJxQKIRBgwbB7/fj66+/xjvvvINp06bh0UcfjcTx+Xxo0qQJHnnkEXTv3r3GvGbPno3t27dHPmvWrIHD4cDll19uWca77roLn3zyCWbNmoVFixZh27ZtuPTSS6PijRgxAldccUXCdd+0aRMGDRqEPn36YNWqVbjzzjtx/fXXa4tcWVkZunfvjsmTJyecLqkbaFMNz6ZatWql1efuu+9G165dtd+uuOIKlJSUoF+/fmjTpg1WrFiBZ599FuPGjcMbb7wRScvv9+OCCy7A5s2b8f7772P9+vX4y1/+guOOO86yDsOGDcPatWtRWFiITz/9FIsXL8aNN94YCU8k75qI1+aJjIljCdo37TuWfYdCIaSkpOD2229H3759ayzL4sWLccEFF2DOnDlYsWIF+vTpg4suuggrV660rAPtmzRoDHLMMnz4cAOA9tm0aZOxcOFCA4Cxb98+wzAMY+rUqUZWVpbxySefGB06dDBSUlKMyy67zCgrKzOmTZtmtGnTxsjOzjZuu+02IxgMRtKvrKw07r77bqNFixZGamqq0atXL2PhwoWHtY7vvfee4Xa7jUAgYBiGYcyZM8ew2+1GUVFRJM5rr71mZGZmGj6fL+r8c845x7jjjjvi5jNx4kQjIyPDKC0tjRmnuLjYcLlcxqxZsyK/rVu3zgBgLF26NCr+2LFjje7du8fN2zAM47777jO6du2q/XbFFVcYBQUFNcYHYHz44YcJpU0ShzZVBW0qmlh5v/rqq0ZOTo7WVvfff7/RsWPHyPFrr71mHH/88Ybf70+o7IZhGD/88IMBwPj2228jv/3zn/80bDab8euvvyactySRNk92TBwt0L6roH1Hk0jew4cPNy655JKEytelSxdj/PjxMcNp36ShwzuoxzCTJk1Cfn4+brjhhsh//Fq1alVj3PLycrz00kuYOXMm5s6diy+++AJDhgzBnDlzMGfOHPz1r3/F66+/jvfffz9yzujRo7F06VLMnDkTq1evxuWXX47+/ftjw4YNMcs0YMAApKenx/x07do1qTru378fmZmZcDqdAIClS5eiW7duaNasWSROQUEBSkpKsHbt2qTSVnnrrbdw5ZVXIi0tLWacFStWIBAIaP9F7dSpE1q3bo2lS5fWOm+gql7yv7MFBQUHnS5JDtpUFbSp5PI5++yz4Xa7tXzWr1+Pffv2AQA+/vhj5OfnY9SoUWjWrBlOOukk/PnPf0YoFIqcM23aNO0O3tKlS5GdnY3TTjst8lvfvn1ht9uxbNmyhPOufr9y8+bNABJr80M1Jo40tO8qaN+HlnA4jAMHDiA3NzfyG+2bEB3nkS4AOXRkZWXB7XYjNTUVeXl5lnEDgQBee+01nHDCCQCAP/zhD/jrX/+KHTt2ID09HV26dEGfPn2wcOFCXHHFFdiyZQumTp2KLVu2oEWLFgCAe+65B3PnzsXUqVPx5z//ucZ83nzzTVRUVMQsh8vlSrh+u3fvxuOPP6498lJUVKRNqgAix0VFRQmnrfLvf/8ba9aswVtvvWUZr6ioCG63G9nZ2VH51zZvNe2a6lVSUoKKigqkpKQcVPokMWhTVdCmksunXbt2UflUh+Xk5OC///0vFixYgGHDhmHOnDnYuHEjbr31VgQCAYwdOxZA1djr2LGjlm7Tpk21dJ1OJ3JzcyNtk0jeqamp6NixY2ScJNLmh2JM1Ado31XQvg8tzz33HEpLS/HHP/4x8hvtmxAdblAJACA1NTWy0AJVk1Hbtm2Rnp6u/bZz504AwPfff49QKIQOHTpo6fh8PjRq1ChmPvHeqUqUkpISDBo0CF26dMG4cePqJM1YvPXWW+jWrRt69eoV+e3Pf/6zdkHxww8/1Fl+aptfffXVmDJlSp2lTQ4ftKnY0KZ0wuEwmjZtijfeeAMOhwM9e/bEr7/+imeffTayQR0yZAiGDBlS53n36tULP/74Y52ne6xD+44N7Ts2M2bMwPjx4/GPf/xD24DSvgnR4QaVAIj+L6zNZqvxt3A4DAAoLS2Fw+HAihUr4HA4tHjqYiEZMGAAvvzyy5jhbdq0ifsIyYEDB9C/f39kZGTgww8/1MqZl5eHf//731r8anW6eP8Rr4mysjLMnDkTjz32mPb7zTffrP33s0WLFsjLy4Pf70dxcbH238kdO3YklfeqVasi3zMzMyNllyp7O3bsQGZmJu+e1lNoUzXT0GwqVj7VYQDQvHlzuFwurd87d+6MoqIi+P1+7RE+Nd3qzU81wWAQe/fujaSbSN41pRuvzet6TByN0L5rpqHZdzLMnDkT119/PWbNmhVTUKka2jdp6HCDeozjdru195jqilNOOQWhUAg7d+7EWWedlfB5B/u4UklJCQoKCuDxePDxxx/D6/Vq4fn5+XjyySexc+fOyH8nCwsLkZmZiS5duiRczmpmzZoFn8+Hq6++Wvs9NzdXe38EAHr27AmXy4X58+fjsssuAwCsX78eW7ZsQX5+fsJ5tm/fPuq3/Pz8KJcThYWFSaVL6gbaFG0qGfLz8/Hwww8jEAhE+qKwsBAdO3ZETk4OAOD3v/89ZsyYgXA4DLu9Shrip59+QvPmzWvcnFanW1xcjBUrVqBnz54AgAULFiAcDqN3794J5y1JpM3rekzUJ2jftO9Dwd///neMGDECM2fOjOt6B6B9E0IV32OcG264wfjd735nbNq0ydi1a5cRCoViKhKq1KRYJxXqhg0bZrRt29b44IMPjP/+97/GsmXLjD//+c/Gp59+ekjqsn//fqN3795Gt27djI0bNxrbt2+PfKqVEoPBoHHSSScZ/fr1M1atWmXMnTvXaNKkifHggw9qaa1cudJYuXKl0bNnT2Po0KHGypUrjbVr10bleeaZZxpXXHFFwmW8+eabjdatWxsLFiwwli9fbuTn5xv5+flanA0bNhgrV640brrpJqNDhw6Rslip4/33v/81UlNTjXvvvddYt26dMXnyZMPhcBhz586NxDlw4EAkLQDGCy+8YKxcudL45ZdfEi4/iQ9tijZVk03FUvksLi42mjVrZlxzzTXGmjVrjJkzZxqpqanG66+/HomzZcsWIyMjwxg9erSxfv1649NPPzWaNm1qPPHEE5E4s2fPjlLn7N+/v3HKKacYy5YtM5YsWWKceOKJxlVXXZVU3suWLTM6duxo/O9//0u4zRMdE0cjtG/adzL2bRiGsXbtWmPlypXGRRddZJx77rmRNKuZPn264XQ6jcmTJ2t9UFxcHIlD+yZEhxvUY5z169cbp59+upGSkhJXMl8lkcXW7/cbjz76qNG2bVvD5XIZzZs3N4YMGWKsXr36kNSlutw1fTZt2hSJt3nzZmPAgAFGSkqK0bhxY+Puu++OSOpXU1Mabdq00eL8+OOPBgBj3rx5CZexoqLCuPXWW42cnBwjNTXVGDJkiLF9+3YtzjnnnBO3DrHq36NHD8PtdhvHH3+8MXXq1ITaZ/jw4QmXn8SHNkWbqsmmrC5g//Of/xhnnnmm4fF4jOOOO8546qmnouJ8/fXXRu/evQ2Px2Mcf/zxxpNPPqm5KJk6daoh/6e8Z88e46qrrjLS09ONzMxM47rrrjMOHDiQVN7VdVTbKpE2T2RMHI3Qvmnfydp3mzZtakwnXvnVfGjfhOjYDMMwErvXSgghhBBCCCGEHDroB5UQQgghhBBCSL2AG1RCCCGEEEIIIfUCblAJIYQQQgghhNQLuEElhBBCCCGEEFIv4AaVEEIIIYQQQki9gBtUQgghhBBCCCH1AueRLkB9IhwOY9u2bcjIyIDNZjvSxSGECAzDwIEDB9CiRQvY7cn/f402Tkj9hfZNyLHNwdr4kaKyshJ+vz+huG63G16v9xCXqAFwRL2w1jO2bt0a06k1P/zwU38+W7dupY3zw88x+qF988PPsf2prY0fCSoqKoy8po6E65aXl2dUVFQklPaiRYuMCy+80GjevLkBwPjwww+j4vzwww/GRRddZGRmZhqpqanGaaedZvzyyy9a+W699VYjNzfXSEtLMy699FKjqKhIS+OXX34xBg4caKSkpBhNmjQx7rnnHiMQCGhxFi5caJxyyimG2+02TjjhBGPq1KlJt1VdwjuoChkZGQCA4154APaUqv9+uFL1/5g4neHId/kPWoc9rB3bbEZCce0wtDC7TT9W05F5yLhqWmEk/h9kWQabSFclZOj/9QqF7TV+B4CwoZfBH3JEvgeV7wBgKFmGw/p5sjSGEh4O6umEAnoZjKB5bAuJNpEJq/mKuDal6eO1bOzWqwElMUMmbNEPUYVI5oaBEeM7EP3gv0OJ4BZj3KHYg12OIYv85bgV54ZDypiqNKepcEUlfr1nQsRWkyVi489X2bgzJaCFO5yxbVj+szfKFu2x7dQBNR1rG7ZC2pNVOtKG1XCZjqEcy7CwsOmQMtCCIT1M2nRYqaoh84SOofa5sGF1PEDODeJYs3Fpw0Fp08qx3i36EE3GoOUUI7tMrZroI8tsrNIV9hM1F6jhceYJq3Q1G4+6+RG7DHIsRo0FX9W4CVdUYtv9fz5o+27x7IORNdyZEjSL7App8aPWT82G9TCHQ9h0Emt4bbFahyVRbWoxV6ipRq/nse0/et7Q01Xng3BQ2LA4NpR0DWmXQQsbtljDbbLOUZMMYlPbG+5RdhnbDgxppxZrrUX3adciAKLmRDmXiQLqaRkxgwCnsFv1+tcl6xm7cQ2/Mi4qKrHtvtqv4UcCv9+Pop0hbFrRBpkZ1nd9Sw6E0a7nL/D7/QndRS0rK0P37t0xYsQIXHrppVHhP//8M84880yMHDkS48ePR2ZmJtauXaulfdddd+Gzzz7DrFmzkJWVhdGjR+PSSy/FV199BQAIhUIYNGgQ8vLy8PXXX2P79u3405/+BJfLhT//+c8AgE2bNmHQoEG4+eabMX36dMyfPx/XX389mjdvjoKCgmSaq87gBlWh+pEge4o3srg5UvXB6HCGlPj6+XW1QZULY33boNrEgmZTFhqbvJgVE6dDuYA1LDaoMh2rDSrEBlWdDIFDtEGNc91gtbhEcTRvUJ2HZoMK5ULHsEVPU7V9fE/auD1VHzvWG1Rpp0lsUJOwYSuOxAZV/tNJHaSG2KBKm1Y3gPE2qOom1BAbVAQP0QZVDa8PG1RLm7FI92jfoNrFuKkj+wYAe6q5QXXE3aCag+BgNqjy3NpyMBtUq7lC21iK9Vzal7a+x9mgavYftLBh6HNHnW1Q5UbtSGxQLWyxwW5QHdGbuqPxEfy09KqPFaEkTX/AgAEYMGBAzPCHH34YAwcOxDPPPBP57YQTToh8379/P9566y3MmDED5513HgBg6tSp6Ny5M7755hucfvrpmDdvHn744Qf861//QrNmzdCjRw88/vjjuP/++zFu3Di43W5MmTIF7dq1w/PPPw8A6Ny5M5YsWYKJEycesQ3q0fMAOCGEEEIIIYQcZsIwEvrUWX7hMD777DN06NABBQUFaNq0KXr37o2PPvooEmfFihUIBALo27dv5LdOnTqhdevWWLp0KQBg6dKl6NatG5o1axaJU1BQgJKSEqxduzYSR02jOk51GkcCblAJIYQQQgghJAYBI5TQBwBKSkq0j8/nSzq/nTt3orS0FE899RT69++PefPmYciQIbj00kuxaNEiAEBRURHcbjeys7O1c5s1a4aioqJIHHVzWh1eHWYVp6SkBBUVFUmXvS7gBpUQQgghhBBCYpDMHdRWrVohKysr8pkwYULy+f0m4nDJJZfgrrvuQo8ePfDAAw/gwgsvxJQpU+q0bvURvoNKCCGEEEIIITEIw0AoziO81RvUrVu3IjMzM/K7x+NJOr/GjRvD6XSiS5cu2u/V74cCQF5eHvx+P4qLi7W7qDt27EBeXl4kzr///W8tjR07dkTCqv9W/6bGyczMREpKStJlrwu4Qa0JuxERh5DCLypSaTYclqI/ZniUYImFoIoUY3E7TGGHKFEHW2zhBiloYKW+67dQ3w2JdKRyp1T5jJVOVdzYYiyGhaBKVFsrgguGX293+PTy2ANKP0SJJkgBBuW7EG6wB2uOB9SgM6FYliHEBAxRXMNKwMTq2EIIJUqMQSZjIQaVjLCEJgQWR1REDbdSzwT0MRZSRa8cVuoPSeAwAIcRJYokFXZV4tm7WgfZx2q5o4JEni57bHsPShEyZeAFhEBRSByr50obtlbxjS2+EiV2IwWMVAEOGTdkYdNCUMWmiiYJ25PznJW4kRRRsak2Le1dzUcOC6lJotq7U2YqzjViB0bNT8oPUUHqgWhLKXai1S3OK1KqdomVqIusp80lbEkRJJJ2JsdU6Lfy25x1Y982pwHbb+Wzq7ZnIWRYdRw7TSkIpAojuZ36oPQ6dXVwryOIWKhihn5hswExx6g2LuNarctRwmfq/Bp1XuLiNdLew4qdSqEzmxQ+U8asQ9i0GibXWiuSEi+0sMu46ShNL9d+K6Emm8zUQmApqhfUH+QUYyHoGE+wUbuElPNa1LynRBDXNaqdRaWj9qcjTuPWYxJ5x7Q6PDMzU9ug1ga3243f/e53WL9+vfb7Tz/9hDZt2gAAevbsCZfLhfnz5+Oyyy4DAKxfvx5btmxBfn4+ACA/Px9PPvkkdu7ciaZNmwIACgsLkZmZGdn85ufnY86cOVo+hYWFkTSOBNygEkIIIYQQQkgMAoaBgPxPVQ1xkqG0tBQbN26MHG/atAmrVq1Cbm4uWrdujXvvvRdXXHEFzj77bPTp0wdz587FJ598gi+++AIAkJWVhZEjR2LMmDHIzc1FZmYmbrvtNuTn5+P0008HAPTr1w9dunTBNddcg2eeeQZFRUV45JFHMGrUqMid3ZtvvhmvvPIK7rvvPowYMQILFizAe++9h88++yyp+tQl3KASQgghhBBCSAxCCTziGy9csnz5cvTp0ydyPGbMGADA8OHDMW3aNAwZMgRTpkzBhAkTcPvtt6Njx4744IMPcOaZZ0bOmThxIux2Oy677DL4fD4UFBTg1VdfjYQ7HA58+umnuOWWW5Cfn4+0tDQMHz4cjz32WCROu3bt8Nlnn+Guu+7CpEmT0LJlS7z55ptHzMUMwA0qIYQQQgghhMQkZMT3c5qsH9Rzzz0XRpy7riNGjMCIESNihnu9XkyePBmTJ0+OGadNmzZRj/DWVJaVK1daF/gwwg0qIYQQQgghhMQgjGg5gprikLqBG1RCCCGEEEIIiUHQsCEQR3UqGE+ViiQMN6g1EbJFVOR8pbo0tKEoitorhFqsXypE1nKgCuXEsEvJXygnWipGin/lyPI4Ks1ju08oWCoihHapWCuV5xRFO7WsgK5uWZWYokqZjEKtqKYmGGehYCcJSwlVqVKpFMouhBeTURPUMxXpiGBZ/ljlkXFleeIpD+rp1Py9pgKG3Ob3YIZQ40w3v7vShHKlRz92Kp0WilJ71Y8DAbWjrAZGLTGqPoFKfYD6gmKAlJvH0r6j1I/VQzGu1OoZUsXQwqalqqghx5KiWO2o1OcjZ5mwd8VPuJUKtbTZKEVitS5x4lopVEvBZIcyP9kDIm4SCtpqmeLNR1r55LyrNL6cU6LmQKXPotpLoKZlpRQOxLF31YblnGcxF8g+C3n142CqUhe3xdh06wWyS0Vsxd7tQn3bkJ1mF38Plt/sGwCCisq7tHdLpVnZplHjTFHMlzYtxpLWNlLhVFOkF9cUFfpgclQoyreVYm2QQsFWU6VSPHkJYaVIL+1Jzk+qGq/DL8IqxbHPIsyvXicIBWLhrSOYqnwX3jDk2DY8ZrphV2wjsVLiBWB5HSPXc+1aSl5nJWPvFurk8li1cSv7BoCw2iZeoXLtFkagHkoVdpuF8WoL4NG7gQvBhlCca5B44SRxuEElhBBCCCGEkBhwg3p44QaVEEIIIYQQQmIQNmxRPoVritNQ+Pjjj5M+54ILLkBKSkr8iOAGlRBCCCGEEEJiwjuoOoMHD04qvs1mw4YNG3D88ccnFJ8bVEIIIYQQQgiJQdBwICBf0o6K03A2qABQVFSEpk2bJhQ3IyMjqbS5QSWEEEIIIYSQGPAOqs7w4cMTflwXAK6++mpkZmYmHJ8bVEIIIYQQQgiJQciwIxTnDmooCW8KRztTp05NKv5rr72WVHxuUGvC5wDsVfLuUhbctd8cnO5i/TSnkEpXZd/tQX3UOhWJdWe5kPYWAzzsNMsQ9ErJdSH17TKPo+XP9WNVyt1VppfB6TOPDbueUDBFP/anmW0SSNeCNBclVYVQzrVwJSPLKuXYNel24ZJCugNQpef94gmDYJpoz1Sz3oEoyXWzUNKtgCFl6RXXAfDLAkkZesW9hnBl4izTT3WVKt/L9TBnhVkmeyAZnzOif4WMvy/HDC93ifbKMvNJTfFpYRle/dil+CuSbmV8IX0qCqjuXlSDSMaXjhWGDTBsCFXo+Tr36ceeYsWtQ4WehHTtoR6rfQrotibdEES5dVBtOJ7LEs2tg5hjKoVNK/OMHB8hj2LDaXqBAqlifChuHaLsW7riUF21CJt26sMDrlKzTO4SvXyuMsX2RLsH0vVGqsg1C1HZSI/ryxX1zlLSTdUnGbti42HpbSGoV9RQjqPciwlXJg5lTXHINjggjsvU73rZHT5lTMnyCTtVXYUExJzny9LP1dx4pOqd5kk3fYdIN1J24VrFofgRsgs/GOV+feCEfnMrZZO+h2qL3Yi4AjFUezug+0nx7Bd9o9i4lbsyALCFFBdUYg2yOjdqXVY9HYl01DkdAJyVFnO8dF9jdXWn2KW0YTk+goqbEumiSLo3sSuuZdyleph3rz6WvHvMyrr2iclVMbhAozQtqLy5XuBypzJ3ifU9kKXnacsy83Sn6I2truGqayIACItjNW6Umzjh7stebh5L+3ZLey+P3b/qdZi8BpN9GJbzsoJ0xWNkmvNeaoZ+Eety6u3nC5gDIOgXg0EZyPJ6SBMOki6ZjiLCsCEcxxdW2MrHF0mKuvI6RgghhBBCCCHHHH7DkdCnofGf//wHTzzxBF599VXs3r1bCyspKcGIESNqlS43qIQQQgghhBASg6o7qPE/DYl58+ahV69emDlzJp5++ml06tQJCxcujIRXVFTgnXfeqVXa3KASQgghhBBCSAzCsCMU5xPvEeBjjXHjxuGee+7BmjVrsHnzZtx33324+OKLMXfu3INOm++gEkIIIYQQQkgMEhNJaljvoK5duxZ//etfAVT5Ob3vvvvQsmVL/OEPf8DMmTPxu9/9rtZpc4NKCCGEEEIIITEIGA4E4rxjmow+5bGAx+NBcXGx9tvQoUNht9txxRVX4Pnnn6912tyg1kT4tw8Am1DjVJUo5TiVSmqqWJlNqPM5FIVNV6mulGb3SwlbVXFPqEe69OOg1658F2qhorxaXcRI8LvNyFLVNUpBzlvzdyBaoVTNM0qpV2kjqW4nFQBTdpryl66iEpGpPkP4W+ZEvu/rqBew5Hj9VFdzUxq3e/NtWli3zF/NeEJWuEhIYf63tHHk+9aSbD3P/bqMXviAOXBsQh1UqsF69pt1S9uht4lrvymhKFUkQx6HODbzCaXoeYbEmFLVIEMpettmZJnqi+1z92hhrVP3asc5TrNtfUJick9AV2pcY28e+V4UMMseDgk559piq/rYwtK+xfsjRozviG5jhyKAqKoxAoCnJKTEs5YHDTsUFV+ntGGhjqh0q1Rulbanqd0KG1HPjVLtFTat2njUnCLbSOkuqdrr3atHTvvVHL+eTbrQQnDzL2aaDj1Tb+f22nG4q2nv5c3F2G7m1467tjFt/NScrVpYljJe94nxuU3Y+5ZSM8+iEt3PW1mJ3oDhYlNJVo4/Oe+lFZnjxl0sFhGlD4Npuj35cvRjdS0IpGpBUXN2KMUcnylZuqpn+8Zmv7RN0+27kZBtVZV7pb3/WJqnHf9ka1KVt5Q1riUOZxh2V1U9wqpNS+VtuQYpw8NusT4BgFMRnnWX6gk7KvWxrdpF2OL6Vqr9yzKoBIWCv1TfDuuCxRqqurbsf6nyapWObBOH0n6e/XqbpG7Tx5Jz6y4zj7379HSzFftqrNueL0uvZ3kz83vgOH38nNBqp3Z8Sq65hjd16dcNB5SG2FKRq4UVVejywDtKzeMDpXoDhqBfCIYVFV+HPv3Au09vI88+c8KU3hP8WebACblF30vvCco1W1hcv6meCgDAm262mWrfANAqTe+XVIfZ4YGwUHtXFoOtZTla2OZ9ZnuG3HVj40eC6sd4reM0rB1qjx49sHDhQvTs2VP7/corr4RhGBg+fHit0+YGlRBCCCGEEEJiEDbsCMd5xDfcwB7xveWWW7B48eIaw6666ioYhoG//OUvtUqbG1RCCCGEEEIIiQHvoEYzZMgQDBkyJGb40KFDMXTo0Fql3bDkpgghhBBCCCEkCYKwR95DjfUJcluFW2+9Ncofam1gSxJCCCGEEEJIDKpVfON9Gjp/+9vfUFJSEj9iHPiILyGEEEIIIYTEIAwbwrDFjdPQMeroPVxuUAkhhBBCCCEkBon5QeUd1LqCG9QasGUEYEutkswOpQmXC9nm4JMuQRAlS6/Ii1fo6TjLTUluZ6muO+/U1dg1Kfd4MvSq9HwwTYSlxD4Ou6XrGDOfsEv8N8QptfpVDX3htkO4SXFUmG3i3q8n4ygzv7vKhBT6Xl3P3vU/U/5cdUEBAPZU3Y+CM1ttCCEJLyTXuzbbEfl+dd5SLayP13Sr4LLpfbYuoHfE556TIt//bW+nhf0UbKIdlwUVNyp+2Q9i/CkufqSbAYfiSka6ivFn6+X1ZSjuiITbCXkcUBT2jRTh7sdt9suJ6ULSP1Xvlzyn2eGVwq/RBp/udmKf3+yzkgqzz0KG8GtQS5yeAOxeB8KinQJ2fayH0sx2k2NZugBSPWQ4y/WwynKzvg5p39Kmg7HDJCFlDPgzhFuCTBFXsXfpEstQXEmEpX2LNlE1IOxB0SYVent6is3v0oOIs0JP11GpVDwsXG+lmIW3N22shZW1012+lLQ2y1DZQndLdEJLfYwOyVsZ+T4w7WctLM9h+m7YGdJdqCzzNdWOv3R3jHxfYeht8mtAtz1/heLCyyvGn7Q9xeWPo1JPR3VBVN5YD6toLOYNxQ1FSLidCLv1fjA8Zv+7XXr7tc8wXYOcl/mDFtbBpb9zpHrJ2BrU3XRIoZEd5VUFDBp144LC7grB4aoaQzalIIE0fVxJn4XqfGATHq2EZzFtnpQuXuQarrtXE+PeYn2XqO6CfNl6H/uy9biq+5ioNdxh9rEhb/iIY9X1lryOceteSDQ3KnbZuMJtipFrTlC2XH2yKj/OHC/FJ+p+bkpbizm6iZnpcc31Ap3X9Cft+OLMVZHvbRx6n+0Nmx3xfZq+Rq+uaK0df+cyj39GIy1sf0BPN5RqHgfShb2L60uH37Rj6WZGda/j073gwJ8pbFix6aj9UqpuA6qNN0/RH8vsm7VWOz7VUxT57rXp5dsRMsu+IKWzFjbPMI+DLh/W4egkMZEkblAPHDgQP1ICsCUJIYQQQgghJAbBOAJJAcOBoHQO3gB444038M9//hMAMG/ePLzxxht1ki43qIQQQgghhBASg2o/qPE+ybB48WJcdNFFaNGiBWw2Gz766CMt/Nprr4XNZtM+/fv31+Ls3bsXw4YNQ2ZmJrKzszFy5EiUlupP/axevRpnnXUWvF4vWrVqhWeeeSaqLLNmzUKnTp3g9XrRrVs3zJkzJ6E6DBkyBI899hgOHDiA8ePHW7qdSQZuUAkhhBBCCCEkBiHYEvokQ1lZGbp3747JkyfHjNO/f39s37498vn73/+uhQ8bNgxr165FYWEhPv30UyxevBg33nhjJLykpAT9+vVDmzZtsGLFCjz77LMYN26cdqfz66+/xlVXXYWRI0di5cqVGDx4MAYPHow1a9ZYln/x4sVYt24devfujdNPPx29evXCunXrsHjx4qTaoSb4DiohhBBCCCGExCCRO6TJ3kEdMGAABgwYYBnH4/EgLy+vxrB169Zh7ty5+Pbbb3HaaacBAF5++WUMHDgQzz33HFq0aIHp06fD7/fj7bffhtvtRteuXbFq1Sq88MILkY3spEmT0L9/f9x7770AgMcffxyFhYV45ZVXMGXKlJhlW7hwIQBg27Zt+OWXX7Bt2zYsXLgQNpsNZ599dlJtIeEdVEIIIYQQQgiJQcCwx30HNXAIVHy/+OILNG3aFB07dsQtt9yCPXv2RMKWLl2K7OzsyOYUAPr27Qu73Y5ly5ZF4px99tlwu011xIKCAqxfvx779u2LxOnbt6+Wb0FBAZYu1cVCJWPHjsXDDz+MoqIiLFmyBNu3b8fDDz+MRx999KDrzTuoNdA6bw+caVVSh+kuvxbmtJvqd2Ehf1cZ0puz1G/KJR6o1KUTKyrdynf9PMOnv2Stqofaffrgl0qDquJmKEVX47Rl6Aqo3jSzbpleXT3RoaQj61nh11X1fH6z/EG/XvawULAMeszyGw4RV1GlNOx6PQ2H3n7etGZmWU/QVT3Ls4XqXwszrfLmWhBsuXq9s90VZh42ve/DinypXTzGkSEkHl2KbGN5UC9PKCT6UFVU9Op9FsgUqsiKSrJsv4pGyrF4ykQqOKvKvFK1N+SRio/msRDug0Oxh1xnmRbWxKkrAmbYFWnLsK6mrLYXAGS4zLjZqWaf1JXKZ5PsUjjTAnAJGWzpwywUVhRhg7qdVviEHSjHPp+YWlW79Yv+l6K5ipKzVAq3ia5R+yqUoY9BZ4Y+fr1e0/5THEL+WyEYEqqzfr0uQWV+Ckl7d0oVUlWVUg+RStO+LHMgOtuKAYuWkW+VOfp5Fc30mL7GZt3s6WLOc+htZFdsOgS97GGYHeMQA98vhDB2+UyZ3H0VukGFglJ918wnmKn3Q4VQBw8p82VFo9jjRirzBnTRXATTlXqKOcYQKr6OFLONUt16+3mUeS7TrkvVZon+DSjtGRDtJYVEPL/1i8MhF7TakZVaCUdqtCJuIE2fP0KNxRgMmGM9JNWXhd0ayti3CfV1u1ByVYdWtDqwcq5Yaw1hT8E0pe/S9YTcaaKvnObYUudpQJ/XAnKNljatzGVht7z4FmNbOQx59LDyJrpd2MLmsRB1h18ZvxVNhWpvrlhrlfEq53O5rljhVmzcISbl/WIBLfYpyvJyPY9SgjfLUKmLf2v2DQAVTcw2swvBelWVOSA8NIS9Yu5S1PbtXqG8n6qvC+r6mu0q18JU5X0AaO4w28Fl0zttb9hc/+Vjrm6lX2xiLB5NJONmpqREv/7xeDzweDw1nWJJ//79cemll6Jdu3b4+eef8dBDD2HAgAFYunQpHA4HioqK0LSpPrCcTidyc3NRVFSlulxUVIR27XRvEs2aNYuE5eTkoKioKPKbGqc6DSteeuklDB48GD169MAf/vAHvPTSSxgzZkzSdZVwg0oIIYQQQgghMTBgi/ondk1xAKBVq1ba72PHjsW4ceOSzvPKK6+MfO/WrRtOPvlknHDCCfjiiy9w/vnnJ53eoeD222+H7bd/8IwePRrhcN38E4IbVEIIIYQQQgiJQTJ3ULdu3YrMTNO/b23untbE8ccfj8aNG2Pjxo04//zzkZeXh507df/ewWAQe/fujby3mpeXhx07dmhxqo/jxYn17qvK22+/jVatWmHAgAH417/+hc2bN2siTbXlqHkHddy4cVFSy506dYqEV1ZWYtSoUWjUqBHS09Nx2WWXRTU2IYQQQgghhCRD/PdPHZHXGTIzM7VPXW1Q//e//2HPnj1o3rzqfbX8/HwUFxdjxYoVkTgLFixAOBxG7969I3EWL16MQMB8brywsBAdO3ZETk5OJM78+fO1vAoLC5Gfnx+3THQzA6Br166a1PKSJUsiYXfddRc++eQTzJo1C4sWLcK2bdtw6aWXHsHSEkIIIYQQQo52woYtoU8ylJaWYtWqVVi1ahUAYNOmTVi1ahW2bNmC0tJS3Hvvvfjmm2+wefNmzJ8/H5dccgnat2+PgoICAEDnzp3Rv39/3HDDDfj3v/+Nr776CqNHj8aVV16JFi1aAACGDh0Kt9uNkSNHYu3atXj33XcxadIk7T3RO+64A3PnzsXzzz+PH3/8EePGjcPy5csxevRoy/LTzcxvOJ3OGm8379+/H2+99RZmzJiB8847DwAwdepUdO7cGd988w1OP/30w11UQgghhBBCyDFAGHaE49zXixcuWb58Ofr06RM5rt40Dh8+HK+99hpWr16Nd955B8XFxWjRogX69euHxx9/XLsjO336dIwePRrnn38+7HY7LrvsMrz00kuR8KysLMybNw+jRo1Cz5490bhxYzz66KPaY7hnnHEGZsyYgUceeQQPPfQQTjzxRHz00Uc46aSTLMt/KN3MHFUb1A0bNqBFixbwer3Iz8/HhAkT0Lp1a6xYsQKBQECTSO7UqRNat26NpUuXxtyg+nw++Hymqp9U3SKEHN3Qxgk5dqF9E0IOFyHDhlCcO6TxwiXnnnsuDCNacbyazz//PG4aubm5mDFjhmWck08+GV9++aVlnMsvvxyXX3553PxUxo4di2AwiPPOOw9LlizB7bffjunTp8PpPPjt5VGzQe3duzemTZuGjh07Yvv27Rg/fjzOOussrFmzBkVFRXC73cjOztbOiSeRPGHCBIwfPz7q91Nz/wdPepXLiOZuXWbbpWjEVxq6m4ndQtt/t990PbCrMl0LU12PBMP6f1ysXsKO9/iAoYRLafkMly6xn+k23QS47bHl2EuD+rPze4QbhRKnqX9eKQZlSNQtnGoeB9N0GfrKXPO4skI/r7RcP3aVKfkIjfpAppB5V+X43XqbuN16vUsCZl1+qGyphdmxNfK9qaNUL7uht5FD8SsgXVukenWZd7vSTwFRnoBHH2OVbrONApl6mzgqlb6v0IKiXJmoqvmBDBEo3Beovk2c3thuIH71ZYtfjteOVMl/uyiQA/pxa+/eGvPwO/yw9sqlE8vGu+ZshzvdjUyn7ipDuiVQ3WMUB/Rxr7oWAXTXA37hciqguG6R9i5dGjgVt0N24VfGJo6dyrkepxhnzkDMuBJ/2CxfiV8fyyU+3SVQmeLyKSjGa9ir1y2YqtQ7V8xrQeFCSTm2R7ntMI/Dwi2KdNViU2zcEPNlsU93F/Gz4vdBukUqdpljULpJ2RHI0o73+syx4RduO6RvIGeq2U9ht16+oHABE0w320y6GHP4VHdEepbyn/iauxLhjigtQ7cBr1tx2yHcEf1akR35vsjeSQv70aWvlSp7Q7pfDJ+wj8beKvcWgZA+N8Yjln0fn70HrrQqV27q2ibnnbBYa8uDpvu3koC1HfgUt1MB4UpIHqt263Lqbep1me3tFjYs3aaoNu0WfSPnCtWFklQeVa8/iit1m9hfrtcz4DLbTLpFCXjFPKe4gCqP4+HFFlLHr5gLlHNDqWLecgiXKoqblzK/WwvbXNlIO/7efZxZPpcuLOM3zHP/69Pddmwo1Y93HjCv9cor9DzlnGNzKvNRll52v3AH5VPbRLg1guJiTk7l8rJQnQOzsnXXMdle/eIgxWWOqb3Cf82y8vbacVFwV+R7SEwym3wnRL7/VC58fx0jJPIIb7KP+B4LNHg3MwMGDIh8P/nkk9G7d2+0adMG7733HlJSpM+8xHjwwQe1RiwpKYmShiaEHL3Qxgk5dqF9E0IOF0HDAbv4Z2V0nKPXz2ttoZsZQXZ2Njp06ICNGzfiggsugN/vR3FxsXYXNZ5Ecm0d5xJCjg5o44Qcu9C+CSGHi7AR/w5pOPbTuscsTqcT3333HVwuF7p16wa73Y5//OMfmDp1Krp06YJx48bB7XbHT0hwVKn4qpSWluLnn39G8+bN0bNnT7hcLk0ief369diyZUtCEsmEEEIIIYQQUhNhw57QpyFy00034aeffgIA/Pe//8WVV16J1NRUzJo1C/fdd1+t0jxqWvKee+7BokWLsHnzZnz99dcYMmQIHA4HrrrqKmRlZWHkyJEYM2YMFi5ciBUrVuC6665Dfn4+FXwJIYQQQgghtSYMW0KfhshPP/2EHj16AABmzZqFs88+GzNmzMC0adPwwQcf1CrNo+YR3//973+46qqrsGfPHjRp0gRnnnkmvvnmGzRp0gQAMHHixIi8ss/nQ0FBAV599dUjXGpCCCGEEELI0Uwg7IAtbP0OaiBO+LGKYRiRd0//9a9/4cILLwQAtGrVCrt3765VmkfNBnXmzJmW4V6vF5MnT8bkyZMPOq8WnmJ4PVVNk+3QFdDsitqoPayLM2U4dDXEMrv5bky2W1dOy3TpcVXkf2DcdlPZL8WhK3NK1VGPEtcX1rtXqvypcWU66rkpDl3VzyvKkKOowvlDunEGxeMOqvKhDFMVf2U6ZRX6e0a+clOF0AgKdcsUXQnR4zLrFhQKm3a73iaqEut3Ja21sC2+3Mj3pm5d8bOZUADVwrwHtGO/mMBUFcVgSLSXUEmsTFXUn0Vd/H7l2Bfn4YgUs00yhcpfk3RdoVhVIZZjU1WVLAvpfbS2tIV2XOw36ylVo9ul6RNYY5dZhpbefZHvvqA+9mpLq5S98Ka44BXyp1LlU1VvlTYiUe1CPuajvrcix720pzSnqWSa5tCVt9PFsVo+qTSbDBUhc1xluvR+LHbpyqqVKYp6qbBTqc6q2rFUt5SEFJXKSr+uXh2ojL1UeYWytJaPeB/IL9RVfyo11SZLxfg9zlMc+d7YqdtwQCiHN0sxw0sz9Xdt9gnV81Aotm1K9ddwplkXI6y3n6peGhYqqLKtvWlmH7ZppCtk56XodVPHqlRwLw+Zdfu+5DgtbGmwHWKR69HnmOZefb5skVIMAPCF6sq+98Hz21wZz25V1DFQHNDX92y3vmardizXq9KAPgacilJ7urCnRp6yyPdcV5kWJtfsZFCV0X3C40Cpolac6tSlZNPdYo5R6lYZFHYpFMnl+qWVR6y1alx/QLenoLKmu4Vqr2wT9Uj2wy+ludqxP9w58n2tWx+/OUrbl4u5INWp91lmijkWohSc5TynqPg6HEKxXSg6u12q4nTsvq/06+1lE1nmZZr2dULGHi0sxaHXRVWnLwvq43Z1qd5Gy8NtzDKE9LGgqkani+vbJl5zPfcHk1Pqrk+EkYCKbwO9g3raaafhiSeeQN++fbFo0SK89tprAIBNmzahWbPaqTofNY/4EkIIIYQQQsjhxkjg8V6jgW5QX3zxRXz33XcYPXo0Hn74YbRvX+Wi6P3338cZZ5xRqzSPmjuohBBCCCGEEHK4oR/U2Jx88sn4/vvvo35/9tln4XDU7ukublAJIYQQQgghJAbBBN5BDTbQd1Bj4fV640eKATeohBBCCCGEEBKDRFR6G+o7qIcCblAJIYQQQgghJAZ8xPfwwg0qIYQQQgghhMSAG9TDCzeoNZBq9yHlNzcYqXZdcr0ybEpry4Eo3TyoLivSnHo6VkhZfFVuXHUNAwBZTl2+X3V3ciCsP/tdHtYlxFPtpty3dItxIGSeK+XO052xZcJVNzw1nau2WUVIL0+F0rbSl1S5kD8vV+TupdsWmacqPV8h5P+9Tt2tgeo2pahCl9//X1lW5Htjb44WdkL6Lj0dpW1lnzltsdtIysWnuvXyORWZetV1AQA4lGOPQ88zxaWn01hxbXBCml526VJDRY6pgOKOSD7assefrh2XBMxzZZ9Jl0iqDWQ5TDdGlaJetSXTUYkURxBp9thuWwCgOGRK8IeE6LlTuMrJcumupFTUPnZI3ycC1Q1AjnA70dKluwg5oLi62hnItExXtSlZF4fFHJMt6qXOa1b2Deg2XibsXcZV5yA5PqT7CL08ehnUuUHmIW2m2G+Oyb2+5lpYkde09/ZpO7WwLKfeJmobZXt0FwtyzqlUll2HKI/bFdtupU2rc5WsV7pYb1RXVyd6i/R0hA2Uh00XG9sD2VpYqbIuSDcsalsCwgWR7rUDKXZ9Dam290pn3biZaeQqhddV1c4ZdsUliLBvta4y3CXmaWnf6nwXEuMs2x3b3Zp0K6W6lmnr1d1tyTV7XyAt8l3aqcSlhKcaens7lflVphPwxrY1OXcFxHWDau/ShuU1hh4m5gKlbYPClY1MtyJg2rtNzAWVwu3VT/ubRL5vd+nzZZt0c25tJObdxm7d9VqJ8l5dqU/vI+lGyqa413EJtzLZqWIe8VTU+B0AMpzmOJbuBuV81NJt1qWJWM/Va1gAKAqa89xOv94mJUHdxrcpNq+65Ksqr1m+TKc+B6ru0XzuurHxI0EwbIctbO38RI5XUnvYkoQQQgghhBASAwNIwM1Mw2P79u3429/+hjlz5sDv1/8ZVlZWhscee6xW6XKDSgghhBBCCCExqH7EN96nIfHtt9+iS5cuGDVqFP7whz+ga9euWLt2bSS8tLQU48ePr1Xa3KASQgghhBBCSAy4QY3moYcewpAhQ7Bv3z7s2LEDF1xwAc455xysXLnyoNPmO6iEEEIIIYQQEgOKJEWzYsUKTJ48GXa7HRkZGXj11VfRunVrnH/++fj888/RunXrWqfNDSohhBBCCCGExCCUgEhSqAGKJFVW6qJYDzzwAJxOJ/r164e333671ulyg1oDdhiwx3jVWVW7lGq7HruuTpbjMhV2pXKaPFfPQ1cPDCnqd/K/M6VBXUlNVWFr7NKV51KFcqKqWBil9GaYQ8Mr1FldNn0wqulKRUhZT1Wdr0woKPqUNgohtsKnLLts24qQfqwqxMp0pBKr2r77/GlaWKmixinPCwp1SLWeqiorAOR6dOVlVYVUKsAFLZQPU4XiZabL7JcmHr3v89zF2nELl3ncxFGihblFn/mVupUbnthhoj9V9V1AV7KW7ZXj1FUTXbaaFSqDMX5PFrctCLfN2g4BwGsz2zjDoY97h1CsVpVxZbpW+Uj1Y9XefWJsr61oqR3nKu0m5x85N6jzwQ4LxV+p6pkqxm+60g5q+9SEqvpcHoqtmBoP1S7lefHU1K3ilgXNMpULlWGptmqFqkrbyKOPZSsVUlket5hX0l1mulJFtonbnLOl2rOcz3MdZt9n2/X5Jyze9FHn/myHHlftz10uXeU8zaHP/eq8K5WgpS1FiKNMmygpdj9SflM29ip24YV1n1baFQVol/W4Um06npp1qTL2g0KFVg1bXarbt2w3Nd3SgG5Prby6wrequCxR20ReF7hEH3iVOVfOywFDv4RU1f+lMnuUcriYP2PFlWtFIBz7WsDKvgHdxt2inmp/ymuwdDG2G3tNe5KqwmVePa66YUl1yWsBvX9z3Ka9NfPo63JzZQ1v4tTDpE1nKsrVcmxWin5Rr9nUeQIA9oZ0Jf5MRS24NEVvW1VZWHqXUNWfK511Y+NHgmohpHhxGhInnXQSvv76a5x88sna7/fccw/C4TCuuuqqWqfd8Lb6hBBCCCGEEJIgfAc1mj/96U9YsmRJjWH33Xcfxo8fX+vHfLlBJYQQQgghhJAYGIYtoU9D4vrrr8ff/va3mOH3338/Nm3aVKu0uUElhBBCCCGEkBiEwvaEPg2NOXPm4McffwQAbNiwAZ999lmdpNvwWpIQQgghhBBCEsRI4PHehnYHFQCaN2+Ou+66CwBwxx134LjjjquTdLlBJYQQQgghhJAYGAAMI84nyTQXL16Miy66CC1atIDNZsNHH30UM+7NN98Mm82GF198Uft97969GDZsGDIzM5GdnY2RI0eitFQXvFq9ejXOOusseL1etGrVCs8880xU+rNmzUKnTp3g9XrRrVs3zJkzJ6E6nHLKKejVqxeuueYa9OrVCz169EjovHhwg0oIIYQQQgghMahW8Y33SYaysjJ0794dkydPtoz34Ycf4ptvvkGLFi2iwoYNG4a1a9eisLAQn376KRYvXowbb7wxEl5SUoJ+/fqhTZs2WLFiBZ599lmMGzcOb7zxRiTO119/jauuugojR47EypUrMXjwYAwePBhr1qyxLFefPn1w3nnn4eOPP8b06dPx8ccfR347WOhmpgbKw24Yv0lxy8Gmup+xkp3/LXJM1HRShYS5RHWNUh7WXSFI1wiqhP2vvmwtLMp9hCIvbyVJny5cAsh6piky5VKy3mvTjzXXMqJ91HTjKaGp8vbSvYbXrrvmsHLTI6XvNZc0QuJfdTshXcfYLSTzZXtJFzCa+5WwtesNtXzqeQDQSHE10dilu5mQbicy7GbdotwaWUywsdy/AEBYuBzJEG5mrPKQbaRK42tuBOrof2qloRQEQ84oF0VSkl8dH3KcSdRyyvqoNhTlekmMyUrDLJN0zSJdM+y0cBfjFPnsDqTHiGldPlnvDMWFgVeEyfZU5wMHZNtau5JSUds2ZBEvHrKtVdcIMkydL+XcKVHbobFbt+8U0UaqDduF7ck2UOcZ1W0ZADRWbDpXuGlS7RvQ3QFJG/KLdcxvxL4sUNctdRwAAPShqtUl2r6t632w+MMu2KvXcKVfZTnk/K+6WPFId0ViilfnCiu3GlXhZn9IG7FyQbNXuDrT3JeJcVXkz9bLpxRYzR/Q2yFq/RTzuJWLrIARu1/juZFS+9xqLoiy96huUVxQifZLEa6iVBd0cq5XbVy6GZT230SxcZcYy9K9jtomcpzLNTxHGUdyDVddPmVa2Degt6d0gxOQDaimI8ZCNsS4dqv9azFPiDZRx4IMO5oIhe1AHftBHTBgAAYMGGAZ59dff8Vtt92Gzz//HIMGDdLC1q1bh7lz5+Lbb7/FaaedBgB4+eWXMXDgQDz33HNo0aIFpk+fDr/fj7fffhtutxtdu3bFqlWr8MILL0Q2spMmTUL//v1x7733AgAef/xxFBYW4pVXXsGUKVNilm3hwoUAgCuuuAK33nor5s+fj5kzZybVBrHgHVRCCCGEEEIIiUHcx3t/+9Ql4XAY11xzDe6991507do1Knzp0qXIzs6ObE4BoG/fvrDb7Vi2bFkkztlnnw2327yhVVBQgPXr12Pfvn2ROH379tXSLigowNKlS+OW8d1330Vubi5uuOEGNGrUCO+++26t6irhHVRCCCGEEEIIiUEibmSqw0tKSrTfPR4PPB5PTadY8vTTT8PpdOL222+vMbyoqAhNmzbVfnM6ncjNzUVRUVEkTrt27bQ4zZo1i4Tl5OSgqKgo8psapzoNK0499VT069cPAPDkk09i586diVUuDryDSgghhBBCCCExSMYPaqtWrZCVlRX5TJgwIen8VqxYgUmTJmHatGmw2eqvOvBPP/2EHTt2AAB27dqFDRs21Em63KASQgghhBBCSAxCYVtCHwDYunUr9u/fH/k8+OCDSef35ZdfYufOnWjdujWcTiecTid++eUX3H333Wjbti0AIC8vL+qOZTAYxN69e5GXlxeJU72BrKb6OF6c6nArWrRoQTczhBBCCCGEEHI4qXrHNN4d1Kq4mZmZ2qc2j/dec801WL16NVatWhX5tGjRAvfeey8+//xzAEB+fj6Ki4uxYsWKyHkLFixAOBxG7969I3EWL16MQMAUwSosLETHjh2Rk5MTiTN//nwt/8LCQuTn58ct56FyM8N3UGugNOxB8DelvfJw7EEl1fgkqnKZleKvVHaTKmchC5U6ma56rseup2OlNCtRlf2sVPwAXZlXKkA6oKsD622ix1XrKdtE1lNV9pNhVkq9Mkyeq6n4SgVnCzW+UqG2aqXoKvshXVVxjlIojP0/JKnSatVPB0Kx+8FqjAN6+4Wi2s+pfE98bEK0n2xPn3JcqeRRGa6bx1xKQl74Qq4otcZkkONDtU27XU9XVd91CyVkv5yGLYoklSfTFSVVWRcruftUoa6t2ns829sfSo18PxCOrdYIAAELe5JzmZWdqtSVkrNEtq2KVOaUqErYUUrmbqGwaaEqLnHZY6utqu0l7VuuTVKdU8XKbmU6VvZuhVRpDUSlW5WWr47s+0DIg0DIen0Gosek2jeyz6PWcMSeby2Vb216Og5l3IXF2i9VXtW4ch2R41cdh1YqytHrp/X1iFVcTW07qs/19lTbXir1xrOLWMS7FrAKqxAeEVSkiq/antlCXdtqfpJ9Fq2YHlstXLVxuQ5b2bfsI6lcbXWdaqWYbqXE7Yth31VhMZOs9yTzDmqilJaWYuPGjZHjTZs2YdWqVcjNzUXr1q3RqFEjLb7L5UJeXh46duwIAOjcuTP69++PG264AVOmTEEgEMDo0aNx5ZVXRlzSDB06FOPHj8fIkSNx//33Y82aNZg0aRImTpwYSfeOO+7AOeecg+effx6DBg3CzJkzsXz5cs0VTU306dMHNpsN+/btw3/+8x/06NEDixYtgs1mw4IFC5JqCwnvoBJCCCGEEEJIDIwEP8mwfPlynHLKKTjllFMAAGPGjMEpp5yCRx99NOE0pk+fjk6dOuH888/HwIEDceaZZ2oby6ysLMybNw+bNm1Cz549cffdd+PRRx/VfKWeccYZmDFjBt544w10794d77//Pj766COcdNJJlnkvXLgQCxYsQIcOHfD666+jQ4cOkd8OFt5BJYQQQgghhJAYHIo7qOeeey6MJHzTbN68Oeq33NxczJgxw/K8k08+GV9++aVlnMsvvxyXX355wmWpRnUzs2rVKrz77ru44oorkk5HUus7qF9++SWuvvpq5Ofn49dffwUA/PWvf8WSJUsOulCEEEIIIYQQUi8I22DE+aCOXlM4mjj11FPx5z//GUCVm5nqu8EHS602qB988AEKCgqQkpKClStXwuerek9i//79kUISQgghhBBCyNFOlUhS/E9D48QTT4yILWVnZ6NDhw51km6tNqhPPPEEpkyZgr/85S9wucyXoX//+9/ju+++q5OCEUIIIYQQQsiRJhk/qA2NPXv2YNSoUejSpQsaN26M3Nxc7VMbavUO6vr163H22WdH/Z6VlYXi4uJaFYQQQgghhBBC6h2GreoTL04D5JprrsHGjRsxcuRINGvWDDbbwbdDrTaoeXl52LhxY8RRbDVLlizB8ccff9CFOtJUhDwIx5CoV6XJfYYeR0p/xzoPAMJ289hh0+XNpbR3RdgM94US7zJfSMqLxy5ftIy6mWepzSuji3Rj34gPRsmWq/U2YoZJrOXireupnmtVHplW0EL6vhI6TiG5XqbUTbat0x7bPYx0FSDbSEXWpVwZJ4GAtQsIK7cYUvreatyo7RXd7ok/oGElWa+6upBjurZUhl0wwq647gxq69LELp7z0dxzCBuuFO6WVHcM8dwmOJTDeG4x1LpEu6gwbTyeKyY1PDm3DsKeLMaVxGpukOiuOPR+sHKZIW3PpyyP0ibk3K+6fHLEcf/h0Mpg7V5DdcUj1wXVlYMMc4h6qi5qHKJNrNyBWPWv1bxflY9ZBtkGsVyB1ZULioqwG+Ea3MDFG9vBcOx5M2oeVKpfLtyMlUM/Vm0znp1qJPG4oOzXoEN1JRbbhUo81DZLZj4MhK3jWq0PVmtOMsj+DGgunoQ9aa539DCXsCe5hqvINdvKvV+UWxelzcLB2C6Q5HyU6tDdEVm5ObK6Xop3LWVF2ML1nzqP+UJH7wbOCFd94sVpiHz55ZdYsmQJunfvXmdp1urq64YbbsAdd9yBZcuWwWazYdu2bZg+fTruuece3HLLLXVWOEIIIYQQQgg5kvAR39h06tQJFRUVdZpmre6gPvDAAwiHwzj//PNRXl6Os88+Gx6PB/fccw9uu+22Oi0gIYQQQgghhBxRGqAIUiK8+uqreOCBB/Doo4/ipJNO0vSJACAzMzPpNGu1QbXZbHj44Ydx7733YuPGjSgtLUWXLl2Qnp5em+QIIYQQQgghpF5yKPygHitkZ2ejpKQE5513nva7YRiw2WwIhWI/dh6LWm1Qq3G73ejSpcvBJEEIIYQQQggh9ReKJMVk2LBhcLlcmDFjxuEXSbr00ksTTnT27Nm1KgwhhBBCCCGE1CsMxH/Et4E+ArxmzRqsXLkSHTt2rLM0E96gZmVlRb4bhoEPP/wQWVlZOO200wAAK1asQHFxcVIb2fpKwHDAHkNZT1VOlSp1Up3PSqVOVTUsDekquTJdK6VUK6SCXXT5zLQqopRlVQXGxGXJZJ2lGl4yyq6J5ynUYy1UfJPJ31KRVOQRtJiV/Ha9H6Tir6oIKNUCZdur4yaeAq2KrLeqLFzusFbxPRRIVU8rVEXAQB1J5AUNBxw12Hi0qnPiCodSrVnlgGLjcuxIBdZk0BSOhX1b2btErVt0+cRYV+YVfzjxh3Di2alU3I2ZTpw50Gkxd1nZnkRV4wxCzqV6OqrdWql0x0OqpIa08Re73lI1U+aZ4gggFlbK5nINUce8VI21mqviKZtW1zt4COzbqg2tVIplu8jxqda/VKj2WrVblB1Y2L8c66oaqkxHzqmucOxxp9Yl3vqezNxQV+t7MmubSrx1RVckFnkoZZfzmuz72q7Z0masKBNjSh1Dcq2Rc30y62tt2zoZVMXveOrf9RpuUGNy2mmnYevWrUdmgzp16tTI9/vvvx9//OMfMWXKFDh+kzIPhUK49dZba/UiLCGEEEIIIYTUS/iIb0xuu+023HHHHbj33nvRrVu3KJGkk08+Oek0a/UO6ttvv40lS5ZENqcA4HA4MGbMGJxxxhl49tlna5MsIYQQQgghhNQr6Ac1NldccQUAYMSIEZHfbDbb4RdJCgaD+PHHH6Nu5f74448Ihxto7xBCCCGEEEKOPXgHNSabNm2q8zRrtUG97rrrMHLkSPz888/o1asXAGDZsmV46qmncN1119VpAQkhhBBCCCHkSGEzqj7x4jRE2rRpU+dp1mqD+txzzyEvLw/PP/88tm/fDgBo3rw57r33Xtx99911WkBCCCGEEEIIOWJQJEnj448/xoABA6LeN43FnDlz0KdPH6SkpCQUv1ZyWna7Hffddx9+/fVXFBcXo7i4GL/++ivuu+8+7b1UQgghhBBCCDmqqX7EN96ngTBkyBAUFxcnHP/KK6+M3NRMhFrdQVU5FlV7Y7mgAHRZ9WiJemu3MyqesCkTHhay5Acj1R7WyqenE4xy+aIYknx1WI0qzpMuA1Sk7Hwybihilq3GcEX6Po77ikNBMnkGQ3r7Rbm6UOoStJCorzpO7B1vOYaipO9V10UhXc5euqhIVLI+nisJDZGkVR5hCzcRtSVk2BAybEmNM+lWRrqSUF0IhO3CPQQOzT/uVFcYcr6xsj0r9xCyTeS8obuZqX294rnJqO15YcVBuFM6CxdTazhsU4L0dGI7DYpGczsRtnZlk5TbGYvxZzV27Xa9LhUh8z/c8dwlqf1rNa/J9krGvUasuHJc1pZA2A77b+7aLN24WNiBLItsJ6d6bOFWBki8TSVRLp4s7FT2Rzhk0XdK38RbU+Q8Z0XYwp1OonN8dJj19ZBW/lquK0ByfWQPmem6HfpMIdd3l2L/8WxGL1/sNVyutT5Dv4Nlr6VSj3RzlQxW672abl25kjoihBF9rVxTnAaCYRi49tpr4fF44kcGUFlZmVT6tdo9tGvXDja58Cv897//rU2yhBBCCCGEEFK/4CO+GsOHD08q/rBhw5K6qVmrDeqdd96pHQcCAaxcuRJz587FvffeW5sk65TJkyfj2WefRVFREbp3746XX345IuZECCGEEEIIIQlDFV+NqVOnHtL0a7VBveOOO2r8ffLkyVi+fPlBFehgeffddzFmzBhMmTIFvXv3xosvvoiCggKsX78eTZs2PaJlI4QQQgghhBxdUMX38FL7B85rYMCAAfjggw/qMsmkeeGFF3DDDTfguuuuQ5cuXTBlyhSkpqbi7bffPqLlIoQQQgghhByFGAl+SJ1w0CJJKu+//z5yc3PrMsmk8Pv9WLFiBR588MHIb3a7HX379sXSpUuj4vt8Pvh8vshxSUnJYSknIeTwQBsn5NiF9k0IOVzYkMAd1MNSkoZBrTaop5xyiiaSZBgGioqKsGvXLrz66qt1Vrhk2b17N0KhEJo1a6b93qxZM/z4449R8SdMmIDx48dH/V6t8BkPqUwo1XgTVVyNh1QETBSpAmelWCgVK+1G4ip/IU1ltW4UiKPDYtdFKu5ZqltGKc0m/u8u7VyRRTLqstHKvIkrDYZjqEvHwyVUPXXVVpGnLbb6opUap5W6czyiVZFrHkfJqgzGsvHwbwq+8dSOVWTdYZdqx2Hlu2zv2tlwCNY2HAgrNizUNgNhqTKeWBmi7Sm2Gni8NNV2iKu+a2n/tbOvRJWBk41rRbz5yErRubZqpikOf4KlSy7P5NKR5VNsSWYRI26yZYll34Zhj5THav2MnosVmxZTgexXdT5IRmHZCit1bZmuZXsD1lfKSrXjrSm1VcVPzr6t5zmrdOsKq7nKCjnvSgVtdR6W64sjibZNsSejK66Up47WIsBaZTuUoFJ9XSl1HxH4DuphpVa7iUsuuUT7XHrppRg7dizWrFmDG2+8sa7LeMh48MEHsX///shn69atR7pIhJA6hDZOyLEL7ZsQctg4BI/4Ll68GBdddBFatGgBm82Gjz76SAsfN24cOnXqhLS0NOTk5KBv375YtmyZFmfv3r0Rhdzs7GyMHDkSpaWlWpzVq1fjrLPOgtfrRatWrfDMM89ElWXWrFno1KkTvF4vunXrhjlz5iRXmTqmVndQx40bV8fFqBsaN24Mh8OBHTt2aL/v2LEDeXl5UfE9Hk/C/nsIIUcftHFCjl1o34SQw4UtXPWJFycZysrK0L17d4wYMQKXXnppVHiHDh3wyiuv4Pjjj0dFRQUmTpyIfv36YePGjWjSpAmAKvct27dvR2FhIQKBAK677jrceOONmDFjBoCqVx/69euHvn37YsqUKfj+++8xYsQIZGdnR24qfv3117jqqqswYcIEXHjhhZgxYwYGDx6M7777DieddFKNZX/ppZcSruftt9+eXMOglhtUh8OB7du3R6ni7tmzB02bNkUolLgj8rrE7XajZ8+emD9/PgYPHgwACIfDmD9/PkaPHn1EykQIIYQQQgg5ijkEflAHDBiAAQMGxAwfOnSodvzCCy/grbfewurVq3H++edj3bp1mDt3Lr799lucdtppAICXX34ZAwcOxHPPPYcWLVpg+vTp8Pv9ePvtt+F2u9G1a1esWrUKL7zwQmSDOmnSJPTv3z/iKvTxxx9HYWEhXnnlFUyZMqXGsk2cODGhOtpstsO3QTWMmnvA5/PB7XbXJsk6Y8yYMRg+fDhOO+009OrVCy+++CLKyspw3XXXHdFyEUIIIYQQQo5CDsEGNRn8fj/eeOMNZGVloXv37gCApUuXIjs7O7I5BYC+ffvCbrdj2bJlGDJkCJYuXYqzzz5b258VFBTg6aefxr59+5CTk4OlS5dizJgxWn4FBQVRjxyrbNq0qW4rKEhqg1p9O9dms+HNN99Eenp6JCwUCmHx4sXo1KlT3ZYwSa644grs2rULjz76KIqKitCjRw/MnTs3SjiJEEIIIYQQQuKRjB9UqSh+MK8jfPrpp7jyyitRXl6O5s2bo7CwEI0bNwYAFBUVRT3N6nQ6kZubi6Kiokicdu3aaXGq90RFRUXIyclBUVFRjQKz1WkcCZLaoFbfzjUMA1OmTIHDYap2ud1utG3bNuat4MPJ6NGj+UgvIYQQQggh5OBJQsW3VatW2s9jx46ttX5Pnz59sGrVKuzevRt/+ctf8Mc//hHLli2L2pgeaf73v//h448/xpYtW+D368ryL7zwQtLpJbVBrb6d26dPH8yePRs5OTlJZ3i0YeWaJZ77F48iC+4Sb057HLElwwPiJetQEq5FknHzotdNP8+vlMEp3I6ELWTLg9IlhXR1YSX5rzwbkYyUfDBsLVGvpuUU/eAW/eDUXIUISfhayttLWfWDcceiplXbto0Ki3KPpMd1aP2ix3XZzWOPLWCZjlZW0SbSnQoMM91kXcskQrUbioB0M2PRhtLNjMumv2uv2rsjSinBzCdgJO7+RdZdjiU1LVkXK1u0cqdj5VamKh3z2B/HlY2V7UXnWzvXUW7RD2o+buGaQc67ql04hdugKLdCCZKMe7Eo9xoWLn5q6+6jqkyqDQv3SIZe3kTXEFlPeZ66Pkb1Xwy3M8ZBuCmLRW1dlsj6OaNc0ihrhThXuhKSrrxUrNy0SdvTXMPJthLHVmuZ1ViS64pq4/FcRbkVG5L2JLGqi5qPnDdkurVds61c+kS7PUt8bY12XVQ3rthUnDbrtlXXpui1SCeUhM2p603Q4rr0qHYlY0EyIklbt25FZmZm5PeDEXNLS0tD+/bt0b59e5x++uk48cQT8dZbb+HBBx9EXl4edu7cqcUPBoPYu3dvRBw2Ly+vRvHY6jCrODUJzNbE/PnzcfHFF+P444/Hjz/+iJNOOgmbN2+GYRg49dRTa1XvWq0GCxcubBCbU0IIIYQQQkgDJwk3M5mZmdqnLtXGw+EwfD4fACA/Px/FxcVYsWJFJHzBggUIh8Po3bt3JM7ixYsRCJg3EQoLC9GxY8fIXi4/Px/z58/X8iksLER+fn5CZXrwwQdxzz334Pvvv4fX68UHH3yArVu34pxzzsHll19eq3omfAd1zJgxePzxx5GWlhb1Iq2kNrdyCSGEEEIIIaTekcA7qMk+eFNaWoqNGzdGjjdt2oRVq1YhNzcXjRo1wpNPPomLL74YzZs3x+7duzF58mT8+uuvkU1f586d0b9/f9xwww2YMmUKAoEARo8ejSuvvBItWrQAUKUEPH78eIwcORL3338/1qxZg0mTJmkqvHfccQfOOeccPP/88xg0aBBmzpyJ5cuX44033kioHuvWrcPf//53AFXvwFZUVCA9PR2PPfYYLrnkEtxyyy3JNQyS2KCuXLkysvv+7rvvYLMdm7fwCSGEEEIIISTCIVDxXb58Ofr06RM5rr4BOHz4cEyZMgU//vgj3nnnHezevRuNGjXC7373O3z55Zfo2rVr5Jzp06dj9OjROP/882G323HZZZdpPkqzsrIwb948jBo1Cj179kTjxo3x6KOPRlzMAMAZZ5yBGTNm4JFHHsFDDz2EE088ER999FFMH6iStLS0yHunzZs3x88//xwp4+7du5NrlN9IeIO6cOHCyPcvvviiVpkRQgghhBBCyNFEMu+gJsq5554b03UnAMyePTtuGrm5uZgxY4ZlnJNPPhlffvmlZZzLL7+81o/jnn766ViyZAk6d+6MgQMH4u6778b333+P2bNn4/TTT69VmrV6B3XEiBE4cOBA1O9lZWUYMWJErQpCCCGEEEIIIeTo4YUXXoi88zp+/Hicf/75ePfdd9G2bVu89dZbtUozKRXfat555x089dRTyMjI0H6vqKjA//3f/+Htt9+uVWHqCw6bEVFbi1YbNY/9Yb35pJpbmtMX+S4VP1WkqmeUsqByKJUlo1Tr7ImrEgaV4yhFQDWeVNizUM2VcStDehv5Q7EVAb1OU2HTa6GuG49kVBtTHLrybIrdPJaKn1bKeQ7o5VNVaaMVAWMrs1qpRlelq7S1aBNVxVUqMfrEWG3iKY18Lw26YYU6bjxSFVU5znBUxjwPsFbADojyqaqJAbUuQim4tthsYdhtYYRFvkGLsSP7P90Ruy2kMqLar3KshBFbDdEu4sKmp6vOK2G79dgJ22KrhVorcce26YqgS48b0utiU+zN69T7TrV3QKh4i3nOSkVT2oyq8qnOwQCQ7tSl71XlaZdQB7VSvo4qg1I+q74H9LlBKmHaRVtrqpkWqt0VId2Gm3l0H3ylIVOgQ5ZHVeIGADvMfpHzZTLrmK7KnOD/wi3U7ZPBYQ/Baa/KMxCK3d6yi61Una3qHpW/HL8Wir92da2Qa39sMfCosCi7VY7tFqq0cjz4hQ2XBcyxFRBjUNpMisu0p1Rh77Vew4Xpy3RUG5frUzKquVbrsBzbKlbXG8lipaCtruE5rnItrDKsz8PaeiOKF60+H4gZJsujq8brbRKyUEHWVPrtdWPjR4RD8IjvscLxxx8f+Z6WllYnLkeT2qCWlJTAMAwYhoEDBw7A6/VGwkKhEObMmVPv/PIQQgghhBBCSG2xJSCSVEeehAiS3KBmZ2fDZrPBZrOhQ4cOUeE2mw3jx4+vs8IRQgghhBBCyBHFQPRTDTXFaSDk5ubip59+QuPGjZGTk2Mpnrt3796k009qg7pw4UIYhoHzzjsPH3zwAXJzcyNhbrcbbdq0icgaE0IIIYQQQsjRDu+g6kycODHyqufEiRPr3LtLUhvUc845B0CVn55WrVrBbq+VxhIhhBBCCCGEHB3wHVSN4cOHR75fe+21dZ5+rUSS2rRpAwAoLy/Hli1bIr5vqjn55JMPvmSEEEIIIYQQcoThHdTYOBwObN++PUqHaM+ePWjatClCocRF5qqp1QZ1165duO666/DPf/6zxvDaFKQ+ke6ohMdRVYdy6OqIgVBsNTep+qcqykl1tIqwma5UZ5So6UiVumRUFaWCYUBRjJQqr+pxZSi2QhygKwJK1UephOlUFCNlOpqKp02eF7ueMq7fZqEmaZEnoCsCZjl1pTyvTVW3jK1QC+gqtVZKeIBQvxOShVaKoCFI1UYz3XLRZ3KMFQdSIt+lOu1+JQwAchXFQNnWqQ6zvVLtumKq166rOFqpoka1CdSxadal0lU3CoDpDh88jnBU31QINURVtdLttFZ1dihjQqpdWqlAWimlxlMODdhjqypKheoKZUxI1ddyCyVnWT63YothKRF5ELgdsevqhpKntGE55yjHLmGnmY4K7Vi1cdnWqtqytLVolc/YS2mUYrWqhCnVq0V7quNIlkGdo+X8vcufrh2r60ZxIFULy3Tq6tspDvMfztKGVcVPdT6sCas5ULZJdXils25UuqvtW1IRksf6uLdaa+Wxak+yfnJ9SLEnZtNS7dgnVPA1Ffc4Su3+sIUCtIXyrLTDoGHW2xayvvq2WmulGq/aRm6bVJJ2KPGsPReo/ZLl1O071a7fPFGxUpK3UqSOR7y5IlGirt+UPtzp1z1opDv0tbc4mBb5Lu071aG3SaoyHr1CJd8uvEIkOifKMLUudbWGHxHCiP8OapJ+UI8VYvly9fl8cLutPUXEolYb1DvvvBPFxcVYtmwZzj33XHz44YfYsWMHnnjiCTz//PO1KgghhBBCCCGE1Dd4BzWal156CUCVSO6bb76J9HTzn6OhUAiLFy9Gp06dapV2rTaoCxYswD/+8Q+cdtppsNvtaNOmDS644AJkZmZiwoQJGDRoUK0KQwghhBBCCCH1Cr6DGsXEiRMBVN1BnTJlChwO5akztxtt27attU/UWm1Qy8rKIs8Z5+TkYNeuXejQoQO6deuG7777rlYFIYQQQgghhJB6BzeoUWzatAkA0KdPH8yePRs5OTl1lnatZHg7duyI9evXAwC6d++O119/Hb/++iumTJmC5s2b11nhCCGEEEIIIeRIUv2Ib7xPQ2ThwoV1ujkFankH9Y477sD27dsBAGPHjkX//v3xt7/9DW63G++8806dFpAQQgghhBBCjhS2cNUnXpyGSCgUwrRp0zB//nzs3LkT4bDeEAsWLEg6zVptUK+++urI9549e+KXX37Bjz/+iNatW6Nx48a1SZIQQgghhBBC6h98xDcmd9xxB6ZNm4ZBgwbhpJNOgs128Ar/CW9Qx4wZk3CiL7zwQq0KU1/IdpbD66xqGitJ+IooFyp6XFWiX6ajSXLb9Y60cjsj00kV8uIOpUyxpPyr0d0d6HmWK25wKoS8vpSzdyjPNEhXIgGXcIWiSt8bsZ8wd4p/Q8m2VfMMCRl3pyif6kKjUsj2lwk3A5mGKcku3ShkCBcVKtIdjCqzHk9mXnVREe1uRT/Xobniie3qptyh12t/UHcdcyDojXyX7oekW6EKh3nsMeRYMMMy7ELOXkj8Z9jN9nOIsks3HX7VZU7YY5bFWTcS9dmucnhdzmh3RiGPdqyOdelmQtbPZY9dNtU9lXQlYUfsecMj3Hw4hH1ZufKoFC5zUu1mXUotXGhI+3YJ21NtPCDzFGPHyn2N6nIKANxKGaT9q8h5wy/Kq5ZBHbtV5dXHujqfquMT0PtJnucXS6cLqguqxF1xBGyx3YgAgMMRez5XbU/ad4li34Befqs+iYfaXh7hxihNuJmyK/4W5JiP5Wqrruw7R1nD5VyjldHCxZN03WF1LSBtRqKeK918WKUbclis2Ya1mxn1uCLKVZyZrrRvt5gb1PEq85D2rq7vcs2Ot6Zr6Shx49m7VdtL12dqW8v2OwDTZsJhYYfSRY4yB8rxFeUaTnXDJ+bvKFdsqqsyUb5SxaZLhL1L1DW9VKxpVshrimy77movy2Eeu8W4VddsuRaVqWu44yh2M8MNakxmzpyJ9957DwMHDqyzNBPeoK5cuTKheHWxayaEEEIIIYSQ+oANUe58a4zTEHG73Wjfvn2dppnwBnXhwoV1mjEhhBBCCCGE1Hf4Dmps7r77bkyaNAmvvPJKnd2orNU7qIQQQgghhBDSIOAjvjFZsmQJFi5ciH/+85/o2rUrXC798f/Zs2cnnSY3qIQQQgghhBBiRQPdgMYjOzsbQ4YMqdM0uUElhBBCCCGEkBgk4ue0ofpBnTp1ap2nyQ1qDdgRhuM3BUKpoumxm7etpTKhRFXGtdv1Uasq+UkVPam+qarURSvo6g+8W6nUSaVeVWnWAT0dVaFUqpdKVVpVCVGm4zP0upQqCpJlQV1dTlXrC8d51dyuqdnqbRuWaoGqIqDoM79Q9Q2EzXCpmqkilfoOhHXVTFVhU6o0pjt0tVtVPdQv1GxlH2rqi0JlWB1jUo1P9n2FzSzfLl8GrJAKkHq6ZnmkrWQYlTJ6TKQSs6rqq7a1bPeDRaooyvbWFaqFarKFSrZsC135VtilVFFWxo7sR0SpgZt5Ws0bgG7vKQ45r5ljSc5rTpGnOp5lHlI9VkWqb0pFS9WOpU1r7SCaRNdEBfyKYvKBgF6ebJeu1Kurosa2vf2hVC3sQEhPV1MDlvYt1b+VYWM3xNxlMbdKVEXngEPYt1An3xvQy6/iF3NDccBUCK0Ix7Z9OY/JeU6dn+TYBGpei0Jx1tTaoCkPx1nLXIqytFxb5bHaz157zarEsfKJRZS9C9Q5x2quAoBUh6oGHowZ12PT5wKpMqzWRVX3B/SxAujq8InWWZYHAMLKcTgslcLlmmjmkyrmtSxhe+p8XymuTcoVtdtiC3sBgEynmW6WU89Dzv1S0dYqrlfpC2kLjiTWkBS7mo7eD3KOVlV+K516m0ibVlV85fWHSmUdr9P1Bb6Dak0wGMQXX3yBn3/+GUOHDkVGRga2bduGzMxMpKenJ50eN6iEEEIIIYQQEgu+gxqTX375Bf3798eWLVvg8/lwwQUXICMjA08//TR8Ph+mTJmSdJrH5r85CCGEEEIIIaQOqH7EN96nIXLHHXfgtNNOw759+5CSYj5ZMWTIEMyfP79WafIOKiGEEEIIIYTEgndQY/Lll1/i66+/htutvwbQtm1b/Prrr7VKk3dQCSGEEEIIISQG1e+gxvskw+LFi3HRRRehRYsWsNls+OijjyJhgUAA999/P7p164a0tDS0aNECf/rTn7Bt2zYtjb1792LYsGHIzMxEdnY2Ro4cidLSUi3O6tWrcdZZZ8Hr9aJVq1Z45plnosoya9YsdOrUCV6vF926dcOcOXMSrkc4HEYoFIr6/X//+x8yMqx1TmLBDSohhBBCCCGExMJI8JMEZWVl6N69OyZPnhwVVl5eju+++w7/7//9P3z33XeYPXs21q9fj4svvliLN2zYMKxduxaFhYX49NNPsXjxYtx4442R8JKSEvTr1w9t2rTBihUr8Oyzz2LcuHF44403InG+/vprXHXVVRg5ciRWrlyJwYMHY/DgwVizZk1C9ejXrx9efPHFyLHNZkNpaSnGjh2LgQMHJtcov8FHfAkhhBBCCCEkBjbDgM2w3oHGC5cMGDAAAwYMqDEsKysLhYWF2m+vvPIKevXqhS1btqB169ZYt24d5s6di2+//RannXYaAODll1/GwIED8dxzz6FFixaYPn06/H4/3n77bbjdbnTt2hWrVq3CCy+8ENnITpo0Cf3798e9994LAHj88cdRWFiIV155JSGBo+effx4FBQXo0qULKisrMXToUGzYsAGNGzfG3//+96TapBpuUGvg54qm8Diq5LalRLgq2R1PRr1cceUh5c8zFflzKdcvj0sVlwalwr3BTr9+61wtk3TjUiJcLlQqLla8Dl0yvInXfDwgw6mXJ0qyXvp9UAgIifj9iiz9Xp8u5a66h3A79EcFZPmcijuAoMhDumZQ3cyku3xaWIZTP1br5hOuEXYZZluXCqn2Hf5M7bhMcacj82iTskc7bubaH/nuFtLtUtZ/f9BsM+niQ0W2QVDI0KvHchzL9lT7pdSmj6kDDrMdrFziyLhS4n+naL9Y7kr8pX4Ay2oMS4aNZU3htrkREGWU7g5UVyhO4Q5Ktr/qukV10wTo7g1Sbfp4kO2mji3ZLkHhEkQtwwFh7+VBfeyoZLt11wjZLtN9QDz7Vt1tRLl4MqRLCLOfSwOxywPoNm7lXiXevKueK/tMujNS51Np76rtbavM1sJ2+XTJfLeST6vUfVpYK09sV2ByPpfuaxK1cdkmVi6ygrKPAs6Y4dIVUJnyfpF0RyTbT3WZsi+QpoXtC+pzf3X5q+z74FlT2hxuVJVVHYNO6YJMjA/pfkkLEzat9mO0ix057sy2kvZerrgEku6BpJsf1eWXdJEmSXWa5VXtG7B2IyfLrrt40ssn1xV1zikP6mWXbS/XeBV1PMv1SKKmWy5cokl7Uu1C2t52X1bk+6/lWVqYLENeyoHI97ap+nou3UypLpbkei7bT0W6/5HuCFWk/avrmrwOLBdjTF3f5XVWmVec61Wua+x6PVU3XftDuvshNU9fRWwbq/fUg3dQ9+/fD5vNhuzsbADA0qVLkZ2dHdmcAkDfvn1ht9uxbNkyDBkyBEuXLsXZZ5+tvR9aUFCAp59+Gvv27UNOTg6WLl2KMWPGaHkVFBRojxxb0bJlS/znP//Bu+++i//85z8oLS3FyJEjMWzYME00KRm4QSWEEEIIIYSQGCSi0lsdXlJSov3u8Xjg8XhqOCNxKisrcf/99+Oqq65CZmbVP6+LiorQtGlTLZ7T6URubi6Kiooicdq1a6fFadasWSQsJycHRUVFkd/UONVpxGPx4sU444wzMGzYMAwbNizyezAYxOLFi3H22WcnV1nwHVRCCCGEEEIIiUkyIkmtWrVCVlZW5DNhwoSDyjsQCOCPf/wjDMPAa6+9Vge1qVv69OmDvXv3Rv2+f/9+9OnTp1Zp8g4qIYQQQgghhMQiiUd8t27dGrnLCeCg7p5Wb05/+eUXLFiwQEs3Ly8PO3fu1OIHg0Hs3bsXeXl5kTg7duzQ4lQfx4tTHR4PwzBgs0W/WrJnzx6kpaXVcEZ8uEElhBBCCCGEkBgk84hvZmamtpGsLdWb0w0bNmDhwoVo1KiRFp6fn4/i4mKsWLECPXv2BAAsWLAA4XAYvXv3jsR5+OGHEQgE4HJVvRNdWFiIjh07IicnJxJn/vz5uPPOOyNpFxYWIj8/37J8l156aVW9bTZce+212kY8FAph9erVOOOMM2pVd25QCSGEEEIIISQWh0AkqbS0FBs3bowcb9q0CatWrUJubi6aN2+OP/zhD/juu+/w6aefIhQKRd4Jzc3NhdvtRufOndG/f3/ccMMNmDJlCgKBAEaPHo0rr7wSLVq0AAAMHToU48ePx8iRI3H//fdjzZo1mDRpEiZOnBjJ94477sA555yD559/HoMGDcLMmTOxfPlyzRVNTWRlVQmKGYaBjIwMTRDJ7Xbj9NNPxw033JBco/wGN6g1sGT78XCkVv0XIBjSVdacivKc0yHVLfWR6VCUZr1OXbmssddU1WviPaCFSVW9YkX59n9l2VrYrjJdTbLSZyrGSTsxwkLpMWS+guxw6nXZmmLmk+nR1dpSXHpdUpW6SaU+v1Ad3VepqPiW60qOgaAZV7atxOc3h27QL5TwxFMGaWmmamqLrP1amFso46kqilJBsyxk/mdon18v+64K/RGGCr/ZD5levf2ilUXNfpB5bvPpaoJq/+8p1/MMKv2Z6tb7KEP0ocreCr0uFT5dCTGkKBgaQi3Q4zLHamaKXtZflTEE6AqBe326qtuvxfq55QdMhUW7MjbD5bHrkQxfbj0ejlQvwiG9Pi6X3jfpXnPsyDHpEYqHLmVuSBX2nukyy53h0usglXlVhdjtpfp/YIvL9HYLBGKrQNrkfKS0Y5pXVyTN8iqq4i6hQCzq6VWUTsPC2Er8ujLmbsUuyv36uJI47GZ51bkA0O09JMIcTr3PstLMurTI0IUq0hyxVWKlEuZev1n2/5Xp41POXWrZ5ZwnlcxV9d2dPl2FfVuZ3t/7FNv0i75O8Zj9kJuiq7TKeW2/0i8HKvVHzSp8uqpnSM1HjCG32xwLm9NytbBcr14GtZ67yvV1ap8Yx9XzSqiu7HvDibCnVNXZ8Jn1caSKeTFTV7POSjHzTxE2LNvUSnVazvEqUn1XnQt3lertVFYmVGgDisKyWLOdbj3PjFSzLo1Ty7SwXI/ZV16hXCyvP9S6VQiV3N2VenlVe/cF9XrK+UhViJZxK9W5QlzIeNx6+Rqnmx4H3HJOForEJYq6rHpdBQCbDpjjuahEqKeHdBsuTTdtSM6B0uuB6rmgqFy3dzmP+BVFbVnPJmlmPTPduhK8X1ynqva+r0zPo7xct391TDlc+phKS9PrkptqjpsscU2hznvFlXrbquULletlP6owDNjCcXagSbqZWb58ufaOZrWS7vDhwzFu3Dh8/PHHAIAePXpo5y1cuBDnnnsuAGD69OkYPXo0zj//fNjtdlx22WV46aWXInGzsrIwb948jBo1Cj179kTjxo3x6KOPar5SzzjjDMyYMQOPPPIIHnroIZx44on46KOPcNJJJ1mWf+rUqQCAtm3b4p577qn147w1wQ0qIYQQQgghhMQgmUd8E+Xcc8+FYbGptQqrJjc3FzNmzLCMc/LJJ+PLL7+0jHP55Zfj8ssvj5tfTYwdOxYAsGvXLqxfvx4A0LFjRzRp0qRW6QFU8SWEEEIIIYSQ2BgJfhog5eXlGDFiBJo3b46zzz4bZ599Nlq0aIGRI0eivLw8fgI1wA0qIYQQQgghhMQgGTczDY277roLixYtwieffILi4mIUFxfjH//4BxYtWoS77767VmnyEV9CCCGEEEIIiUEiG9CGukH94IMP8P7770feiwWAgQMHIiUlBX/84x9r5buVG1RCCCGEEEIIiYVhxBdBSlIk6VihvLwczZo1i/q9adOmfMSXEEIIIYQQQuqaapGkeJ+GSH5+PsaOHYvKSlPduaKiAuPHj4/rSzUWvINaA+U/5sDurZLpdghF7KDV4BPuTRTvIQi79RM3ZZjPAdgydJl3KRcfqDS7yb5Hdwng3aVn6lZU80N6VASF+rNNURsPOfTyFTvMyPucepjhEc8wKMcOUXbpAkJ1UxIW0u3qP54CwqVHSLrT2GdWzlUs3Djo6uwozzQl139qJtxg5OqNkuY23VBUBnRJ/UpFAr5SuMyQ7kpUVDcyAPCrK1s7PhAwy7Tbp5dny74c7bh0lxnu2qubr13xoFGWqvfZ9iy9UWyqnHypno6rRLjxUNTkZS1VDzUHMvS+/jVNL7tNccVhlOrt59ml55mxz/weVsZxyBe7nZPB/kM67B4vnGKsSJspVo4NmbVd2IWj5u8AEPYq7Z0i+kLYXrjC7A/3Lr1vvHv0dFUPRiHdewD82fpxMM3MZ69Hz3OvS3Gj4tZtzyZcD7g8Zvkdwk6lG6Kw4tpKhslzVTcUleV6R9j2xLZ3eUGwO9cclMV5uouFnVm6WwzVVVBlUB+TZYr7FSvXDIA+7xWJQRUUbmbKlXy279fdWZTv0u3ftcfsf7kW7Vemst2N9DwdafqaElZcrdj36/V07xOullTPK+Jf2EGlOXeIttyWKtYFpWMcUXOMnmf1ka2ybi5JMv7jgeM3h/Eu0zsHfFl6+uWNdHcYB1S7iGPv4dgenqLnBpcRM8xWaTayZ4+eaPpuPVl1DATEeu7Tp1vsyTE7a0+aPs7syniVrkWcYs12Kcd22QbSdZ0y1qXrHWnvfmX9Lz2gr8u2Xaa9uQ7oeVQKb1X/bWo2xO7G+phUXdBISnx6nsUlZnsFxfpkE/XcHYrtek11RQgAe0vNdMt2x7ZvAFA91JTJtSjXnKMdWbq7LHnTLqSuITv1uqSINUTNU65/vizdPrZkm2UICXu3KddA9goxRytNEq6sG1dSR4RD4Af1WGHSpEkoKChAy5Yt0b17dwDAf/7zH3i9Xnz++ee1SvOouYPatm1b2Gw27fPUU09pcVavXo2zzjoLXq8XrVq1wjPPPHOESksIIYQQQgg5FrCFjYQ+DZGTTjoJGzZswIQJE9CjRw/06NEDTz31FDZs2ICuXbvWKs2j6g7qY489hhtuuCFynJFhOj0uKSlBv3790LdvX0yZMgXff/89RowYgezsbM0ZLSGEEEIIIYQkyqHwg3oskZqaqu3RDpajaoOakZGBvLy8GsOmT58Ov9+Pt99+G263G127dsWqVavwwgsvcINKCCGEEEIIqR18xNeS9evX4+WXX8a6desAAJ07d8bo0aPRqVOnWqV31DziCwBPPfUUGjVqhFNOOQXPPvssgkHzvZulS5fi7LPPhtttPkRfUFCA9evXY9++fTUlRwghhBBCCCGWUCQpNh988AFOOukkrFixAt27d0f37t3x3XffoVu3bvjggw9qleZRcwf19ttvx6mnnorc3Fx8/fXXePDBB7F9+3a88MILAICioiK0a9dOO6da8rioqAg5OTlRafp8Pvh8pupASUnJIawBIeRwQxsn5NiF9k0IOWyEjapPvDgNkPvuuw8PPvggHnvsMe33sWPH4r777sNll12WdJpHdIP6wAMP4Omnn7aMs27dOnTq1AljxoyJ/HbyySfD7XbjpptuwoQJE+DxeCxSiM2ECRMwfvz4qN9zfjTg+E1111UqFO585uBzlunKiXa/HjfsNFXNAlm6klpFI1OtrzJHV5ML6YfwKsp93r364E/ZrZfBWWbKpYU8+g3yQLquEBjymOWT//VRX/Q27LpKXdCrpxNIN4eRPwN6XKE0qCq/hYWSKFJ09TsVQ6joqQqLsuyOCv3YHjQj+4XU6d59umzdHiVdR6VQHVWObaKoNqF+F1BUmuUl0zabrqi4w2422t4Duuqof5euopeyw2x7r4XCYzBFL3sgUx9/ajNIdVB3sX7srFDGgkOkq4gmBoX6b9ipH6vqys4yPQ85rt0HlHGi2FEwkJwX7Fg2nr0xDKcrDIfPejGxhRR7rxCqhWIhUu0kmKLbnj9TsfdsoQgr7N2uCLCm7NHz8O6R9m4eh916e/uFYmkgzSxfyCUUtB3mcVioZAb1Iaj1eSBFL1/Ia6H4Le3bK9SMVZVnYe+qDcux4xIu1hyKgqSvQp+AtqeJyih52v1CmbdCyVMXxYVdrJyBbLNuu8SEpKoBA0Clz2xg/1698z07hGqzYuOuMtHWyvztKxF9nS5Uc5WmdokJSdqeqzy2vfszlDVtv95eYWds5U5XVJ+JcfJbsiF/chd3sew7Y0sITldVAZzlZkFSU8Qa+IuY4wPKePAJexdFC7sVRXrRTmrfAIBfWXuD+hSvPRLoLRbr+y5p7+ZADKXofVzZSD/2ZZr9EfLqYzCk2Licf2T5fIpNa2rEqEHR32u2tSdNV5r1iAYMqkq4QhXbVWa2X8pOPQuHEIGt3GdWpnxvlha2KUNckCjYhSK8s9Qsg0vYe1jYu19RrN0lvBHY7HqbBErM+d6zU0/II9Zw1U6kErxfWV/9mfo8JhwFwKU0vWevHpa6Uy+fp1i5ZvTqCVVmi3Vsn7pOxPaeIPtInQtC/rpR4j8S2AzAFucSpKHeQd2+fTv+9Kc/Rf1+9dVX49lnn61Vmkf0Ed+7774b69ats/wcf/zxNZ7bu3dvBINBbN68GQCQl5eHHTt2aHGqj2O9t/rggw9i//79kc/WrVvrrnKEkCMObZyQYxfaNyHksGEYiX0aIOeeey6+/PLLqN+XLFmCs846q1ZpHtE7qE2aNEGTJk1qde6qVatgt9vRtGlTAFVOYh9++GEEAgG4XFX/USssLETHjh1rfLwXADweT63vvhJC6j+0cUKOXWjfhJDDBVV8Y3PxxRfj/vvvx4oVK3D66acDAL755hvMmjUL48ePx8cff6zFTYSj4h3UpUuXYtmyZejTpw8yMjKwdOlS3HXXXbj66qsjm8+hQ4di/PjxGDlyJO6//36sWbMGkyZNwsSJE49w6QkhhBBCCCFHLVTxjcmtt94KAHj11Vfx6quv1hgGADabDaFQ7Nf5VI6KDarH48HMmTMxbtw4+Hw+tGvXDnfddZf2XmpWVhbmzZuHUaNGoWfPnmjcuDEeffRRupghhBBCCCGE1BpbyIAtzi1SVbeiIREOJ6cPkghHxQb11FNPxTfffBM33sknn1zjM9CEEEIIIYQQUhtshgFbnHdM44WTxDmq/KASQgghhBBCyGHFSPDTQFm0aBEuuugitG/fHu3bt8fFF198UDcNj4o7qIebzJ/L4XRW3a62V+p647ZKU0vbVib8G1QKfx0ppn67s7Euf24Lm1ruDr90z6Eno7nnEK4u7AHdGlTXF65SveyefXr51LrYy4QueIVyLG/dp+oS56FGpt+JymZ6WHkTvW4+RbbcrzcJgqmKhLlbbwQpTG4PmL9IiXVDuMlQ3c6klQq3Aj55rLoVke4XzOfmpdS4KukPAKUtzOOysN4muwN6m6juNcKleuFV6XtAd0FiiHGidpNd904A1wH92CmGroqUt1fdk8iOUNvBvV8Pk+5rVNcSrlL9HQTXAf3YHjCPNfctQZFoLUnfWgmnE7D7REMFhX1VKnr9B4SvjKA41226cjBydVdCrkamvTvL9Y6T0v6qCqAcg9Le7YrbHWep7tbBvUvMDcp7H7Zg7Mdxwin6GAxk6+O3oqkZXpkj3BBk6AMkmG6GB1OFeyqvNFSzvLaAcDOjuCaQ9i3d4qiuGtzCpYo9KF2hKG0thpazIvZ7MtL9QlkLs24Vwt5LMvT+NpQyOCqt/0ese8XS20Rz41KqnyddbakILxgIefV0wy7lWF5sKceybaXLJtXeVfdnAOCI4S4qGPTX+HuyePf64fzN7Y1NyctVoq+Jdr9wFbdfmRjLLRoRABRxJiNNuI4SbkD82ebcEEjT7UCdb+X67qgU7VZhltdxQNi7cMcCxfWNIVwAhRQb92frBmRl09J9WUi40woqrm/8qXq6Prfoc8WVlL0itssSuR5J916pSr29+/TyGQ6x1irN6ayMPZeqrs0AoDJHLnyKyxfhY85wCfdEPsWdjjB36YZPNXG5hquuW1LiLINqzeS1il9cq2gukaS7QXHsUdwgOYQrHkdlWAkTa0/QPA4GxIlHE4mo9DbQO6h/+9vfcN111+HSSy/F7bffDgD46quvcP7552PatGkYOnRo0mlyg0oIIYQQQgghMbCFjah/kNQUpyHy5JNP4plnnsFdd90V+e3222/HCy+8gMcff7xWG1Q+4ksIIYQQQgghMbCFE/s0RP773//ioosuivr94osvxqZNm2qVJjeohBBCCCGEEBKL6kd8430aIK1atcL8+fOjfv/Xv/6FVq1a1SpNPuJLCCGEEEIIIbGgH9SY3H333bj99tuxatUqnHHGGQCq3kGdNm0aJk2aVKs0uUElhBBCCCGEkBjQzUxsbrnlFuTl5eH555/He++9BwDo3Lkz3n33XVxyySW1SpMb1BpwHKiEo1pRUj5PrirjZWdoQYZTl6UNKyqVwTS9qVWVOLtfqsnpWarPtEsnwFIVLuwyf5DPbxviXJsawSFiq8dSxbdCV/x17DcV7dweoVDq1tM1bGq9Rfkcqlqs1O3V0dpEqN1JdT73AUU9VqjFuvfrhbCXm42vqp4CANT2c+jlc6d7tWObYao4Gna9DXwVetywS1G7DEhVYcREqj2ryDHksBDHlOnIMWX1IoCqihil2lumjxv3AUVN84BQz/Tpba2qzGoTfqhuFAA1G9cyFiqQqpq0UOaF6FfDZdpBSChYhhU7iFI4FPZlV8aZqn4IRC9+qjqnEZIKtbHbVNowAoqid7mufOkW80bYZUpPGg69njZDbz+nko0hbMaIkoRW0xFBynCJGmdC6dhdElK+6+PMIZTN7T7lWCgb24KKkrRbbxNXc30shJ2KgrOYSwM+ofKpKnUGrOc5XcVXR7XpePau5hm1ZgiVVCjH8n0qTVFezrMlsZW5HZV6P0QJiVSP6zpS8XWU+eGoHm+KTcu5OMre05S5OdWi8aHbXtgj7N0j1GOVdnRVxH5JzSbVjcXwCCtzjF3MBTaf8DigqM7Lxw7tFnULC5tWFwA5Xg0hbK6OrbC8ppBtr6rOi6VWtXFXmVzPxRqu2LhcR6RKu9pGNr8eV7XxUFaqFmYP6Wt2yKP0vVN4YRCq2AjFtnGpQB5Wpgo5B9ot7F3GVZWPpX2HZJ7KvBzVD8LG1b6QSvwOn7JmC/u2hZSw4FGs4hs29OvAWHGSYPHixXj22WexYsUKbN++HR9++CEGDx4cCZ89ezamTJmCFStWYO/evVi5ciV69OihpVFZWYm7774bM2fOhM/nQ0FBAV599VU0a9YsEmfLli245ZZbsHDhQqSnp2P48OGYMGECnE7zGueLL77AmDFjsHbtWrRq1QqPPPIIrr322oTrMmTIEAwZMiSp+lvBd1AJIYQQQgghJAbVd1DjfZKhrKwM3bt3x+TJk2OGn3nmmXj66adjpnHXXXfhk08+waxZs7Bo0SJs27YNl156aSQ8FAph0KBB8Pv9+Prrr/HOO+9g2rRpePTRRyNxNm3ahEGDBqFPnz5YtWoV7rzzTlx//fX4/PPPE65LcXEx3nzzTTz00EPYu3cvAOC7777Dr7/+mnAaKryDSgghhBBCCCGxMJCAH9TkkhwwYAAGDBgQM/yaa64BAGzevLnG8P379+Ott97CjBkzcN555wEApk6dis6dO+Obb77B6aefjnnz5uGHH37Av/71LzRr1gw9evTA448/jvvvvx/jxo2D2+3GlClT0K5dOzz//PMAqh7PXbJkCSZOnIiCgoK49Vi9ejX69u2LrKwsbN68Gddffz1yc3Mxe/ZsbNmyBf/3f/+XXMOAd1AJIYQQQgghJDb1UMV3xYoVCAQC6Nu3b+S3Tp06oXXr1li6dCkAYOnSpejWrZv2yG9BQQFKSkqwdu3aSBw1jeo41WnEY8yYMbj22muxYcMGeL3mI/EDBw7E4sWLa1U33kElhBBCCCGEkBjYQgZscW6RVuvElJSUaL97PB54PNbvtdeGoqIiuN1uZGdna783a9YMRUVFkTjq5rQ6vDrMKk5JSQkqKiqQkpICK7799lu8/vrrUb8fd9xxkTyShXdQCSGEEEIIISQWSdxBbdWqFbKysiKfCRMmHOHCH1o8Hk/UphwAfvrpJzRp0qRWafIOKiGEEEIIIYTEIpFHeH8L37p1KzIzTbX3Q3H3FADy8vLg9/tRXFys3UXdsWMH8vLyInH+/e9/a+ft2LEjElb9t/o3NU5mZmbcu6cAcPHFF+Oxxx6LuJix2WzYsmUL7r//flx22WW1qhs3qDUQzE4BnFXPUIe8wm1KinnTWbpQkZLhIbcp3y2lvlU3M3HvYyty7A4h8+4qlS4rzOOwW7p80c9V3YsYdiEfb+HywSHc4qhxQx49naCu1o6gMs6luwNnhfK9XOTp0/PUXCwIVxxOIeOvujtwleg+Kuylwt2GKtUvZPINxW2Q4ZC+GXRUlyqpu4TrjQrZD+ZxlCC9dLehKLtLSXjVFYdsE+kuQnPpEYrd9/FQx4Y9yn2KHlft75BXbz/DKf0pqHmY6QaDsV00JEMwyws4vZb2Deh9I9sl7BLtprpYEPVRZf9lOlHuBFRXHuV6fcNizgkpZQh5hfsiMUTV8kW5cVHHlRg70j1MINWmfNfTCYljta6qfQOAQ5ie6lpCzjGqax45F0h3B64Sc3KQ9m0TbieiXGhpYYq7HzE/Srcp3mJlHAl3GoES0eFqsOwHq36JciVj1BivpnS0uT6OCy89HeGeRHP3E2eOUe3BYz1fVhMKhuJHSoBguhtwVl0QhlLMyoe8wr5FsdR2k2uiRLN3V5y4Fuuptl659AL5s8T8pKyvcv1MZt5WkWUPimtR1dVRWPeYFIVq01b2DejjN3oNV9yZlMW2b0C38Sj79gu3RZVmIQy/cMuTalbc7tTb3VWqV9y7T1mzw2I9d8e+oJMu8ezyWL388Mswxd4t1lYAgGqnIigqrrqGC/NzChdeTsWVjF26PFRdMIr1T22jcJxrp3pNEhvUzMxMbYN6qOjZsydcLhfmz58f2QiuX78eW7ZsQX5+PgAgPz8fTz75JHbu3ImmTZsCAAoLC5GZmYkuXbpE4syZM0dLu7CwMJJGPJ5//nn84Q9/QNOmTVFRUYFzzjkHRUVFkbxrAzeohBBCCCGEEBKDZN5BTZTS0lJs3Lgxcrxp0yasWrUKubm5aN26Nfbu3YstW7Zg27ZtAKo2n0DVHc+8vDxkZWVh5MiRGDNmDHJzc5GZmYnbbrsN+fn5OP300wEA/fr1Q5cuXXDNNdfgmWeeQVFRER555BGMGjUqcmf35ptvxiuvvIL77rsPI0aMwIIFC/Dee+/hs88+S6geWVlZKCwsxJIlS7B69WqUlpbi1FNPjRJeSgZuUAkhhBBCCCEkFkncQU2U5cuXo0+fPpHjMWPGAACGDx+OadOm4eOPP8Z1110XCb/yyisBAGPHjsW4ceMAABMnToTdbsdll10Gn8+HgoICvPrqq5FzHA4HPv30U9xyyy3Iz89HWloahg8fjsceeywSp127dvjss89w1113YdKkSWjZsiXefPPNhFzMqJx55pk488wzkzonFtygEkIIIYQQQkgswkb0M/o1xUmCc889F4bFpvbaa6/Ftddea5mG1+vF5MmTMXny5Jhx2rRpE/UIb01lWblypWUcSUVFBebPn48LL7wQAPDggw/C5zMfpXc4HHj88cc11zOJwg0qIYQQQgghhMTiENxBPdp555138Nlnn0U2qK+88gq6du0aEVb68ccf0aJFC9x1111Jp003M4QQQgghhBASCyNcJaxn9THqRsjxaGH69Om48cYbtd9mzJiBhQsXYuHChXj22Wcjyr7JwjuoNVDa0gunq+p2tD9DKDKmmd9D4o51WLSmYdG6mgpbnH+4qHHtPqEmmWWhJCpUhQ0L8TSp7Kaq9UWrAwqFNqX8Uk3Sqm5SMU5VVJRqgVIpT1X9i1IzlIrEiqKcquhYFSZlSJV0nULxUVGilEp9UeqqimKyVOpzlQv1O7W8Uaqe4geL9lTHiVT5iz6OrYpqlW60zHDsssk8VdXrkFBcD7tEv6iKs0qfBAN1M/lX23iUfYvhoNmBVMW1sKcoRVOrJpYqvqqSY0DPJFoN3KI8Fn0l5warE6MUYi26IEqhWIkbpZgqyqDNB0Kx1kqhNEpd2a1klCYGmjg2FMVdqTyp2qUhFL1DqUKFWjmMsqdw7MJHqfbKx8PUudXCpq3sGwDsQXWO0SNbPrFmYdPR9m0Tx+bgjFK8dkiVz6qM6sq+y5t74HRV9bUv0+w7qSoftWbba/4OWCssS6zGq1RjtoeUdUXat7TTJG4paHWzKE+UPVt1gRwrcqgr5Y+yb7EOamWIo2at5eESjaDadIqwd3uafhxDHR4AQoqCcjBdL3zIo+eptplLeBwwhHpxojZcdRxbqVe7DpRjL+q6S0knTp9ZIcsQVuw2nC7WJmX+lPau1isYqBul7iNC2EDcBkzyEd+jnY0bN6Jbt26RY6/XC7uyrvbq1QujRo2qVdrcoBJCCCGEEEJILIwE7pA2sDuoxcXF2junu3bt0sLD4bAWngx8xJcQQgghhBBCYlH9Dmq8TwOiZcuWWLNmTczw1atXo2XLlrVKmxtUQgghhBBCCIlF2Ejs04AYOHAgHn30UVRWymfbqxR+x48fj0GDBtUqbT7iSwghhBBCCCGxCBuwfkkbDW6D+tBDD+G9995Dx44dMXr0aHTo0AEAsH79erzyyisIBoN46KGHapU2N6iEEEIIIYQQEgu6mYmiWbNm+Prrr3HLLbfggQceiPh0tdlsuOCCC/Dqq6+iWbNmtUqbG1RCCCGEEEIIiUU4jPh3UBuWSBIAtGvXDnPnzsXevXuxceNGAED79u2Rm5t7UOlyg1oDgTR7xG2IP0MPC6ab36PcuEh3JwlKu0e5cZCeBhQ1byt3MDWda1U+PVA/tPvVREUeFi40ZFiUpL4iNW8Lxo6rupEB4rhCsOkFlP0SUOTQg8I9hHTHYAvGzkh1QxHlysair50VwuWDdKFh0b9Wx5ZxRXmkLL3WD/FE6dS0rNx9CBcJ0u2EGh7lTkHEVV0kqC4yQv66eW0+kF5l474s/feg8EqguoqytB+BlesGy7EM3aZDybirsXIBJM61dPkg5yMLNzMyTKarhke717BwoSTrqdi4dA0STNMHU8hrdpQ9JCYDYe+qu5Oo/rXFa1ATu99M12nhNqgqT+W7yCK6DDWfJ8Piua/QJ2kZJmKq6Yow1X1EPPdeutuw2PYNmDZeV/btT7dH3Fr5M83f47mZUVU5rOZ0wNpVnJWNW84N8eZii+aRc7ylG6KQRZg8Vmw6Kg+LY2nfUelatFFIHWcW9i3TjWdP6hi1cvEUr+9VV1JRrlik6yJbbIOKKq9yjRF1LaXembNwKyORdhkdQXXZZ30tZVjMw6qNx7JvoO5s/IjAO6iW5ObmolevXnWWHjeohBBCCCGEEBKLUAJuZhrgHdRDBTeohBBCCCGEEBIDwwjDiLNBjRdOEocbVEIIIYQQQgiJhZGAG5kG/IhvXcMNKiGEEEIIIYTEwjBgLQQBblDrEG5QCSGEEEIIISQWoVC0MpjEiBNOEoYb1BownKZ6p1RSc1Sa36PUGRNU7a3p2DKdBFVU4yFVcxNV8otWuxMJW6kFWqUbpTqoKOPJf0JJwU9FCC4c1Sb6D5qabDLtF6UkGjtqtLKxqpppnammaBtPcE9TmZTyymqYPE8oKqptYtG20elaNYJIR6iOGhYKmVF5qv2r/FxX+gNhJ2Bz1mDfPlEu1cZl1a2UO63KaWXfiKOabKWonYz6roWippV9x03HIk9L1V5BlFq5Vm8L+46HlQq1yFOfq+L8V1yxi7hKolbFjTo3duSwhSq25foiFcgt7N2qfHEVxxNUIFbjxmvmRAm7AFu1AqmqXi3WbNlOmoJxnDXIUjE/jt3GjBtnjrFUX5eqr4kq9R7Emm2p1BvvRpMyXlTVXgCwK41b7VEhcp5F29bWkwIQ7TlAS0faocVaGzVOlB+s1mx5HKUGrJRBquvKhLQyxW2TxFWGLdtaVScXp2l9fRTfYDTCYRhxpLb5DmrdwQ0qIYQQQgghhMSCj/geVrhBJYQQQgghhJBYhI34jsy5Qa0zuEElhBBCCCGEkBgYoTCMOO+g8hHfuoMbVEIIIYQQQgiJhRGGtcBEdRxSF3CDSgghhBBCCCExMMIGjDiP+Bp8xLfO4AZVoXpghfymVG9IqJipPnqjVErruYpvlFpfXan4WiiAHioVX+08ERa2egLjEKn4RsvWJa7iq6mSxymfqmKbjKKuLZy42mK9UPFVhQWVslbbZm0XAWnjIakWa9UW9UHFV55qpcZZVyq+FvafjIqvkYSKr0Qtn6V9x00odpCVim9c5+wWdhFP7VYLi7IZi3Rj2EjVceKKpIdFxTdOHtXjpq7tG9BtPMq+LdbwI6HiGzdPC9uT9m8kquIbZ323WrOlTVuma9WlUWt44utnXan4hq3kZS3Ud6WCtuX6mYTtybJb9r0gORXfmvOvMa6VpwArFV9l3BysjR9JgoYv7h3SIAKW4SRxbMbROEoOEf/73//QqlWrI10MQkgctm7dipYtWyZ9Hm2ckPoP7ZuQY5va2viRoLKyEu3atUNRUVFC8fPy8rBp0yZ4vd5DXLJjG25QFcLhMLZt2wbDMNC6dWts3boVmZmZR7pYR4SSkhK0atWqwbZBQ68/UD/bwDAMHDhwAC1atIDdbnErKga08SrqY98ebhp6G9TH+tO+64762L+Hk4Zef6B+tsHB2viRorKyEn6/P6G4brebm9M6gI/4KtjtdrRs2RIlJSUAgMzMzHpj1EeKht4GDb3+QP1rg6ysrFqfSxvXaej1B9gG9a3+tO+6paG3QUOvP1D/2uBgbPxI4fV6uek8zBw9/74ghBBCCCGEEHJMww0qIYQQQgghhJB6ATeoNeDxeDB27Fh4PJ4jXZQjRkNvg4Zef+DYboNjuW6J0NDrD7ANjuX6H8t1S5SG3gYNvf4A24Ac3VAkiRBCCCGEEEJIvYB3UAkhhBBCCCGE1Au4QSWEEEIIIYQQUi/gBpUQQgghhBBCSL2AG9QamDx5Mtq2bQuv14vevXvj3//+95EuUp2wePFiXHTRRWjRogVsNhs++ugjLdwwDDz66KNo3rw5UlJS0LdvX2zYsEGLs3fvXgwbNgyZmZnIzs7GyJEjUVpaehhrUXsmTJiA3/3ud8jIyEDTpk0xePBgrF+/XotTWVmJUaNGoVGjRkhPT8dll12GHTt2aHG2bNmCQYMGITU1FU2bNsW9996LYDB4OKtSa1577TWcfPLJEb9o+fn5+Oc//xkJP9brDxy79g3Qxhu6jdO+ad+072N7jNPGSYPBIBozZ8403G638fbbbxtr1641brjhBiM7O9vYsWPHkS7aQTNnzhzj4YcfNmbPnm0AMD788EMt/KmnnjKysrKMjz76yPjPf/5jXHzxxUa7du2MioqKSJz+/fsb3bt3N7755hvjyy+/NNq3b29cddVVh7kmtaOgoMCYOnWqsWbNGmPVqlXGwIEDjdatWxulpaWRODfffLPRqlUrY/78+cby5cuN008/3TjjjDMi4cFg0DjppJOMvn37GitXrjTmzJljNG7c2HjwwQePRJWS5uOPPzY+++wz46effjLWr19vPPTQQ4bL5TLWrFljGMaxX/9j2b4Ngzbe0G2c9k37pn0f22O8ods4aThwgyro1auXMWrUqMhxKBQyWrRoYUyYMOEIlqrukYtbOBw28vLyjGeffTbyW3FxseHxeIy///3vhmEYxg8//GAAML799ttInH/+85+GzWYzfv3118NW9rpi586dBgBj0aJFhmFU1dflchmzZs2KxFm3bp0BwFi6dKlhGFUXCHa73SgqKorEee2114zMzEzD5/Md3grUETk5Ocabb77ZIOrfUOzbMGjjhkEbNwzaN+2b9n0sjfGaaEg2ThoOfMRXwe/3Y8WKFejbt2/kN7vdjr59+2Lp0qVHsGSHnk2bNqGoqEire1ZWFnr37h2p+9KlS5GdnY3TTjstEqdv376w2+1YtmzZYS/zwbJ//34AQG5uLgBgxYoVCAQCWht06tQJrVu31tqgW7duaNasWSROQUEBSkpKsHbt2sNY+oMnFAph5syZKCsrQ35+/jFf/4Zs3wBtHGhYNk77pn3Tvo+tMS5paDZOGhbOI12A+sTu3bsRCoU0wwWAZs2a4ccffzxCpTo8FBUVAUCNda8OKyoqQtOmTbVwp9OJ3NzcSJyjhXA4jDvvvBO///3vcdJJJwGoqp/b7UZ2drYWV7ZBTW1UHXY08P333yM/Px+VlZVIT0/Hhx9+iC5dumDVqlXHdP0bsn0DtHGgYdg47Zv2rUL7PnbGeDUN1cZJw4IbVNIgGTVqFNasWYMlS5Yc6aIcdjp27IhVq1Zh//79eP/99zF8+HAsWrToSBeLkDqlodo47Zs0BBqqfQO0cdIw4CO+Co0bN4bD4YhSPNuxYwfy8vKOUKkOD9X1s6p7Xl4edu7cqYUHg0Hs3bv3qGqf0aNH49NPP8XChQvRsmXLyO95eXnw+/0oLi7W4ss2qKmNqsOOBtxuN9q3b4+ePXtiwoQJ6N69OyZNmnTM178h2zdAGwcaho3TvmnfKrTvY2eMV9NQbZw0LLhBVXC73ejZsyfmz58f+S0cDmP+/PnIz88/giU79LRr1w55eXla3UtKSrBs2bJI3fPz81FcXIwVK1ZE4ixYsADhcBi9e/c+7GVOFsMwMHr0aHz44YdYsGAB2rVrp4X37NkTLpdLa4P169djy5YtWht8//332iJfWFiIzMxMdOnS5fBUpI4Jh8Pw+XzHfP0bsn0DtHGgYdo47Zv2Tfs+NsZ4LBqKjZMGxhEWaap3zJw50/B4PMa0adOMH374wbjxxhuN7OxsTfHsaOXAgQPGypUrjZUrVxoAjBdeeMFYuXKl8csvvxiGUSVRn52dbfzjH/8wVq9ebVxyySU1StSfcsopxrJly4wlS5YYJ5544lEjUX/LLbcYWVlZxhdffGFs37498ikvL4/Eufnmm43WrVsbCxYsMJYvX27k5+cb+fn5kfBqifZ+/foZq1atMubOnWs0adLkqJFof+CBB4xFixYZmzZtMlavXm088MADhs1mM+bNm2cYxrFf/2PZvg2DNt7QbZz2TfumfR/bY7yh2zhpOHCDWgMvv/yy0bp1a8Ptdhu9evUyvvnmmyNdpDph4cKFBoCoz/Dhww3DqJKp/3//7/8ZzZo1Mzwej3H++ecb69ev19LYs2ePcdVVVxnp6elGZmamcd111xkHDhw4ArVJnprqDsCYOnVqJE5FRYVx6623Gjk5OUZqaqoxZMgQY/v27Vo6mzdvNgYMGGCkpKQYjRs3Nu6++24jEAgc5trUjhEjRhht2rQx3G630aRJE+P888+PLGyGcezX3zCOXfs2DNp4Q7dx2jftm/Z9bI9x2jhpKNgMwzAO7T1aQgghhBBCCCEkPnwHlRBCCCGEEEJIvYAbVEIIIYQQQggh9QJuUAkhhBBCCCGE1Au4QSWEEEIIIYQQUi/gBpUQQgghhBBCSL2AG1RCCCGEEEIIIfUCblAJIYQQQgghhNQLuEElhBBCCCGEEFIv4AaVHHLOPfdc3HnnncdMntdeey0GDx58SNIm5GiENk7IsQvtmxByuHEe6QIQciiYPXs2XC5X5Lht27a48847D/siSwg5NNDGCTl2oX0T0rDhBpUck+Tm5h7pIhBCDiG0cUKOXWjfhDRs+IgvOazs27cPf/rTn5CTk4PU1FQMGDAAGzZsiIRPmzYN2dnZ+Pzzz9G5c2ekp6ejf//+2L59eyROMBjE7bffjuzsbDRq1Aj3338/hg8frj2yoz4edO655+KXX37BXXfdBZvNBpvNBgAYN24cevTooZXvxRdfRNu2bSPHoVAIY8aMieR13333wTAM7ZxwOIwJEyagXbt2SElJQffu3fH+++/XTYMRcpRBGyfk2IX2TQg5HHCDSg4r1157LZYvX46PP/4YS5cuhWEYGDhwIAKBQCROeXk5nnvuOfz1r3/F4sWLsWXLFtxzzz2R8KeffhrTp0/H1KlT8dVXX6GkpAQfffRRzDxnz56Nli1b4rHHHsP27du1hTIezz//PKZNm4a3334bS5Yswd69e/Hhhx9qcSZMmID/+7//w5QpU7B27VrcdddduPrqq7Fo0aLEG4aQYwTaOCHHLrRvQshhwSDkEHPOOecYd9xxh/HTTz8ZAIyvvvoqErZ7924jJSXFeO+99wzDMIypU6caAIyNGzdG4kyePNlo1qxZ5LhZs2bGs88+GzkOBoNG69atjUsuuSQqz2ratGljTJw4USvX2LFjje7du2u/TZw40WjTpk3kuHnz5sYzzzwTOQ4EAkbLli0jeVVWVhqpqanG119/raUzcuRI46qrrrJsF0KOFWjjhBy70L4JIYcbvoNKDhvr1q2D0+lE7969I781atQIHTt2xLp16yK/paam4oQTTogcN2/eHDt37gQA7N+/Hzt27ECvXr0i4Q6HAz179kQ4HK7T8u7fvx/bt2/Xyut0OnHaaadFHhHauHEjysvLccEFF2jn+v1+nHLKKXVaHkLqO7RxQo5daN+EkMMFN6ik3qEq9wGAzWaLemekLrDb7VHpqo8pJUJpaSkA4LPPPsNxxx2nhXk8noMrICHHKLRxQo5daN+EkIOF76CSw0bnzp0RDAaxbNmyyG979uzB+vXr0aVLl4TSyMrKQrNmzfDtt99GfguFQvjuu+8sz3O73QiFQtpvTZo0QVFRkbbArVq1SsurefPmWnmDwSBWrFgROe7SpQs8Hg+2bNmC9u3ba59WrVolVCdCjhVo44Qcu9C+CSGHC95BJYeNE088EZdccgluuOEGvP7668jIyMADDzyA4447DpdccknC6dx2222YMGEC2rdvj06dOuHll1/Gvn37Isp+NdG2bVssXvz/27l/lTiiOArAJzZauFvpA4gITmUhFoOCdlrYCCIq6D6CiIKVjVsoFlZqqy/hH8QqYGPrA6i1jZY2a4pAIAlJSDA6Lt/Xzly4DJzizP3NfM78/Hw6OzvT09OTiYmJPDw8ZHd3N7Ozszk/P8/Z2Vnq9fq3dSsrK9nZ2cnAwEAGBwezt7eXx8fHb9drtVrW19ezurqaVquVsbGxPD095erqKvV6PY1G45+eFXxEMg7tS76Bt+IElTd1dHSU4eHhTE9PpyzLvLy85PT09KeRoN/Z2NjIwsJClpeXU5Zluru7Mzk5ma6url+u2drayt3dXfr7+9Pb25vk69vgw8PDHBwcZGhoKNfX19/9aTBJ1tbWsrS0lEajkbIsU6vVMjMz8909zWYzm5ub2d7eTlEUmZqaysnJSfr6+v7iyUB7kHFoX/INvIVPL//jwwB4Q61WK0VRZG5uLs1m8723A7wyGYf2Jd/Aj4z48uHc39/n4uIi4+PjeX5+zv7+fm5vb7O4uPjeWwNegYxD+5Jv4E+M+PLhdHR05Pj4OCMjIxkdHc3NzU0uLy9TFMV7bw14BTIO7Uu+gT8x4gsAAEAlOEEFAACgEhRUAAAAKkFBBQAAoBIUVAAAACpBQQUAAKASFFQAAAAqQUEFAACgEhRUAAAAKkFBBQAAoBK+AImvI7xkfsZiAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -7148,13 +5379,13 @@
}
],
"source": [
- "grid = y_preds.isel(time=slice(3))[\"z850\"].plot(col=\"time\")\n",
+ "grid = y_preds.isel(time=slice(3))[\"geopotential850\"].plot(x=\"longitude\", y=\"latitude\", col=\"time\")\n",
"grid.fig.suptitle(\"Predictions\", y=1.05)"
]
},
{
"cell_type": "code",
- "execution_count": 34,
+ "execution_count": 32,
"id": "ee675ea9-62a0-4c46-acbb-a99f71f9113e",
"metadata": {
"tags": []
@@ -7166,13 +5397,13 @@
"Text(0.5, 1.05, 'Ground truth')"
]
},
- "execution_count": 34,
+ "execution_count": 32,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6kAAAFACAYAAABeCzrQAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAn+1JREFUeJztvXmcVMW9/v/03j1bM8MwM4ysbgiCaEYjYBIgGhBFNDHBBB3B+EW9XEUU4hJzFRMV45pc1GgMigETbn5BvCoGgYgSwhaWuYoQ1AQFdIZhmX3p9fz+GOlT9enp09PDMOvzfr36NX266tSpU6eeqq45p5+PzTAMA4QQQgghhBBCSCfA3tEVIIQQQgghhBBCjsNFKiGEEEIIIYSQTgMXqYQQQgghhBBCOg1cpBJCCCGEEEII6TRwkUoIIYQQQgghpNPARSohhBBCCCGEkE4DF6mEEEIIIYQQQjoNXKQSQgghhBBCCOk0cJFKCCGEEEIIIaTTwEUqIYSQHsEHH3yAG2+8Eaeddhp8Ph98Ph/OOOMM3Hzzzdi2bVtHV++EsNlsmD9/vmWeL7/8EvPnz0dJSclJqYNV+TNmzEBGRsZJOS4hhJDuBxephBBCuj0vvPACioqKsGXLFtx+++146623sHLlSsyZMwcfffQRLrjgAvzrX//q6GqeVL788ks8+OCDJ3WRejLLJ4QQ0nNwdnQFCCGEkJPJ3//+d8yaNQuXX345/vznP8PtdsfSvv3tb+M///M/8f/9f/8ffD6fZTn19fVIS0s72dXtNPS08yWEENJ54J1UQggh3ZpHHnkEDocDL7zwgrZAVfnBD36AwsLC2Pbxx1M//PBDTJgwAZmZmbj44osBAMeOHcOsWbNwyimnwO1249RTT8V9992HQCAQ2/+zzz6DzWbD4sWL444lH82dP38+bDYbPvroI/zoRz+C3+9Hfn4+fvzjH6Oqqkrbt7q6GjNnzkTv3r2RkZGBSy+9FB9//HHSNnjvvfdwwQUXAABuuOEG2Gw2rR5W5zto0CDMmDEjrsxx48Zh3LhxLSr/OJ9++ikuu+wyZGRkoH///pg7d67WboQQQgjAO6mEEEK6MZFIBOvWrcP555+Pvn37prRvMBjElClTcPPNN+Oee+5BOBxGY2Mjxo8fj3/961948MEHcc455+Bvf/sbFixYgJKSEqxcubLVdb366qtxzTXX4MYbb8SHH36Ie++9FwDw0ksvAQAMw8BVV12FjRs34v7778cFF1yAv//975g0aVLSsr/2ta/h5Zdfxg033ICf/exnuPzyywEA/fr1szzfltKS8kOhEKZMmYIbb7wRc+fOxfr16/GLX/wCfr8f999/f4uPRQghpPvDRSohhJBuy5EjR9DQ0ICBAwfGpUUiERiGEdt2OByw2Wyx7VAohPvvvx833HBD7LMXXngBH3zwAf70pz/hBz/4AQDgO9/5DjIyMnD33XdjzZo1+M53vtOqut544434yU9+AgC45JJL8Omnn+Kll17CokWLYLPZ8M4772DdunX49a9/jdmzZ8eO7Xa7cd9991mWnZWVheHDhwMATjvtNIwaNSouT3Pn21JaUn4wGMSDDz4Ya7eLL74Y27Ztwx/+8AcuUgkhhGjwcV9CCCE9kqKiIrhcrtjrySefjMtz9dVXa9vvvvsu0tPT8f3vf1/7/PjjsH/9619bXZ8pU6Zo2+eccw4aGxtRXl4OAFi3bh0A4Nprr9XyTZs2rdXHlMjzbUtsNhuuuOIK7bNzzjkHn3/++Uk7JiGEkK4J76QSQgjptuTm5sLn8zW7EPrDH/6A+vp6lJaWxi0QASAtLQ1ZWVnaZ0ePHkVBQYF2xxUA8vLy4HQ6cfTo0VbXtXfv3tq2x+MBADQ0NMSO7XQ64/IVFBS0+pgqzZ1vW5KWlgav16t95vF40NjYeNKOSQghpGvCO6mEEEK6LQ6HA9/+9rexbds2lJaWamnDhg3D+eefjxEjRjS7r1yIAk0LyUOHDmmPCQNAeXk5wuEwcnNzASC2GJOmQCe6iA2Hw3FllJWVtbpMlebOF2g6l+bMjY4cOdImxyWEEEIkXKQSQgjp1tx7772IRCK45ZZbEAqFTqisiy++GLW1tXj99de1z3//+9/H0gEgPz8fXq8XH3zwgZbvf//3f1t97PHjxwMAXn31Ve3zP/zhDy3aX96ZbSmDBg2KO4+PP/4Ye/fubZPyCSGEEAkf9yWEENKtueiii/Dss8/itttuw9e+9jXcdNNNOPvss2G321FaWorly5cDQIsedb3++uvx7LPPYvr06fjss88wYsQIbNiwAY888gguu+wyXHLJJQCa7kped911eOmll3Daaadh5MiR2Lp1a4sXlM0xYcIEfOtb38Jdd92Furo6nH/++fj73/+OJUuWtGj/0047DT6fD6+++iqGDh2KjIwMFBYWaqF3mqO4uBjXXXcdZs2ahauvvhqff/45HnvsMfTp06dNyieEEEIkvJNKCCGk23PLLbdg27ZtuOCCC/D000/jsssuw6RJk3D//fcjPT0df/3rX3HTTTclLcfr9WLdunW49tpr8fjjj2PSpElYvHgx5s2bh9dee03L++STT+K6667DY489hiuvvBKbNm3CW2+91epzsNvteOONN3Dttdfisccei4Wjefvtt1u0f1paGl566SUcPXoUEyZMwAUXXIDf/va3SfebNm0aHnvsMbzzzjuYPHkyfvOb3+A3v/kNzjzzzDYpnxBCCJHYDPnDGkIIIYQQQgghpIPgnVRCCCGEEEIIIZ0GLlIJIYQQQgghhHQauEglhBBCCCGEENJp4CKVEEIIIYQQQkingYtUQgghhBBCCCGdBi5SCSGEEEIIIYR0GrhIJYQQQgghhBDSaeAilRBCCCGEEEJIp4GLVEIIIYQQQgghnQYuUgkhhBBCCCGEdBq4SCWEEEIIIYQQ0mngIpUQQgghhBBCSKeBi1RCCCGEEEIIIZ0GLlIJIYQQQgghhHQauEglhBBCCCGEENJp4CKVEEIIIYQQQkingYtUQgghhBBCCCGdBi5SeyDvvfcebDYbKisrO7oqhHR5qCdCujfUOCGEtD9cpHZzxo0bhzlz5mifjRkzBqWlpfD7/R1TqVYSCoVw9913Y8SIEUhPT0dhYSGuv/56fPnll1q+QCCA2267Dbm5uUhPT8eUKVNw8OBBLc/DDz+MMWPGIC0tDb169Yo71uLFi2Gz2Zp9lZeXW9bz/fffR1FREbxeL0499VQ8//zzWvpHH32Eq6++GoMGDYLNZsOvfvWrFp2/YRiYP38+CgsL4fP5MG7cOHz00Udant/+9rcYN24csrKy+KXqJEA9UU8tOafjr/fee++knkNFRQWKi4vh9/vh9/tRXFwcp/n9+/fjiiuuQHp6OnJzczF79mwEg8GkZT/33HMYPHgwvF4vioqK8Le//S3l9uuKUOPUeEvOKVWNv/jii/jmN7+J7OxsZGdn45JLLsHWrVuTngM1TnoyXKT2QNxuNwoKCmCz2Tq6KilRX1+PHTt24L/+67+wY8cOvPbaa/j4448xZcoULd+cOXOwYsUKLFu2DBs2bEBtbS0mT56MSCQSyxMMBvGDH/wA//Ef/9Hssa655hqUlpZqr4kTJ2Ls2LHIy8tLWMd9+/bhsssuwze/+U3s3LkTP/3pTzF79mwsX75cO49TTz0Vjz76KAoKClp8/o899hieeuopPPPMM/jHP/6BgoICfOc730FNTY1W9qWXXoqf/vSnLS6XnBjUU8/Ukzyn0aNHY+bMmdpnY8aMOannMG3aNJSUlGDVqlVYtWoVSkpKUFxcHEuPRCK4/PLLUVdXhw0bNmDZsmVYvnw55s6da1nu//zP/2DOnDm47777sHPnTnzzm9/EpEmTsH///pTar7tAjVPjJ6rx9957Dz/60Y+wbt06bNq0CQMGDMCECRPwxRdfWJ4DNU56NAbptkyfPt0AoL327dtnrFu3zgBgVFRUGIZhGC+//LLh9/uNN9980zjzzDMNn89nXH311UZtba2xePFiY+DAgUavXr2MW2+91QiHw7HyA4GA8ZOf/MQoLCw00tLSjK9//evGunXr2vUct27dagAwPv/8c8MwDKOystJwuVzGsmXLYnm++OILw263G6tWrYrb//i5J6O8vNxwuVzG73//e8t8d911l3HWWWdpn918883GqFGjms0/cOBA4+mnn056/Gg0ahQUFBiPPvpo7LPGxkbD7/cbzz//fFx+eY3JiUM9NUE9Nc/YsWON22+/vd3OYffu3QYAY/PmzbHPNm3aZAAw/vnPfxqGYRhvv/22YbfbjS+++CKW549//KPh8XiMqqqqhGV//etfN2655Rbts7POOsu45557DMNIvf26CtR4E9R487SVxg3DMMLhsJGZmWm88sorCfNQ46Snwzup3Zhf//rXcf/569+/f7N56+vr8d///d9YtmwZVq1ahffeew/f+9738Pbbb+Ptt9/GkiVL8Nvf/hZ//vOfY/vccMMN+Pvf/45ly5bhgw8+wA9+8ANceuml+OSTTxLWadKkScjIyLB8pUJVVRVsNlvs8aPt27cjFAphwoQJsTyFhYUYPnw4Nm7cmFLZKr///e+RlpaG73//+5b5Nm3apB0bACZOnIht27YhFAq1+vj79u1DWVmZVrbH48HYsWNP6LxIy6GemqCeUqOtzuH4o4dquX6/HxdeeGHss1GjRsHv98fOYdOmTRg+fDgKCwu1YwcCAWzfvj32mc1mw+LFiwE03THbvn17XJ0nTJgQK7e7jkfUeBPUeGq05hzq6+sRCoWQk5MT+4waJ0TH2dEVICcPv98Pt9uNtLS0pI/IhEIh/OY3v8Fpp50GAPj+97+PJUuW4NChQ8jIyMCwYcMwfvx4rFu3Dtdccw3+9a9/4Y9//CMOHjwYGxznzZuHVatW4eWXX8YjjzzS7HF+97vfoaGhoU3Or7GxEffccw+mTZuGrKwsAEBZWRncbjeys7O1vPn5+SgrK2v1sV566SVMmzYNPp/PMl9ZWRny8/Pjjh0Oh3HkyBH07du3Vcc/Xvfmyv78889bVSZJDerJhHpK7VhtcQ5+vx9DhgzRym3uMcq8vLzY+TV37OzsbLjdbu36DRkyJPZ7yyNHjiASiTRbZ7Xc45/JPF15PKLGTajx1I6V6jncc889OOWUU3DJJZfEPqPGCdHhIpUAANLS0mKTLdA0EA0aNEj7L21+fn7MAGHHjh0wDANnnnmmVk4gEEDv3r0THueUU05pk/qGQiH88Ic/RDQaxXPPPZc0v2EYrf490aZNm7B79278/ve/1z5X2+a6666LGSXI4xiG0ezniXj11Vdx8803x7b/8pe/wOFwJCy7q/1OqidAPSWmJ+rpRM8BAL773e/iu9/9rmW5x8tWP29Jnn/+858tqrP8rCePR9R4Yqhx63N47LHH8Mc//hHvvfcevF5v7HNqnBAdLlIJAMDlcmnbNput2c+i0SgAIBqNwuFwYPv27bHJ4DhWjx9NmjQpzkFOUltba5keCoUwdepU7Nu3D++++27sP8IAUFBQgGAwiIqKCu0/w+Xl5RgzZoxluYn43e9+h3PPPRdFRUXa5yUlJbH3x+tQUFAQ99/n8vJyOJ1Oyy8iKlOmTNEe7znllFNQWloKoOm/m+p/ZcvLy+P+00k6HuopMT1NT21xDonKPXToUNznhw8fjp1DQUEBtmzZoqVXVFQgFAolPM/c3Fw4HI5m66yWC/Ts8YgaTww1nvgcnnjiCTzyyCNYu3YtzjnnnKTlUuOkJ8NFajfH7XZrDn1txXnnnYdIJILy8nJ885vfbPF+J/ro0vHJ9pNPPsG6deviJoCioiK4XC6sWbMGU6dOBQCUlpZi165deOyxx1I+Xm1tLf70pz9hwYIFcWmnn3563GejR4/Gm2++qX22evVqnH/++XFfYBKRmZmJzMxM7bPBgwejoKAAa9aswXnnnQeg6Xcl77//Pn75y1+29HTICUI9UU+p0hbnkKjcqqoqbN26FV//+tcBAFu2bEFVVVVscTF69Gg8/PDDKC0tjX3RXL16NTweT9wC4jhutxtFRUVYs2aNdldnzZo1uPLKKwF07/GIGqfGU6Wl5/D444/joYcewjvvvIPzzz+/ReVS46RH054uTaT9mTlzpnHBBRcY+/btMw4fPmxEIpGEToUqDzzwgDFy5Ejts+nTpxtXXnllbPvaa681Bg0aZCxfvtz497//bWzdutV49NFHjZUrV56UcwmFQsaUKVOMfv36GSUlJUZpaWnsFQgEYvluueUWo1+/fsbatWuNHTt2GN/+9reNkSNHai6Ln3/+ubFz507jwQcfNDIyMoydO3caO3fuNGpqarRj/u53vzO8Xq9x7NixFtXx3//+t5GWlmbccccdxu7du41FixYZLpfL+POf/xzLEwgEYsfr27evMW/ePGPnzp3GJ598Yln2o48+avj9fuO1114zPvzwQ+NHP/qR0bdvX6O6ujqWp7S01Ni5c6fx4osvGgCM9evXGzt37jSOHj3aovoTa6gn6imRnhI5f7bVObz22mvGkCFDtLIvvfRS45xzzjE2bdpkbNq0yRgxYoQxefLkWHo4HDaGDx9uXHzxxcaOHTuMtWvXGv369TNuvfVWrZwhQ4YYr732Wmx72bJlhsvlMhYtWmTs3r3bmDNnjpGenm589tlnKbVfV4Qap8ZPhsZ/+ctfGm632/jzn/+sXQe1/ahxQnS4SO3m7N271xg1apTh8/mS2umrtGTCDQaDxv33328MGjTIcLlcRkFBgfHd737X+OCDD07Kuezbty8uPMDxl2rj39DQYNx6661GTk6O4fP5jMmTJxv79++PO5dk5RiGYYwePdqYNm1aSvV87733jPPOO89wu93GoEGDjN/85jctOo+xY8dalhuNRo0HHnjAKCgoMDwej/Gtb33L+PDDD7U8DzzwQLNlv/zyyymdA2ke6ol6SqSnRF9g2+ocXn75ZUP+X/no0aPGtddea2RmZhqZmZnGtddeGxdC4/PPPzcuv/xyw+fzGTk5Ocatt95qNDY2anmaO6dnn33WGDhwoOF2u42vfe1rxvvvv59y+3VFqHFq/GRofODAgc0e54EHHojlocYJ0bEZxle/7iaEEEIIIYQQQjoYxkklhBBCCCGEENJp4CKVEEIIIYQQQkingYtUQgghhBBCCCGdBi5SCSGEEEIIIYR0GrhIJYQQQgghhBDSaeAilRBCCCGEEEJIp8HZ0RXobESjUXz55ZfIzMyEzWbr6OoQQhQMw0BNTQ0KCwtht6f+Pzbqm5DOC/VNSPfmRDXeUTQ2NiIYDLYor9vthtfrPck16hlwkSr48ssv0b9//46uBiHEggMHDqBfv34p70d9E9L5ob4J6d60VuMdQWNjIwYPzEBZeaRF+QsKCrBv3z4uVNsALlIFmZmZAIBLVxTDle6GHYaWbrcZze32VVq0xcexKkdiQ8vzthYD+n+do4bctidOs9g3HLUnTIuIcqzyGjKvoedV02X95L7qtmxZ9VzkfvHltuwYEqtyJFZpEqsbBzLNYdf7qt1uJExzKv1aprns+qCtpjtFXoctsZakHhKlheqCWPXdJTGdpsrx/Sa8dj1c6e5mj63VoxPov62IahpJrDVA10H8WJBYt/Ks1DSp7zh9KceMWIwFct847SnvI0nOMxUN6+MRRF65nViMVlde7mez6CfyCGpeeYNC1aWqdcBaw1ZjgUyXepd93GaRdnw7VBfE2qtfOWF9X7J8ekJ9a2OLxdVIptFU9J5KuVbI/qunJb4rlWzOVrUp80Ys5lbr+b3lGo6rnxwrLOqujhXJdGj9PUHua1GOxTFO6OuaUpTUvrzy+pyt53U4zL4p9S37n6phmVfWQdW4la7i6qqkheuC+Ov3F7da4x1BMBhEWXkE+7YPRFam9d3f6pooBhd9jmAwyEVqG8BFquD4I0KudHenWaRaTaRthdVCs2m7dYtUm8UkZpOTagqLVJzAItXqy6bNYpFqa6NFqlU5Eqty4sq1+kJ7IotUqy+tKSxS5Rfc1ixSj9PaR/mkvhOVHzt2J9B/W3GyFqmqxuVYoGk6hUWq1bgh97X8sinO80Q0bLMYN1LRf/ssUhN/EY1P0zXsdJycRaqqJSu9AydX31ykxuvUZrFItVnM/VZztpzfU9Gw/CeVqjebxRiTii6TzcMt/UdYxy1SVZ0mXqRKfcfl1TTcNovUlsybXfFx/PSMppcVkfaf2rs1XeeBcEIIIYQQQghpZ6IwWvRKhfXr1+OKK65AYWEhbDYbXn/99bg8e/bswZQpU+D3+5GZmYlRo0Zh//79sfRAIIDbbrsNubm5SE9Px5QpU3Dw4EGtjIqKChQXF8Pv98Pv96O4uBiVlZVanv379+OKK65Aeno6cnNzMXv27Bb/DvdkwUUqIYQQQgghhCQgZERa9EqFuro6jBw5Es8880yz6f/617/wjW98A2eddRbee+89/N///R/+67/+S3uUeM6cOVixYgWWLVuGDRs2oLa2FpMnT0YkYtZl2rRpKCkpwapVq7Bq1SqUlJSguLg4lh6JRHD55Zejrq4OGzZswLJly7B8+XLMnTs3xVZqW/i4LyGEEEIIIYQkoCV3SlO9kzpp0iRMmjQpYfp9992Hyy67DI899ljss1NPPTX2vqqqCosWLcKSJUtwySWXAACWLl2K/v37Y+3atZg4cSL27NmDVatWYfPmzbjwwgsBAC+++CJGjx6NvXv3YsiQIVi9ejV2796NAwcOoLCwEADw5JNPYsaMGXj44YeRlZWV0nm1FbyTSgghhBBCCCEJiMJAJMnr+CK1urpaewUCgdSPF41i5cqVOPPMMzFx4kTk5eXhwgsv1B4J3r59O0KhECZMmBD7rLCwEMOHD8fGjRsBAJs2bYLf748tUAFg1KhR8Pv9Wp7hw4fHFqgAMHHiRAQCAWzfvj3lurcVvJOagJqgG06XJ6lpiPqjeSvH2WRuleoPy6VZhZWjqjSrcCtp8sfqMm/UwrhAbgejDvN9xKGlhaL6dlhJj0SlU6A9YZp09AtHlLwRPS0S1o8ZDSsmByE9DSFptKBsW3lfxDkVyG2zfQ1hRmBziP+mqftKwwHF5CDumCmglSOQHgVxhixKeryJSWJDFpdTf7RF7ZtuizQAcDkS92MVzS061DauBMf1bXUswNqh0tqQy9oARz13hzBgcTuEkY3Nwoyqhe0GCKddcV5Wmg5FpL5Fm1i58ipak/vJvJGwYtAijxESY6uS1xZOQd9xbkPKe3tiTQC6xm1yLJB6V50u5djQSuOcuGNa6NTS6Vuep0Cbi8SYIvWu9lW3M6znlYZMFn31OOFw68yIJHUhF5whd7NplhpOwWFaxcoxFdA1bqVvoOXmNNJZN25b0XggrH/Vk3O2qnHpuq+2Q1TO51LDim7jxtKw0HBE+f4h5nNDzNm2iKppC6MiK30DumZkMXHzvaKnFPRtOYdL6SWbly3zNl+fuN1kH7In3pZ697pD2rbad10O6/k9EW2l8Y4glTupMhTWAw88gPnz56d0vPLyctTW1uLRRx/FQw89hF/+8pdYtWoVvve972HdunUYO3YsysrK4Ha7kZ2dre2bn5+PsrIyAEBZWRny8vLiys/Ly9Py5Ofna+nZ2dlwu92xPB0BF6mEEEIIIYQQkoCQYSCUJC7g8fQDBw5oj8h6PPH/FE9GNNq0oL/yyitxxx13AADOPfdcbNy4Ec8//zzGjh2bcF/DMDQH5ebclFuTp73h476EEEIIIYQQkoBkj/oefwFAVlaW9mrNIjU3NxdOpxPDhg3TPh86dGjM3begoADBYBAVFRVanvLy8tid0YKCAhw6dCiu/MOHD2t55B3TiooKhEKhuDus7QkXqYQQQgghhBCSgIjRsldb4Xa7ccEFF2Dv3r3a5x9//DEGDhwIACgqKoLL5cKaNWti6aWlpdi1axfGjBkDABg9ejSqqqqwdevWWJ4tW7agqqpKy7Nr1y6UlpbG8qxevRoejwdFRUVtd1Ipwsd9CSGEEEIIISQBUVjbmKAF6ZLa2lp8+umnse19+/ahpKQEOTk5GDBgAH7yk5/gmmuuwbe+9S2MHz8eq1atwptvvon33nsPAOD3+3HjjTdi7ty56N27N3JycjBv3jyMGDEi5vY7dOhQXHrppZg5cyZeeOEFAMBNN92EyZMnY8iQIQCACRMmYNiwYSguLsbjjz+OY8eOYd68eZg5c2aHOfsCXKQSQgghhBBCSELChg0hCwO143lSYdu2bRg/fnxs+8477wQATJ8+HYsXL8Z3v/tdPP/881iwYAFmz56NIUOGYPny5fjGN74R2+fpp5+G0+nE1KlT0dDQgIsvvhiLFy+Gw2Eakr366quYPXt2zAV4ypQpWmxWh8OBlStXYtasWbjooovg8/kwbdo0PPHEEymdT1vDRWoCDtdlwGF4EAi6tM9DQb3JIkGzExhB/elpW1D5QXJEuNVZOdQJDOEsp227LHaUxwwn3rYJYzab/HeQUl/DKepj4XQZp1dlO0Ut68XI005s2pdauUqb2MMiUVwztQ7yGkX1bqOly/aKpuL2adFoceWoeV1J/r8XTtxXDbfi/ucP6vv59O2sjMbY+3xfreUhVSdN6UxZqzhz1ivvw4G2+QH/ka/0DQCBkKnpUEDXd5yrrKJ3m3SgVNswhUsqjDbjnGJVvcWVq1wrq/oAoj9L92HRPaLKMY1k9dNcJpE4TWDZRtIc22p8tHL0TGzK2bRtMQbKglV3X0Pq2554jI4bqizql0qDyTnEUOcCcT2185Su6mJssPlNR0+3T3f3TPfoeu+dVmfmFe6e0plW1Xh9WG/AumCTFttK30fr0+FAU5nBkK7poDKHq/M3ABiK3m0BMZ9LF2k1zWLoBcSYL+dPoSetLDmHKxq3xzngikpFE49H0bg6KBtifpJ9+2SQ7BBWY4yeUd+M+96ljIFx10yet6KnuDR1LEjWZdXjyHFX1iHhRjP9RL2+4jxV/UfFd8SwX9e0y2s2itejp/XyNiARac5QwjSpb20ObyOH/o4gAhsiSb5hJkuXjBs3DkYSM6Yf//jH+PGPf5ww3ev1YuHChVi4cGHCPDk5OVi6dKnlcQYMGIC33nrLusLtDBephBBCCCGEEJKAk7FIJdZwkUoIIYQQQgghCYgaNst4ycfzkLaDi1RCCCGEEEIISQDvpLY/XKQSQgghhBBCSALChgOhOBMWmYeL1LaEi1RCCCGEEEIISQDvpLY/XKQSQgghhBBCSAIihh2RJHdSI13XvLhTwkVqAsIRB4yIA421Hu1ze6XeZN4Ks8O6K/UyNFt30XEdIpKHXdm2i14edemiiLibfy+PKUOo2IVjuCNgvpf29Q5hEx5V7M8jXv0/RaF0fd9wupkuQ7FYhdqRYTDUOsWHgxHFKucdFW0S8RoJt41MvWBXhnkhfF79InmceiOpruF1Af2ggUZ9O9qg9BsROkAN/2IXYQ+cDXpeZ7353i77kMX1tof1cmXYk3Ca+T7i1dMCvZVr79PLyc6t17b7Z1TG3ue49DS7uMCBqNkmYRHnxG33xd6HlMraHDLOQuuIRO3AVyExArXmtbJX6h3WU6mfr7vafC/bUI3AYaU1QO/rUiNS02q6nB9VjcgxJW6MUTRtl/oWM4Gq8VCanqbqGxB6swoNZaHvpjolzivD4KjHDIv+GvWZO0cy9IOo+gaAjHTzwvhciUMqALrG6xv0ixRuEBdR1bEID6Fq3GGhb0DvN3H6ltdXOdW466lMY1LfjX3E2KDUt0+WHkbqlPRqbbu3x0z3iAqGhUBUvdeE9Xm19Csthi3CWqSCYdhgfPXYXWOdEFSlue2pEONtnbIhhmmr/iq1JvOqGo7Tu5wjlSrZxDV3qMds1NOkptU5XI4pYTGHq+N/WOg96lLjxulpcSGdIs2/b6qfyKtoPE7fso2UPhv2ibEr3TyQI0s/SFqaPvD63Ga6DJHUIEIVNShzeLBer5AWqkiEKZNzuKPebD+pb6lh7fpazBmAPv/I9gqb0yca++hphngcNa9XTez9gMwKLc3v0kPQqG3mEJ1BfQy2KuTT0sqRYdbNJU66CxGFDVEZoykuD1epbQkXqYQQQgghhBCSgKDhgCsucLjM006V6SFwkUoIIYQQQgghCWi6k5okBA1/k9qmcJFKCCGEEEIIIQmIwo4IH/dtV7hIJYQQQgghhJAEtMw4iYvUtoSLVEIIIYQQQghJQMhwIJTkN6khrlHbFC5SExBodMJud8FWpTeRW7gBqkZp0jXRZZqmwdmo91xPldiuNG3dbGHpRusQ22YdQmn68++N2WaalfNv04HMt9LNV5arOmhGpNun2I54zLKkIx2itoRpclt1L3TrppLwHdUzeypNG0TZfrX99YaoHmy2UWOWXu7gPkdj77+e87mWdk7afr1+isXwgVBvLe3T+nxt+2BDr9j7fx3T81aXZsbe22v0dlf7EAB4KtX3ehu46mVjmxh2699JqG6Pah8CdHfHQLaon123cByWURp7P9hzWEtLt+t2hUGlQx4O6xdiV90psffHAqZToM3eNu6+4YgNRuSr86wxrRFdldI+V99UXVLltXEqRojeStk/dddJtY9KfYeFg3LE4tqo9YlzyBTbqp5CwqFXjl2q3uP0LdyyNZPMqHCyVS+Xhb4BvW+nl+vX2XtYWF1GzYPWDtKdJCtPM9uoIVMvZ3DeUW27KOdA7P15abreXcJatSzcK/b+kwah7/psbftflabGj5bqfdtWZ9bPVaclwaOba8J7LKrkTaxvAIg6bc2+B4CIR+1DYmz36dtBJd0pBuWzM7/Utgd7ymPvpb5dwt71UNgfe/9R/SlaWnWwqcOFkjgstxTVvduoE47dFYnvhBjKdO/SjY3jnFnV8VedfwDAHtLbTdV4nL49FnO40KV6E0fO79INVp3DpYalI3ZEkZB0z1X1bYvIAVHf1NzGhb69FXq56V+abeY9pAvBFtbbr/Z0s+9UnOkQaWa5pxboc46qb0DXuNS3nIP+1ZgXe/9FYy8t7ZMK0zK3vMyvpaFBOEYr/Ubq23csKvIm1riVpmUfskXVay/0rX/90DgvS2+vfu5j2nam3ZzkHGJsOBo2HXw/auinpTUqFtahUNd194204HHfCB/3bVO4SCWEEEIIIYSQBEQNO6JJHveN8nHfNoWLVEIIIYQQQghJAO+ktj9cpBJCCCGEEEJIAsKwJ/1NapiL1DaFi1RCCCGEEEIISUDL3H2t00lqcJFKCCGEEEIIIQmIwoaodFNsJg9pO7hIJYQQQgghhJAE8E5q+8NFagLS0wNwpAH1Bfrz5Y1+0WSK1XdjWO+c9kZz2x7Q/7virJc25WYsCWndbheu/Paw+l6GqzHfB3qJqnr0vFHFmd9w6GmGS7cXN9zmtt2t+87bxL7qI/mRsHh+v97c9hzW0+LCrSh27TKkR9ZHeiiJ8D8/ib139tY91g3nYG27Idf07g+KcxnRywyhMinr/7S0IS7dOr0mau4bMvR+ERVhBhqUxi7zZGppjTnmBQ+G9XAazga9jdTxzxHU290utgPZ5r4NOXp9gr20TS2cgQwFpIU6EJc6z6eHDjjdcyj2/lzPF1paml3fuVLGSFHIcOTG3rsdZjvbHW0TgsbnCcPhaRJWNM+01Q9k6uEqjLCw9le2bQG9TR2NZlptXBgCj55XCRfhEI78InIH7Ep4qIheDAJK5BMZGiYqhirDaSjvE+sbAGzKtk1cN5tNjDmqxuv0a+o5Ym5LfXuP6eWoGk//WI/VENnzsbbt6NXLPIb/DC3NqYR4sQl9D/OXaduTsj4w09x6X2409DbZETDrGzX0ftEQ0fvNly4znIWnlwi9pPSbqGgvUax27WVoLVXfANCQa5YbN/Zb6dsjf0Nlbuen6XFYTvce0rbP9RyMve8l+kmNRcScg84cbdtpb8ps2K3D7LQUjysMh6upfYI5+oQa8JjXyhBztqbvkH4xVH0DgEPRuKtWjwcjNa2Fh5GhmIKJdRsUIdLUUDJRl5iznYnncKlvOYdb3fzR2qhe73Pe8sRzuO+o0HeFfsy0zypj79X5GwCc+Xnatm2w2RAy1I7dY5Y7OEMPmTI+c7e2PdJtHjMkJrMPg4nDHwXEYPqFyww748nSKxSo0/MajsSNG/fdTukLcfruo/fVRkVCcl5Qh2jZT+QkPiDTHGsHuo9oaXIOz1HOpSaq96lPlI59UMRrsisVsttkfboOLTNOSm2Run79ejz++OPYvn07SktLsWLFClx11VWx9BkzZuCVV17R9rnwwguxefPm2HYgEMC8efPwxz/+EQ0NDbj44ovx3HPPoV8/MxRQRUUFZs+ejTfeeAMAMGXKFCxcuBC9lLl0//79+M///E+8++678Pl8mDZtGp544gm43SLeVTvCJT8hhBBCCCGEJCBsOBBK8gonMVaS1NXVYeTIkXjmmWcS5rn00ktRWloae7399tta+pw5c7BixQosW7YMGzZsQG1tLSZPnoxIxPwHzrRp01BSUoJVq1Zh1apVKCkpQXFxcSw9Eong8ssvR11dHTZs2IBly5Zh+fLlmDt3bkrn09bwTiohhBBCCCGEJKBlcVJTu/c3adIkTJo0yTKPx+NBQUFBs2lVVVVYtGgRlixZgksuuQQAsHTpUvTv3x9r167FxIkTsWfPHqxatQqbN2/GhRdeCAB48cUXMXr0aOzduxdDhgzB6tWrsXv3bhw4cACFhYUAgCeffBIzZszAww8/jKysrGaPf7LhnVRCCCGEEEIISUAEtha9AKC6ulp7BQKBJKUn5r333kNeXh7OPPNMzJw5E+Xl5bG07du3IxQKYcKECbHPCgsLMXz4cGzcuBEAsGnTJvj9/tgCFQBGjRoFv9+v5Rk+fHhsgQoAEydORCAQwPbt21td9xOFi1RCCCGEEEIIScDxO6nJXgDQv39/+P3+2GvBggWtOuakSZPw6quv4t1338WTTz6Jf/zjH/j2t78dW/SWlZXB7XYjOztb2y8/Px9lZWWxPHl5eXFl5+XlaXny8/O19OzsbLjd7liejoCP+xJCCCGEEEJIAkKGHY4kvzkNfWW4d+DAAe0RWY/Hk2gXS6655prY++HDh+P888/HwIEDsXLlSnzve99LuJ9hGLDZFCM4W7yBV2vytDdcpCZgZJ8v4M5wwyWtEC04GkzXto81mk6tFQ1pWlp9g+6WVVevuEMGhAgiegexB5XtqJ4WVZzukK676Xkz9McN0n3mdm6a7mwZjOh1UB3ZagJeLa0hqDtbhiPmDfpQSG8/1aAykKslIeLWj6k61hlO/aZ/+Hx958hoczuUobdJKEM/TiDHrIQvTbdhzFCsleW1z7br19CvOFHWe77U0g6EdPfK/ztsPkJxrEqvUFS9vhn6NQuG5MMOZt6wV28vR1DfVs87ziUyQ/RrpQrSYRTOxG58btVqGoBdabNInGWkXo4DqluqcENWLIWzXGY/DQmH5dYytPchuNKbjiHPwYrKoNkHjjbq/aGy3tR7Q6PQd4MYalWNCxdRu7jmqttvxCtcOX1me7uFy2SWT9/uk246tUp9O4Wram3QFF+90HdIOHaHQua5SX9MtQYRj75fOE0/bzU9lKY7dEdGj9a2g5nmvrJvB3ub5+JL19sgQ1iDumzmte9t18fvqLBhPcN1OPb+3wH9v9I7DvfXto9WKWVJQWWYxwyIsd2w6dc+omjcbqFvAAgp7SD1rbm3SzlLfSv1ldrw2lqvv0bD7EflQd3h/Pj80lbOnwP9FTF9e3vrvdKuNEBYjDu1IbPfHxP6rmnUv2Sqc3igUdcIGsW4rWjaHucYrmeNKk68UTGHq06yGT79Wqj6BoCQonGXcEWvD4nxKWhuS30Hg4q+RVdu7KNvqxqO+PTMYZ8+BgYzzTk7PEafzwNZ+r5B5SZRsJfetz1p5vXt5dJdZb2icXMd5jW1iwcJ6526M7Cq8S3lg7S0o9Wmvg3RZW299OsSMMy2NRzie4yIAuBQnL/D+nBkOYcb7sS6kU7uNvGd0Upzcg4PKScbEuNao3KeXzbqd/XCUXuz77saqYSgycrKOim/4+zbty8GDhyITz5pcsQuKChAMBhERUWFdje1vLwcY8aMieU5dOhQXFmHDx+O3T0tKCjAli1btPSKigqEQqG4O6ztSdftLYQQQgghhBBykjFgQzTJy7CK59QGHD16FAcOHEDfvn0BAEVFRXC5XFizZk0sT2lpKXbt2hVbpI4ePRpVVVXYunVrLM+WLVtQVVWl5dm1axdKS80wjKtXr4bH40FRUdFJPScreCeVEEIIIYQQQhKQyp3UllJbW4tPP/00tr1v3z6UlJQgJycHOTk5mD9/Pq6++mr07dsXn332GX76058iNzcX3/3udwEAfr8fN954I+bOnYvevXsjJycH8+bNw4gRI2Juv0OHDsWll16KmTNn4oUXXgAA3HTTTZg8eTKGDBkCAJgwYQKGDRuG4uJiPP744zh27BjmzZuHmTNndpizL9CF7qTOnz8fNptNe6mWzIZhYP78+SgsLITP58O4cePw0UcfdWCNCSGEEEIIIV2dZDFSj79SYdu2bTjvvPNw3nnnAQDuvPNOnHfeebj//vvhcDjw4Ycf4sorr8SZZ56J6dOn48wzz8SmTZuQmWn+ZOLpp5/GVVddhalTp+Kiiy5CWloa3nzzTTgcZl1effVVjBgxAhMmTMCECRNwzjnnYMmSJbF0h8OBlStXwuv14qKLLsLUqVNx1VVX4YknnjjBVjsxutSd1LPPPhtr166NbasX4LHHHsNTTz2FxYsX48wzz8RDDz2E73znO9i7d692MQkhhBBCCCGkpUQNG6Jxph3xeVJh3LhxMOQPmxXeeeedpGV4vV4sXLgQCxcuTJgnJycHS5cutSxnwIABeOutt5Ierz3pUotUp9PZbEBbwzDwq1/9Cvfdd1/M7eqVV15Bfn4+/vCHP+Dmm29u76oSQgghhBBCugFR2BFN8gBqsnSSGl2qNT/55BMUFhZi8ODB+OEPf4h///vfAJqe4S4rK9OC2Xo8HowdOzYWqDYRgUAgLuguIaR7QH0T0n2hvgkh7UXEsLXoRdqOLnMn9cILL8Tvf/97nHnmmTh06BAeeughjBkzBh999FEs0Ky0Sc7Pz8fnn39uWe6CBQvw4IMPxn0+ttde+DKSN0/IMPNURXTL+k8aTAvzQ179h8f1mSJsi2LLLcNBOEUoFPVxgmBUf/5dtZYPiTATfdJ0i/qz/aaLV21Et9eXjywcDpiPTMtwOnZRX5/TtLv3uHUL+IjXtItvTNPbINJLhCFRwnQEcvW8rmoRukHZNZgtwnSIsC5QLNe9bj08QVXYDCPyz4B+1z5q6BbehU4zXI1DOLr1cuhW+P2yqmLvA2G9XzUGzHOLCPv/iO7kjoDd3DecLsIPie7qCCjxr0SYA8MlHi9JNzM4XPr1tDuUsDIiPIrHoRd8MGiGDjkc1vv8Ka4KbbuX3WyjHIfeN8f7d8fe10SV0C7eMFag5Zy4vvXrcSxixgXYV6/HXzjsNWOC1If1/ir1pNr+S31L1DAZdSJ0RFDpS71FGKmz/XoA7vqICJOhUBHUNV2lhM+SIdJ8Hl0zXkXjIZEWSFP6ay+9LRsbRUiK3ma6s0b8/1R012C20maZonMrbeuw6ztWhPXz3B04Rdn6QksbpOgbAFxKO2Q6GrS0vhn64qi63gzTFQqJUFFKiJGIX2+voE2MiUoYj6i4fHYR78fRaOY1xHnbsszMDpc+HjpEiIqoEkJMhqf4d1APvVMW7hV7P8h9WEtT9S23x2bt1dIq05uuS4M3jJVoOQn1nWPq24HE+oqI/9NXRcx+L/Vd2qCPZ42ZZv9N9oifW4SAUZH7NihjR1DMFdk+sw3PytLno4CYANRya8J62Lh/B/UQTw5lDne5RdgblxIyScznQRFWJuxXwkiJkEmNeSLslaJxm2geTd8ADL95XJv4vqF+/6gM6fr+Z6CvXjDM7zynumq0FJe4hGl2M5SM/O50rNY8TlTo2+7QNaNqPOAQ7SVC0ChRmuLaxNGQ+DuPPVMPe+NUQhE6LfoeoPeTfwf1Pl8T1fvNQNeR2HuvTcwDSniq8zP3aWlD0sx2b/CG8RfLGnVeTsbjvsSaLnMnddKkSbj66qtjjlUrVzZNZa+88kosjww425IgtPfeey+qqqpirwMHDrR95QkhHQL1TUj3hfomhLQX4RaYJoVTNE4i1nSZO6mS9PR0jBgxAp988gmuuuoqAEBZWVksdhDQFMw2WRBaj8cDj8djmYcQ0jWhvgnpvlDfhJD2Imokv1MaTeyBRFpBl7mTKgkEAtizZw/69u2LwYMHo6CgQAtmGwwG8f7778cC1RJCCCGEEEJIqkQNe4tepO3oMndS582bhyuuuAIDBgxAeXk5HnroIVRXV2P69Omw2WyYM2cOHnnkEZxxxhk444wz8MgjjyAtLQ3Tpk3r6KoTQgghhBBCuihR2BBFkjupSdJJanSZRerBgwfxox/9CEeOHEGfPn0watQobN68GQMHDgQA3HXXXWhoaMCsWbNQUVGBCy+8EKtXr2aMVEIIIYQQQkirCUUdsEWtf3MaSpJOUqPLLFKXLVtmmW6z2TB//nzMnz+/TY6X46hDmtMR5wx4NKIveo9FTPez+qjuvKk+u+516E5o0tHT7zLdIqtCvoRpAOCxm0536c6AljbAczT2viKcrqXVR/T6qeVkOPRyHKJ+vZQ6FHqrtLRKUV/VETIsHn2oDprtJZ2Jg8KNuFFxOazI0l37Gmv13yEZQfM4WXm6E5/XJRx86836+kRaWKnT1prTtLS/G2do26f6TKe7fu5jWppd2JEOSjevi9VvGqSz8/6qXtp2vd+8htGoXo50EQ3VK1aBwnEw06/3qX69KmPvs1x6X1CvYXVQb3e3XXd7VN0xv6zTnRXfaTxb2z7Hb7qpDvcd1NLS7GYd+jhN59T6JE6FLSXXUYM0Z1N7qXHNqiO6m6F07FYf5XHa9bqkOU13Q7dIy3TpTrGqm262W3dBlW2qanOQ94iWprZ3rXDwdIk6ZDjMOriEdWS2U69Dnsd0vqwW5UqCiqtoZUAfC9S+Y6VvAKisU1yca6S+9X3Tepv1TfPqzpY1dWZ93S69LcNizNlROzD2flvNIC3t9LRybbvQVRl7L/V9RqbubKtqXI6Bat/4skY4xvZK7Aot9R2s18fzsDLuSn0P6GU6a/fy6GmyTVRnatmHaoU+Pq4zHdCt9A0AQ31fxt6n2/UxpsDeNKfUO9te35L6qNm3Dof1+Tyk9GWp7yy3ruE0pd3SxDx8LKDPvTke03k7w6H3VzmHD/aYfUmtK6DrXfZBSZoybsjr1teru1HXhpV5RfRX1TW4MqjruzEiHLoVjUt9V9XrdaivMbeNgH6tPL30ts5IM89F1TcAOBX3+ZCo+87aAdr2/9X1j70/1adrVtU3oH8HGpKljwUqsg3SnPp3itJaU+N1WbpmJarGQwHh1izypmco80K2/v0jz2eO3/J61of1Oqjf1+pFlIfN9bqb95uNI2Pvh2bp7vGqvtOEvjPt5pjTVhrvCKJogbsv76S2KV1mkUoIIYQQQggh7Y3Rgsd9DS5S2xQuUgkhhBBCCCEkAYyT2v5wkUoIIYQQQgghCQi34Dep8ucT5MTgIpUQQgghhBBCEkB33/aHi1RCCCGEEEIISQAf921/uEglhBBCCCGEkARwkdr+cJGaADuicMCGCHT7bhmSRrX3liFf1BAvPiWkAwCk2XUbetXqP0uEq/CJvKq1vAwlMcr3r9j7FVVFWtpgr265rhI09K6wp65Q2+7tNsO6uFz6MQf69LAY6rkForoNfUR5FOJISLf/l6Eu6sKmHXp9hm6bXh3SrdJVG3UZQqU2pO/rVizQT8s6qqWpFvb7antraTKEhnrt7SJkj9eWOLRNeX2GlpbmMttLhqDJ8AQSbgeF9b0cHDPyzLyFaXrIgcFp+jXLc5npsu5qaKWDwRwtLd+ll6te314uPazJgfpe2vYHVafE3uc467S0Uz2m5b8bpo7scUb8rcNhi8Jha6qreh0dNuuwDlVhMwSD1F6uohEZ0kmG8sh0mhq3GgsAwGM3r4eqbwB4q/rc2PtTPBVamhyrQobZBz8L9NHSskX7q2PXIK+uERleoNEwNa4eAwAqQuaYWB3Ww1fUipBYjVlmOdW99bFAhqvKcpt1aAzrOlBDc5zaSw/NIENUfF6TbR5D6DssziWUZm5n2vUxOiK0V6WE2pLhvMJ2sw5S3+luvS/I8DUqmXn6vrlKmJMz0vWQGfkuM2yYvH4yzElpqJeSV6+PHOdUjX9R79fSSir76fVVQiAN8ZZqaS5b+Ku/bROewmsLwftVXWWftBpDqiOJ9Z1nMYfbxbjRyyJsnNeuj6+yjS/w7Yu9X1urh/Xpq4RJUdsTiD/PfYrG/Q69PvKYg5R+KNPU8V/VOqDrGwAqwmZoLXX+BuLn8Nocc7shpJfr9+jnpoZ5sYm2PtVvalz+HrCsQQ/xpGpc5lX1DehtJvtMvQivY5WWqZyLOtc3h6p3vwh5JENHDcswNZTr1Pum2jdkaMRDIV2nKh7RNxvEvgfqesXe/1/lKVqaXwljNsSj61udV5PNsZ2ZcNQOWzTxmHw8D2k7uEglhBBCCCGEkAQYSP6b0667BO+ccJFKCCGEEEIIIQng477tDxephBBCCCGEEJIALlLbHz48TQghhBBCCCEJOL5ITfZKhfXr1+OKK65AYWEhbDYbXn/99YR5b775ZthsNvzqV7/SPg8EArjtttuQm5uL9PR0TJkyBQcPHtTyVFRUoLi4GH6/H36/H8XFxaisrNTy7N+/H1dccQXS09ORm5uL2bNnIxi0/h31yYaLVEIIIYQQQghJQCRqb9ErFerq6jBy5Eg888wzlvlef/11bNmyBYWFhXFpc+bMwYoVK7Bs2TJs2LABtbW1mDx5MiIR0/xt2rRpKCkpwapVq7Bq1SqUlJSguLjYPLdIBJdffjnq6uqwYcMGLFu2DMuXL8fcuXNTOp+2ho/7JsAOA3YYkF6D0t1QdUOTDplWToWyHNVhtJ9bd6SsjKQlzCtZcmxM7P0gr+7g+mljfsL9/rP337XtkpoB2nZtxHSr7O0STnLC6bKP03R8lU5ujYrbb5yLoEt3klPPMyJ+rB6K6l03oGyrDoMA4Hfprn1n+03nOdV1EdDd7HI8ujttdVB3HFV/QC9djOW/f7KcpjPfoCz9+jZGzH3dwtm1UTj4qs5xqsMpAJySVqltn+oz3Zz7SPc/u+4UqPZV6UYaUa5DoUs4yFpcX9n/M3L0+qrt53fobe21mX0jTXlv2NrG3deJCGI1VbqWA/p1lDpNc5h1yXa1XO9Ss3k+UyOqtoB4l0613D9UjNbSTvWaLq7lId3JUnJbzvbY+4fK87S0euG061f6q7w2vZ212rbqfCmdYnMcZhsdi+hOoFbjWKPQk3SoVJ3ApYvo6Zlmv5euq/K/3I0e8ziVQd19WDr2qvUNCTd0tb0AoH9GpVn3sF53p9KnpHuvdBh2O8xrn+/VnbRPTxMOvk7TwTddOPiqjrLSvVv2N3X8lsjzdig2IWk5+ngeEeem9qPjbr6x+h7XeBu5+6ru3RK3cgzZFlmKo6vLpdfRYWGJIucn1U0Z0HUh21uiavwMb5mWpmqoJqqPG//R65/a9qPKfF8V0fu2dPtV3WBzHLq+VWTdKx26ptX6xTn7i/6gliVdZKtDwulfGZ9OyxTRBBzmNayP6MeU+lLncOn0LVHrL78n5PnMNpLfC1TNAvoYJJ1f5Xzf22OWK/VdqDg7A/oc7hZ68irbQXHN5PVV53A57ko82aGEaWqfkt8L0mzmeGS0kcY7gihsSY2TkqVLJk2ahEmTJlnm+eKLL3DrrbfinXfeweWXX66lVVVVYdGiRViyZAkuueQSAMDSpUvRv39/rF27FhMnTsSePXuwatUqbN68GRdeeCEA4MUXX8To0aOxd+9eDBkyBKtXr8bu3btx4MCB2EL4ySefxIwZM/Dwww8jK8v6+8XJgndSCSGEEEIIISQBqTzuW11drb0CgUCS0hMcMxpFcXExfvKTn+Dss8+OS9++fTtCoRAmTJgQ+6ywsBDDhw/Hxo0bAQCbNm2C3++PLVABYNSoUfD7/Vqe4cOHa3dqJ06ciEAggO3bzX9wtzdcpBJCCCGEEEJIAgzD1qIXAPTv3z/2+0+/348FCxa06pi//OUv4XQ6MXv27GbTy8rK4Ha7kZ2drX2en5+PsrKyWJ68vLy4ffPy8rQ8+fn605bZ2dlwu92xPB0BH/clhBBCCCGEkAREonbYkvzm9PhvUg8cOKA9IuvxeBLtkpDt27fj17/+NXbs2AFbgp8vJMIwDG2f5vZvTZ72hndSCSGEEEIIISQBRgse9T1+JzUrK0t7tWaR+re//Q3l5eUYMGAAnE4nnE4nPv/8c8ydOxeDBg0CABQUFCAYDKKiQvcLKS8vj90ZLSgowKFDh+LKP3z4sJZH3jGtqKhAKBSKu8PannCRSgghhBBCCCEJMAAYRpJXGx6vuLgYH3zwAUpKSmKvwsJC/OQnP8E777wDACgqKoLL5cKaNWti+5WWlmLXrl0YM6bJSHX06NGoqqrC1q1bY3m2bNmCqqoqLc+uXbtQWmoai65evRoejwdFRUVteFapwcd9CSGEEEIIISQBUdhga2N339raWnz66aex7X379qGkpAQ5OTkYMGAAevfureV3uVwoKCjAkCFDAAB+vx833ngj5s6di969eyMnJwfz5s3DiBEjYm6/Q4cOxaWXXoqZM2fihRdeAADcdNNNmDx5cqycCRMmYNiwYSguLsbjjz+OY8eOYd68eZg5c2aHOfsCXKQmpDySBV84vnmktbZq/Z3haJTZY1iFlQAArz3xvnHW90oIg6qwDE9jCuRAQO/cTnFMhxI6YmnVeVraORkHtO1Gw7QmV0MdAPHhDtSQNFKwEeXZdhnqID7sRGLb/pBNvzYuu7md4dTbUra1WpYMZRNS8ua69RAjfpdu25/hNEMuxNVPhJJQLewHpukhaGQIDZVeLj38x2f15jVNd+rtXuDW21O9DmniGslrZhU+JaI8cCGt7utEyBHV7l4eQ442akgPGfamLNwr9l4NE1Efbhv7+rJIr5i+1dAIMjSGDFGhhpmSIVTUPiDbM1OEcVHPNy6sldhWQ9TIsCj/bjTNEDyiri4R3uD3VcNi789O+0JLk9pTQxZlinAV6TY91Ih6zaN2vU3U9pRtK8PVqO0n20T2DzVkBoR81HJk2IuA0Luq6UyhpyyXPo6obSTLlde7v8989EoNlyPJdur94suAX9tWx41Cjz7u9hJ9KktpEzXkA6CHXZHhUuxiflF1K/UdEQ9fyXFFz6sfR22jw2H9S0/lV2ltpe/ScC/4Qs1/vbEa69Ic5vlIfVudT4YIp6bOrYDen2WQDxleSdX4vxp1sxO1P6hhhQDglepTte3BHjMUkzp/A0CBs1LbVsuy1Le4/nJsUHVaI0JrSb27YJ6L1LdPtKfa1vI7RSiqzLUiuk9UzNmqxqW+474LKBOWlb5r3daPcfZWQpUdDmZoaTJEVn+v+d1ADd8FxM+n6rYrLliiiVusmeS4oYY4lOFqZF71u6jUg9rnD4cztTSPzewLDRF9HuhKRKJ2oIW/SW0p27Ztw/jx42Pbd955JwBg+vTpWLx4cYvKePrpp+F0OjF16lQ0NDTg4osvxuLFi+FwmNfz1VdfxezZs2MuwFOmTNFiszocDqxcuRKzZs3CRRddBJ/Ph2nTpuGJJ55I6XzaGi5SCSGEEEIIISQBxx/pTZYnFcaNGwcjhZ0+++yzuM+8Xi8WLlyIhQsXJtwvJycHS5cutSx7wIABeOutt1pcl/aAi1RCCCGEEEIISYAaYsYqD2k7uEglhBBCCCGEkARwkdr+cJFKCCGEEEIIIQmIRG1A1HoRGkmSTlKDi1RCCCGEEEIISUDTb1KT3Ultp8r0ELhITUB91AMj6oxzbZXuhqozX5wLr7ZfYmfAuLyGtTtYQHGZlK54GY7EbovSSU7uq9UhzsXRdNsLCKfAUETvRqojpMyrEjSEm55oa9VdsVHklc6LVtQL1z7VHVBzBgQQtnAYTXwm8e6o8e6OZtunCefCNLe5belcCOAUX2XsvXQqlW6PantWRXQXaLmt1knWXUW6/8nrK6+piuzzbsWdUF57tZw6xb61Ido2zoA1ES/CX/XbkEWdZb9Tz0HWuT5i1tMvXFulntShQo4b8pjqeKC6ezbtq7oE6+VI11a1vvI6yT6puoEGw/p51ojrKJ1DtTRFF3EO2KIO6nlLp00r4stV3EjFFwqpGbXNomL4DgmXRrsyXYZsydzaTS26XMJVXRlX5FgvHXzV+SVNjO1yX9Wl86ihu4hKF1Yr1Osi3aTjxn7N0Vrvm2miTdSxrT7SvONxWzl/1kc9iEaP69tiXhHjtkvRl5xjZF6pcStUjYeShKhQ53DZr6xcwQOifl6H2Qcz7fr1bzR0R+HGiLldA5/Im9jV2kp7clyQ7af2B1lunG7VscHimGExX1oh9V1vcyfIGX8d1HFYfueKi2ignFsfd62W1iCcna1cjKuFZtTtLIvIElLD8eOueV2km7fEo4xr8nuCOsepcyEA1NnM7cYu7O7Lx33bHy5SCSGEEEIIISQBBmBxK8rMQ9oOLlIJIYQQQgghJAG8k9r+pBZ1VuFvf/sbrrvuOowePRpffNEUGH7JkiXYsGFDm1WOEEIIIYQQQjqUqA1GklcyYyWSGq1apC5fvhwTJ06Ez+fDzp07EQg0PZNfU1ODRx55pE0rSAghhBBCCCEdRZNxUvIXaTtatUh96KGH8Pzzz+PFF1+Ey2X+6HrMmDHYsWNHm1WOEEIIIYQQQjqS44/7JnuRtqNVv0ndu3cvvvWtb8V9npWVhcrKyhOtEyGEEEIIIYR0Dgxb0ytZHtJmtGqR2rdvX3z66acYNGiQ9vmGDRtw6qmntkW9OpzaqBfhqDPOhl6GkpG27ypq+JBaYcl9iqdS23bYTTvvemEDLq3b1TAKMrSFat0uQ1JEZIgF1S5eHCNkT9w1ZOgaac+uWuNLK/JUbOfVc5N25zIUgrRZV5G29Gr9rK6vrI9sz/qIS8mb2L4e0C3rZRgRWa6KPG91W4YNqREW9eq5HAvrISnkNZRlJUKGPZCo7SnzytABASWoj8ybKMRQsI1+79HwVYgpWa+48AYWIQ2k9urCZl+X4UJkX6qNmuFC6kUYgrhQDVaTns2sg9S3VfgVeZ4SNdSAvBbyWkmNa3WwCPdkNXZFRVoq+rbScCqhq2S4mgYlTEdceCqx7XGYGnfKUCwWY7REDW9REUrX0kJOEVolbJ6bHJPVkFMyVIxVHSz7HvRrKPuUDEFiFaLt+L6NKYQQsaIq7EMg3HR8GcpDO644nqrFOM2Kfq5qXJ57bVQfi1VNy34VF57KAj3kj36NQ0gc0k32V6trIfPWKvNKXEg+i5A0sv3iQwHZEqZJrELLWF1fGYZLxUrfEqddb+s0JbxPSIYJsgg/FxdSSISOqU0QmgmwHoePRfT5PV0J72YVFq6pXPU6tHxJIL8Lq31Kpqkhpxojeqi8roQRbXoly0PajlY97nvzzTfj9ttvx5YtW2Cz2fDll1/i1Vdfxbx58zBr1qy2riMhhBBCCCGEdAh83Lf9adWd1LvuugtVVVUYP348Ghsb8a1vfQsejwfz5s3Drbfe2tZ1JIQQQgghhJCOg8ZI7Uqr46Q+/PDDuO+++7B7925Eo1EMGzYMGRkZyXckhBBCCCGEkC4C46S2P61epAJAWloazj///LaqCyGEEEIIIYR0Lmic1O60eJH6ve99r8WFvvbaa62qDCGEEEIIIYR0Kgwkf9y3hz4O/I9//AO/+tWvsHHjRpSVlcFmsyE/Px9jxozBHXfc0eobmi1epPr9/th7wzCwYsUK+P3+2IG3b9+OysrKlBaznZmoYUfUsMc7bQrXMtXdTrrFqY51Mk066B0Kme0rne7CcY56id0rrZDucCHNiVVXVh10J8Nkrq56uYkd/lJBra9017Ny7bRy+0uG6gYozzkoXRmVOkj3QVmHgOLoK51A1eNYpUmSua5WhkxHz5DIK4+T5Www00Rbq31cugJL98RUnBbVsqzOU3UNDLVRpOyQYYfjq36qnp90q5RYuX+qjobSxVHVN2DttJvMVVpFbZtARI4/sn+YeaVTqTyGw+KYoah05VXaz+L6J3PaVTVu5Uzc3L4qYYs0p3TlVY4pnV7j6mtxbnHlRiNKmt4XXBb9Xl4Hq/FTXkO1H2UId2m5bYWqy2Suq6qm5dhgpaW4ceSr7UhzmVuBAVvselk50EoaIond+q0cZsuDWdq2lXN1sja10p7UgRWqi7zsR9Jh3uq7iua6nSTagYpVewHWzt/BOEf+lo37co6x0pPUs5XWpL7Vc0vF6TsgnH+li7mKdPqVDueqI3+GU3cJlo7x2jHlNbTQqWwjdV6T+6matioz2RzbqeEitVlef/11TJ06FRdffDFuv/125OfnwzAMlJeXY/Xq1bjooovwpz/9CVdeeWXKZbd4xHv55Zdj7++++25MnToVzz//PByOr77oRSKYNWsWsrKyEhVBCCGEEEIIIV0LPu7bLD/72c/w85//HPfcc09c2pw5c/DLX/4SP/3pT1u1SG3VvzReeuklzJs3L7ZABQCHw4E777wTL730UmuKJIQQQgghhJBOx/E4qcleqbB+/XpcccUVKCwshM1mw+uvv66lz58/H2eddRbS09ORnZ2NSy65BFu2bNHyBAIB3HbbbcjNzUV6ejqmTJmCgwcPankqKipQXFwMv98Pv9+P4uJiVFZWann279+PK664Aunp6cjNzcXs2bMRDAaRjE8//dTyKdqrrroK//rXv5KW0xytWqSGw2Hs2bMn7vM9e/YgGmUkW0IIIYQQQkg34fid1GSvFKirq8PIkSPxzDPPNJt+5pln4plnnsGHH36IDRs2YNCgQZgwYQIOHz4cyzNnzhysWLECy5Ytw4YNG1BbW4vJkycjEjEfz542bRpKSkqwatUqrFq1CiUlJSguLo6lRyIRXH755airq8OGDRuwbNkyLF++HHPnzk16Dqeddlrc4lrlf//3f3Hqqae2oDXiaZW77w033IAf//jH+PTTTzFq1CgAwObNm/Hoo4/ihhtuaFVFCCGEEEIIIaSzYTOaXsnypMKkSZMwadKkhOnTpk3Ttp966iksWrQIH3zwAS6++GJUVVVh0aJFWLJkCS655BIAwNKlS9G/f3+sXbsWEydOxJ49e7Bq1Sps3rwZF154IQDgxRdfxOjRo7F3714MGTIEq1evxu7du3HgwAEUFhYCAJ588knMmDEDDz/8sOVPOX/+85/jhz/8Id5//31MmDAB+fn5sNlsKCsrw5o1a7B69WosW7YstYb5ilYtUp944gkUFBTg6aefRmlpKQCgb9++uOuuu1q06iaEEEIIIYSQLkEKxknV1dXaxx6PBx6Pp5kdWk4wGMRvf/tb+P1+jBw5EkCTaW0oFMKECRNi+QoLCzF8+HBs3LgREydOxKZNm+D3+2MLVAAYNWoU/H4/Nm7ciCFDhmDTpk0YPnx4bIEKABMnTkQgEMD27dsxfvz4hPW6+uqrsX79evz617/GU089hbKyMgBAQUEBRo8ejffffx+jR49u1Tm3apFqt9tx11134a677opdCBomEUIIIYQQQrodKRgn9e/fX/v4gQcewPz581t12Lfeegs//OEPUV9fj759+2LNmjXIzc0FAJSVlcHtdiM7O1vbJz8/P7ZYLCsrQ15eXly5eXl5Wp78/HwtPTs7G263O5bHitGjR7d6IWpFqxapKt11cdoYdQJRV5wFt7RKt7Zutzf7Hoi3rNf2S/JTYdWiXtrVqzblNWHdwtwtbOfV+sr6yTAkVqFZpM27GqpFtpcsN1HdZZ1kOA2J3tYtDx0hLetTQS03LhSLqINqWR+G3iZq6I1wkmdF1OPI85KhLtTQRbJtXQ79x/AVYTNcjVW4Ctk37cJS3yrsgewnqnZkyBYtn/K+sY1+8h6IuoCvwkup1vnxYWXsYj9nwrxqe5cFe1keX14PFdlOatvI9q8Nu5V8IryBIcNgqAcRBxXdTg1to4ZQaK7cBiVMl+yDVqGh4vQeTRySQoaVsQqLoabFhaCwyWtmMW5YhWaQee1Se0r4LJsIbaNqJImG1fo7IPWTuH4yzEl1xBd777MHLfOq/c0qDdBDxqQU+itBGIxQtG3iN4SiDti/6kNSwzKkm4pViBd5fkdDmSdQQxPZpqrGq8UcnuYwR8N6ES4nvv8m1kEooreBVdgbtQ5yjJFYtZ+c+63C/UjtBZWwV8nCzOhpVqFjrPua1p5Camrd5fgoCYUTh4OxGutToV6Eo7IqR14jVR9pYmyQ4WKswtGFlHnAKhxVOFVnoc5E9KtXsjwADhw4oK2PTuQu6vjx41FSUoIjR47gxRdfxNSpU7Fly5ZmF57HMQwDNmW+s9nix+fW5GlvWmWcNHjwYJx66qkJX4QQQgghhBDSLTBa+ELTDTz1dSKL1PT0dJx++ukYNWoUFi1aBKfTiUWLFgFoeqQ2GAyioqJC26e8vDx2Z7SgoACHDh2KK/fw4cNaHnnHtKKiAqFQKO4Oq+Tjjz+GocSw37BhA6666iqcffbZuOSSS/C///u/qZ/0V7RqkTpnzhzcfvvtsdesWbMwevRoVFVV4aabbmp1ZdqK5557DoMHD4bX60VRURH+9re/dXSVCCGEEEIIIV2Rk+Du26pqGAYCgaYn3oqKiuByubBmzZpYemlpKXbt2oUxY8YAQGx9tnXr1lieLVu2oKqqSsuza9eumM8QAKxevRoejwdFRUWW9Rk6dGjMbfi9997D2LFjEY1Gce2116JXr1743ve+h3feeadV59qqx31vv/32Zj9/9tlnsW3btlZVpK34n//5H8yZMwfPPfccLrroIrzwwguYNGkSdu/ejQEDBnRo3QghhBBCCCFdi5Ph7ltbW4tPP/00tr1v3z6UlJQgJycHvXv3xsMPP4wpU6agb9++OHr0KJ577jkcPHgQP/jBDwAAfr8fN954I+bOnYvevXsjJycH8+bNw4gRI2Juv0OHDsWll16KmTNn4oUXXgAA3HTTTZg8eTKGDBkCAJgwYQKGDRuG4uJiPP744zh27BjmzZuHmTNnJv1Zp3oX9aGHHsItt9yCZ599NvbZvffei0ceeQQTJ05MrXHQyjupiZg0aRKWL1/elkWmzFNPPYUbb7wR/+///T8MHToUv/rVr9C/f3/85je/6dB6EUIIIYQQQrogKTzu21K2bduG8847D+eddx4A4M4778R5552H+++/Hw6HA//85z9x9dVX48wzz8TkyZNx+PBh/O1vf8PZZ58dK+Ppp5/GVVddhalTp+Kiiy5CWloa3nzzTTgc5m+wX331VYwYMQITJkzAhAkTcM4552DJkiWxdIfDgZUrV8Lr9eKiiy7C1KlTcdVVV+GJJ55I6Xx2796N66+/XvusuLgYH330UWoN8xUnbJyk8uc//xk5OTltWWRKBINBbN++Hffcc4/2+YQJE7Bx48Zm9wkEArHb5kC8bTQhpOtCfRPSfaG+CSHthQ0tuJOaYpnjxo3T7kRKXnvttaRleL1eLFy4EAsXLkyYJycnB0uXLrUsZ8CAAXjrrbeSHq85ampq4PV64fP54n5/63a70dDQ0KpyW7VIPe+88zS3J8MwUFZWhsOHD+O5555rVUXagiNHjiASicT9yFe1YpYsWLAADz74YNznDlsUDltUcywD4t3YVKc56YpaHzVd3ZI54mpOfMI+zMrtV+aFzcwr3Xylm57q6CdNFaW7puramszhT20T6egXiJhdzinSpMOgy2YeUzpZxrv/JXZstLpm0rFRtpkVah3i3JBFfeyag6xwUrZoT1k/K0dhiZqe6WrU0qTzs0qt2LZy7HVZPIuRzLkwJTfQVpJM34De16UTqETVeENEd220dJmE1L/5XjqoSh2o+o9zaVb6jpWzZlM55r7haGKHacDasVJqUe1nsg5WrqGy34csnHZlfe0WjsxuR8sdpp1qHUR3DBstHzestGjlaC6JdxRWzlOOBSJvvsdcoB0NpWtpqoYboqLfir4ZUtzHHUmsLFUXzziHc4s2ind6bjqXVJ0/E+k7AntMy9LNN27OVMhymuNknJ5SqJrVHJ7MwVXdV+ZVHX1l35bojvd6mtS3Oq5Iral9J9kYo+rSKvKAPE4ynVqh7ivHsTi9K+lW3wsA6dCd+PvbiUQIkFg5ihd6dWMc1V3aLnQTUL7ae1L5TiN0KV16W4r8/qjOq6Gu7O6bQgiansaZZ54JoGk9uH37dpx77rmxtI8++ginnHJKq8pt1SL1yiuv1Bapdrsdffr0wbhx43DWWWe1qiJtibRLtrJQvvfee3HnnXfGtqurq+PiGxFCuibUNyHdF+qbENJutORx3rb7n0WXYd26ddp23759te3PPvsMM2fObFXZrVqktjYg7ckmNzcXDocj7q6pasUs8Xg8J2QNTQjpvFDfhHRfqG9CSHthiza9kuXpaYwdO9YyPZHZbktolXGSw+FAeXl53OdHjx7Vfqjb3rjdbhQVFWlWzACwZs2amM0yIYQQQgghhLSYk2Cc1J2IRPTH7bdu3YrNmzdrvgGp0qpFaqIf+QYCAbjd7mbT2os777wTv/vd7/DSSy9hz549uOOOO7B//37ccsstHVovQgghhBBCSBeEi9Rm+eyzz1BUVASPx4PLL78c1dXV+M53voNRo0ZhzJgxGDp0KD7++ONWlZ3S477//d//DaDpN5+/+93vkJGREUuLRCJYv359h/8m9ZprrsHRo0fx85//HKWlpRg+fDjefvttDBw4sEPrRQghhBBCCOl6nIw4qd2BefPmITMzE6+//jqWLFmCyy67DC6XCwcOHIDdbscNN9yAu+++GytWrEi57JQWqU8//TSApjupzz//vPZor9vtxqBBg/D888+nXIm2ZtasWZg1a1ZHV4MQQgghhBDS1aG7b7OsX78eq1evxrnnnotvfvObyM7Oxvr162OOvo888gguu+yyVpWd0iJ13759AIDx48fjtddeQ3Z2dqsO2hWIGPaYLb4VySz6j+Oy6/ni9rMlDr8QioqQJXY1LIGepoZ4kVbyQQv7eJlXhiyxW4S6kOF1VKQVuWpxLusTF/5FaQZpZx8UbSLrr5Ur7PZV+3hpz67WIZl1u2UIAFEd1VreKhyRPI9IXNgJJVSACK0QFduq5b8MPySvixomw2HxvEq8bb/o17bE4RMkVr9eV7Wn9hmjjcLWJNK31KUMD6Mir6NTaRtnknNXr11c37UIWRI3NijnIHUZF8ZFyet3Wccsqxf9RS9XhIOy0LRKuiNoeUxV48mCJqjHkeOGGi7C5RAhKUTfVjUur6fVtZcakTpViQu9ZKjhGKznGKlxFXkulaE0y7LM/aznLLXfuOz6Mbz2kF6WRWgttGD+lMdMFlalLbAK6aaOmfL6y/lAbUc5LsrrpoVfsenHjwsBpOwr62Clr7gxXQmnE9e3o4nbQPZJ9Vysjg8APofZP2TIGdk/1DoFZag/0bfdmk4Th5GS18hqDrfSbFN9E6erdZBjgWxr9bzlMeXYH9XmT72c8mCWtq2Ol3KMsQp7Jb8nqPt6hL7j91XDoYk+pNVXjgVKaKJUYjl1Mmic1DyNjY3w+/0AgMzMTDgcDmRmmiGSsrKyUF9f36qyW/Wb1HXr1nXrBSohhBBCCCGEAOBvUhNw9tln46WXXgIAvPLKK+jduzeWLVsWS//jH/8Yi6OaKi2+k3rnnXfiF7/4BdLT07W4ZM3x1FNPtaoyhBBCCCGEENKpaMFvUnviInX+/Pm46qqr8Nhjj8HhcOCdd97B//t//w9//etf4XA48I9//AN/+MMfWlV2ixepO3fuRCjU9CjAjh07YLP1vOeuCSGEEEIIIT2Mltwp7YGL1IkTJ2L37t3YsWMHzj//fAwcOBDr16/Hs88+i/r6ejzyyCMYP358q8pu8SJ13bp1sffvvfdeqw5GCCGEEEIIIV0J/iY1MYMHD8aNN96IsWPH4oEHHkB+fj5+/vOfAwAqKirw7W9/G++++27K5bbqN6k//vGPUVNTE/d5XV0dfvzjH7emSEIIIYQQQgghXYz33nsPzzzzDK666irU1dXFPg8Gg3j//fdbVWZK7r7HeeWVV/Doo49q7k0A0NDQgN///vexH9B2ZQzYEIUtzl3PyrVPOqypznLSFVESipjlWrkPSjw2vVyn06xDJKw/ku2Dnld1A7QLF0fpBguY29J5T6K6fVYHvVpaTdATe5/u0t0+vU7diS9NcQP1OKz9PlW3vThXU+Gg51aOk+nUXYytrlmy81aJWjgHWrlGB2zCoVX0BbW/BaLCUVK6xCpVkM6K+Z5qbftYKD1hndQ2kW0r3RP9DtM1Npl7opWLsLpvQHF+jCRxzW0pUcMWOxdV4/EOuXq7ORXXRNXJEtBdCyNI7JCZKmobxzs6K/+2Fe65Mq9Tc3t2Wx4zFZfV6pCp8aqArndV40Gn3rZe0X5q24bjHEalI2piR+x0p3lMn9BwujOgbavXLKmbt9Inkzm/W7Wf2t88FvoGgHA0sat6fLlmWaf6jmhpH9fnx97LMS/Nrvcbu4VraIZD39cKqR1V0zKtxvDGHftE0PQtnGyt2lHtA2myf4q2UPtOwEjshp0Mec4eW+LxVu0uMk3O4bUWGo9z6Lbor5VBX+x9lZjPM126nhqdZjukORL3q1RRNe53687k6nXJEn07FddbqWlVp3FtncK5qOOw1LecA63cvmUdBniOxd5/1thbS8uyme2Q5tCvkdX3mEy73n5yHrNyKtZdy/UxuSZi9htZZpeCj/smZe3atbj55psxatQovPnmmxg0aNAJlZdSb6murkZVVRUMw0BNTQ2qq6tjr4qKCrz99tvIy8s7oQoRQgghhBBCSGfBZrTs1ZPp27cv3n//fZxzzjm44IILTvjnoSndSe3VqxdsNhtsNluzdsI2mw0PPvjgCVWIEEIIIYQQQjoNBpA0zGsPXqQeN9T1eDx49dVX8dBDD+HSSy/F3Xff3eoyU1qkrlu3DoZh4Nvf/jaWL1+OnJycWJrb7cbAgQNRWFjY6soQQgghhBBCSGeiJXdKe/KdVMPQT/5nP/sZhg4diunTp7e6zJQWqWPHjgUA7Nu3D/3794fd3oWfLSeEEEIIIYSQZPA3qZbs27cPffr00T67+uqrcdZZZ2Hbtm2tKrNVq8yBAwfCbrejvr4e//znP/HBBx9oL0IIIYQQQgjpDpyM36SuX78eV1xxBQoLC2Gz2fD666/H0kKhEO6++26MGDEC6enpKCwsxPXXX48vv/xSKyMQCOC2225Dbm4u0tPTMWXKFBw8eFDLU1FRgeLiYvj9fvj9fhQXF6OyslLLs3//flxxxRVIT09Hbm4uZs+ejWBQN0CzYuDAgbFHflXOPvvsVt9NbZW77+HDh3HDDTfgL3/5S7PpkUjbOHB2JOmOALyO+POoCiduMun4prrDSkc16TCobrvs+kPv0kXUyik4zWZ2KId4eF46rqnHtKoPADSqbr9JjD+tnAJdSpvK9pL71YZNJ2CncOWT7ammy3Kkk6HqFCjd//zO+th76XrpFU7KDouAWI1R3e0xZCTuN+p1cdn0/aRLsOpAmCFc+6ycqFUHVgCoDuvbqutgeUB37S5U2jZbaR8AcAlHVJfiTJkjnEDtFj/miHcxVpwC7eZ5NDitHVhbSpazMeYmXR81XTCTOag6LJxPVV3WC2fNuohH29ZdgvV+Jl0xdfQ+6LEpzpGwdjFV+30yvatInUqnXa0+4vqo+waFC6/cznKZ/cUptWXhvCvdfVXX8hxXnZaW49S31WvosSd2awb09pVak9tWTpfqthzHrFzBZZ+SmlFdbL8I9NLSVEffssYsLe0UX5W2nec0nb/j3FHFdrrdHIPk+BiUbWLRfmlfldPgaht9N83fzY83al+XfVude6VzvtSlej3qhRu+dIpWt5O1qTqvyLle7dvJ+mCdMn/Gu/XraM7aQk9qG/mcen2s+qs6fwNAhnDWVjUunb7lnK0SiOhjVabH7Nt+p+78K+dwdX5K9v1D1XtAzOeqs21IOsKLNrHDrIO8Rg6nGGMsxg3p1v5FMDv2Xn4X+Hd9bux9f1+FlibHQHXck31Ruv2qc3jc+KPULyi+76jXobGNNN4hRJH8N6kpxkmtq6vDyJEjccMNN+Dqq6/W0urr67Fjxw7813/9F0aOHImKigrMmTMHU6ZM0e5MzpkzB2+++SaWLVuG3r17Y+7cuZg8eTK2b98Oh6PpukybNg0HDx7EqlWrAAA33XQTiouL8eabbwJoWrddfvnl6NOnDzZs2ICjR49i+vTpMAwDCxcuTO2k2pBWLVLnzJmDiooKbN68GePHj8eKFStw6NAhPPTQQ3jyySfbuo6EEEIIIYQQ0iGcjN+kTpo0CZMmTWo2ze/3Y82aNdpnCxcuxNe//nXs378fAwYMQFVVFRYtWoQlS5bgkksuAQAsXboU/fv3x9q1azFx4kTs2bMHq1atwubNm3HhhRcCAF588UWMHj0ae/fuxZAhQ7B69Wrs3r0bBw4ciHkLPfnkk5gxYwYefvhhZGXp/9xsL1r1uO+7776Lp59+GhdccAHsdjsGDhyI6667Do899hgWLFjQ1nUkhBBCCCGEkI7BaOHrJFJVVQWbzYZevXoBALZv345QKIQJEybE8hQWFmL48OHYuHEjAGDTpk3w+/2xBSoAjBo1Cn6/X8szfPhwzfx24sSJCAQC2L59+8k9KQtatUitq6uLxUPNycnB4cOHAQAjRozAjh072q52hBBCCCGEENKRpLBIra6u1l6BQKDZIlOhsbER99xzD6ZNmxa7s1lWVga3243s7Gwtb35+PsrKymJ5jq/ZVPLy8rQ8+fn5Wnp2djbcbncsT0fQqkXqkCFDsHfvXgDAueeeixdeeAFffPEFnn/+efTt27dNK0gIIYQQQgghHUUqxkn9+/ePmRT5/f4Tfso0FArhhz/8IaLRKJ577rmk+Q3D0EyMmjM0ak2e9qbVv0ktLS0FADzwwAOYOHEili5dCrfbjVdeeaVNK0gIIYQQQgghHYUt2vRKlgcADhw4oP2O0+PxJNgjOaFQCFOnTsW+ffvw7rvvauUWFBQgGAyioqJCu5taXl6OMWPGxPIcOnQortzDhw/H7p4WFBRgy5YtWnpFRQVCoVDcHdb2pFV3Uq+99lrMmDEDAHDeeefhs88+w7Zt23Dw4EFcc801bVk/QgghhBBCCOk4UnjcNysrS3u1dpF6fIH6ySefYO3atejdu7eWXlRUBJfLpRkslZaWYteuXbFF6ujRo1FVVYWtW7fG8mzZsgVVVVVanl27dsVuQALA6tWr4fF4UFRU1Kq6twUtvpN65513trjQp556qlWV6UwUOKuQ5nLgmC3dMl9txAzlEReyxCJUjFXIgoghwquIO+1WYRPUMACyPmqoDVmHkLCdDxi65boawiQk7OEdws5MLauvr1pPU/atFxb1dvEvKrdiiy+PAbu08Tf3leE06sP6uVUGfbH36cIWP9dVG3sv7dfVcAuyvjLEjLRyV9s6ItpPhg7R0/SLr5brSPIL/Rqlb0aEvX6daPuPK83fK+R49TAzlSGzveR16G2vSVi/Xg69HK8tcWgV2QaJrPjrmwkL1Rp6O2vgczZds6pImnksoYNaETomQwmrI/Ulr5WK7Nt6mt6mMixJmiNxmA+13zUaMqyMCJtgEd5AhiQKKhpyir4sQyGo4U1k6IiacOKJWYaZ8TgShybwiTZRx5FqofdjAfN6Sn3nufXxyK/0UalviRpSRY6PMuRUxGbWz2Xo7SfHYb0++pij6inklH1Tv2ZVYZ+Sprf7v6rNkBRpIoyIDE+lhl7JFiF8ZFieTHuD8l6ve1z4LC0EjQhx9lX7tZW+81zV8LmajuG1pyXMJ+cKn6LpTHEtpL7V85FjsQzjYhWCJk2ED1HHFRkWpVHpd1Jrsg+q5VSE9TaQ9dNC0AhdqhqS2q9S5lJZjluGjRPlqnOJHCXkOKz20dqQrp9MV+Ix2S/mIFXjcs6RY6LWnha3c6I2fdyS47B6neS1luO5OhdIfR8L699F1Tn8i6BfS1PHbzm2y/6nXhdZH1Xfze2rooakkeGn1LZsqzByHUJLjJFSNE6qra3Fp59+Gtvet28fSkpKkJOTg8LCQnz/+9/Hjh078NZbbyESicR+H5qTkwO32w2/348bb7wRc+fORe/evZGTk4N58+ZhxIgRMbffoUOH4tJLL8XMmTPxwgsvAGgKQTN58mQMGTIEADBhwgQMGzYMxcXFePzxx3Hs2DHMmzcPM2fO7DBnXyCFRerOnTtblK8jn10mhBBCCCGEkLbE9tUrWZ5U2LZtG8aPHx/bPn5DcPr06Zg/fz7eeOMNAE3+Pyrr1q3DuHHjAABPP/00nE4npk6dioaGBlx88cVYvHhxLEYqALz66quYPXt2zAV4ypQpeOaZZ2LpDocDK1euxKxZs3DRRRfB5/Nh2rRpeOKJJ1I8o7alxYvUdevWncx6EEIIIYQQQkinI5XfpLaUcePGwTAS3361SjuO1+vFwoULsXDhwoR5cnJysHTpUstyBgwYgLfeeivp8dqTVhknEUIIIYQQQkiP4CQ87kus4SKVEEIIIYQQQqzgIrRd4SKVEEIIIYQQQhKgxkG1ykPaDi5SE9BguICoM8550+9oSLBHvFOg6m4Y5zrn1F3nHMqD7NLV7UgwQz+QYm4nnWKj9sQOntL9T3UOdAknvjThxJrtNF0eZTkStVzpZKk60jnFMRsjsn7muUhnwAxHYqdYmTcs2qg+bB5HXjP13KQ7pXSsC0TN63QsrF8j2fb5rqrYe+n6rDrmuaVToHQNVRz0pLujRO1jLrteboVwrQ4qDsiyz6vXpbRRd3kLRfU6eL3mcWTdXRburbIf10RN10jNGTDaNs6AjYYLNiN++MtwNjaTW9nPou+rrrxpon/KNm1QdCH1nSMcVTX0bqX1gVDUejhX+5l0mZROprL/WlEfMc9FOkmq5x2nbwt333SHtdOuXTlXr0PXU2PYTJMu1vXC9VZ1pJX6ro/qeY9FTM1I5+Q8l+4a7LWZ9ZduzaojuyxHYnUd1DFZlougrtOKBtPd1Zuh17UuIsboBjPEgXQJ7u89pm33MswxJiQ6p3QCVh19q8Ucd9wtucFoG303RD0wEujB7zTncNURuWm/xM7L0tlUG19FmiznWNDsO1GXPq84hA40p38xB1lpXJajnqcc16zKkfOeqm/ZH+K0p2hcjnluUT+f0l/lnN0Avf3SnOZ42hjRnYpVjcvvG2nCsVt1R66R37PCmXpeRZt93ZVampUTuMfCZV2eZ5yzv2GmZ1g4fQPAIZga33G0n5aWl2ZGKZBjYIMYh2tdZvopngotTdU30EyUBYWI9r1PP6ba1g2RruvuezJ+k0qs4SKVEEIIIYQQQhLB36S2O1ykEkIIIYQQQkgC+Lhv+8NFKiGEEEIIIYQkgndS2x0uUgkhhBBCCCEkAfxNavvDRSohhBBCCCGEJIJ3UtsdLlIJIYQQQgghJAE2w4DNsF6FJksnqcFFagJ21faHGy4tLAIA2ONs9U3bfWkRHookTssQYUj6uipj7xudukV4tlO3Slct4SvCuh17OGoeU4aDOBbQ89aGzHLOyDqipWW5dPtznxJCR4ZQkbbqquV6NKLb2R9VrPgrA3r9IiKcSbrLPKYaNgYAjolfp2e4TEv4TGG373fpYYNy3aY9e7ZLt1i3CisQFXbxh0L+2PsDjdlaWoMI61DjNc/1bN9BLU0N1SDDVYSEnb1q5S7D50g7exkCQkWe2yC/aT0v21rtUzKczzHooWx8SkgClwinUyds6auUUAKHQnrIDPXc1PfB2hCALThRPq7rC7et6Txl/1WRYRTUdpOhotSQAZki5FSus0bbVi36ZSgRGRpB1fjhoB4mQdV4dUjfT+pL1Xgft14fGYJKPU/ZPjJ8haqLiqDeH44FzBAfYRmuyCnCLUXMco+KEEkZTj3kQ7qynS7C/eRmmvrOkmOBCP2ljmUBQ+/3qr4B4KCicRm2pd6rb5/mLY+994hwFeqcIUOMVIX189ZCYhl6Xo8IK6WFFBP6Pq2Xee1lKKBgRL+eqsYrbfqcIY+pHsdK34CucTl2HR9jmvS9GSfKnroCuG1N18RtUWeJy66GgtPPRw3pAuhh5WRoOhkKpbfLvOa1Yalv/ZoHlOtRK/pZdcjUk9T34Ew9PFC+2ww1ZKVvQNe4VWiziqB+TeV3iqDyncft0I/hFnWoVNraSt+APq+cnqF/V+mlzOEy1J/8rqJqT/bPg2IOrwqabV3n1fvCkLTShMeU866q8Rrxfc1qDrfqpzL9dL/eJrVqWJ6w3ocahd7V6y2P6RDfRzKVfl4p2u9IyJybZNgbfQ5PHD6w08M7qe0OF6mEEEIIIYQQkgC6+7Y/XKQSQgghhBBCSAJonNT+cJFKCCGEEEIIIYng477tDhephBBCCCGEEJIAPu7b/nCRSgghhBBCCCGJ4J3UdoeL1AS8d/A0ONI88Lp1Z8A0t+5MJt1/VVRn0F5u3WWywFutbasOddJhTTr4lgdMFzXprtcQMp0bQ4orKwA0hvXLHQyZ29XCKVA682W4Tbe9NKfumKc66wK6m2JQuNepjsJH6nRXw6hw/6x3m3kbgrojZWNA33Y6zfoGg/oxB/TRXQ9Pyzoae6+6BgK6Q536Hoh34qsMmW2/uzJfr3tQd9SL9jYd/nJdurNqL4d57aWj6L6GXG37QF2v2Ptj9fq1d9iFE5/H7HOy/6U59X78ZZ3pvKn2IQAIR8zr4hGOrD633n6q8/Qhl95+0lW0rN5M/7JSP+9ArekO6PKZx4jW6+fRWv725alwpDUdw6X0HXl+Ut8OxZFSOv9mKG7U+ULfvV26g6/qtlkV9mlpqr4BXeN1Ib1fBRVNh4R+VH0DusbTxTiWKTSsOu+mCfdcp3Dp1BzFQ7qr4+G6jNj7aFR3p/W69LYNhM1yGhr181T1DegaL+xdpaWpLqfSjVZqWt1uEI6slSH9uvyzMi/2vqpeTwvm6m2drVxv6bpdrrjcft6Qo6UdVPQNAJUN+nFUevl0R9ksZYyWbqlf1Jn6qhNjk6pvAHA6zD6e6dbLkQ7ShwLmuUjnb1XfgK7xhkr9vOzepuvUVvredHAQHGlNdXWLfpbuMfuzS8xzqi6t9A0AvT3mNVYd44H4OVx1Cpb6PtKoz4OqxqXjvXqtVCddAKhu1K+Nx2X2V3kd5RyualzOieq8V2uhbwAIKRr2uvRyZH1VjVvpG9A1PjCjQkvzKXWviuj96phwTlY1Lvvyp1X6XFteY55bMFeve281QoBwZ5djzH5F41/W6y72qehbzuEZSgSGg3X6/FmjjPXSVV26hFd5EzvElzr1clWNy++eX1aZeWuO6u0Oh6mlaEPbaLxDMAzYoklWoQxB06ZwkUoIIYQQQgghCeDjvu0PF6mEEEIIIYQQkgg+7tvuJI7aTAghhBBCCCE9nOMhaJK9UmH9+vW44oorUFhYCJvNhtdff11Lf+211zBx4kTk5ubCZrOhpKQkroxAIIDbbrsNubm5SE9Px5QpU3Dw4EEtT0VFBYqLi+H3++H3+1FcXIzKykotz/79+3HFFVcgPT0dubm5mD17NoJB/WcO7Q0XqYQQQgghhBCSgJOxSK2rq8PIkSPxzDPPJEy/6KKL8OijjyYsY86cOVixYgWWLVuGDRs2oLa2FpMnT0YkYv7We9q0aSgpKcGqVauwatUqlJSUoLi4OJYeiURw+eWXo66uDhs2bMCyZcuwfPlyzJ07N7UTamP4uC8hhBBCCCGEJMIwkhsjpWicNGnSJEyaNClh+vGF5GeffdZselVVFRYtWoQlS5bgkksuAQAsXboU/fv3x9q1azFx4kTs2bMHq1atwubNm3HhhRcCAF588UWMHj0ae/fuxZAhQ7B69Wrs3r0bBw4cQGFhIQDgySefxIwZM/Dwww8jKyur2eOfbHgnlRBCCCGEEEIScNw4KdmrPdm+fTtCoRAmTJgQ+6ywsBDDhw/Hxo0bAQCbNm2C3++PLVABYNSoUfD7/Vqe4cOHxxaoADBx4kQEAgFs3769nc4mHt5JTUD44yxEvV6EdWd0VLv1HqhFLRCd03CaHxhu/RkAZy/dEj4nywxDooa5AICj1bqdd/hL0/rbfUz/P4OhOKWHskRdffrJqPWT2GzyAzOvzSnOxSNs/BXLf59Ht6FXCQtLevkPqLqA2biNDXrYBBzUrdIjjWaFbSLrv2v0Dxr6m9vZvnotza5cRBlSQYb/UMPM1IuQGQ6H3kZqKJ6yYC8trRzmf6j21ek2+P88kqdt1xwzr729Wsg3ol+00izzOrgy9d8VuEVopbojZh9zHRPlKtelQVyjw9n6tT+cZ9rxO0Ub1ItrGDmmhJmp0vtCzj7zfdCvhGQI6PlaS2CPH/avrPeVroMacX6RtMQaMRx6muEyt+1Zenv38uv9TA11U1mnhyFo+FIP6+A5avZDEdkCIb95zEia3t5yzFE1fVSEK5Izq13RuNMt9a1vy7BcKhElZEZEhKCpEyFfAgGz30VL9fAGtmoxICmRMPZX6GNBwwAz1FF5ut6WdjFIR2GWK/VdG9DDbagal70iLvxKwAzHUG7T/wO9v94MSfHPw7q+6ypEaBZV40Lf5Vm6hp0Z5ljrEeNunTJuuI7ooaDk42k2pdijvfVr/WWeHhbDo4z1MixYqFJvP2elqd1en+vnYjib9o0E5MTTOqL/zITtK33Xi/kgoEy9wV4tfzZPzpe2LLONs+L0rbdbTYPZFg1l+nzuOayPaQ61fnoEEIQzzXINj9C31LTaJaW+xdjscJnbLhGyR53DpX7UkDOAHt4kIELeNYowcsFDZp+0ie8x8OrH2X/E1HjtIL1fHckw29MpOrMMt6JqXIbdk3O4OnYFRTi/8qAZZuZoUB9jDjb00rb3Hu5jHqNCH9fsNXq5trBZ3/IsMe5m6d8ZfV7zutSIkE7OQ8q5iHFXRBRDlaKBL/qIUGQ+PXMoZNY3UCX1bV7vrC/0YzqVYSMSjOIAuigpGCdVV+th6DweDzweTzM7nBhlZWVwu93Izs7WPs/Pz0dZWVksT15eXty+eXl5Wp78fD2UYnZ2NtxudyxPR9Bl7qQOGjQINptNe91zzz1ans74o19CCCGEEEJI18UWNVr0AoD+/fvHTIr8fj8WLFjQrnU1DAM25T/Ttrg7T63L0950qTupP//5zzFz5szYdkaG+R+s4z/67dOnDzZs2ICjR49i+vTpMAwDCxcu7IjqEkIIIYQQQro4qcRJPXDggPY7zpNxFxUACgoKEAwGUVFRod1NLS8vx5gxY2J5Dh06FLfv4cOHY3dPCwoKsGXLFi29oqICoVAo7g5re9Jl7qQCQGZmJgoKCmIvdZF6/Ee/S5cuxXnnnYdLLrkETz75JF588cW42+6EEEIIIYQQ0iKMFr4AZGVlaa+TtUgtKiqCy+XCmjVrYp+VlpZi165dsUXq6NGjUVVVha1bt8bybNmyBVVVVVqeXbt2obS0NJZn9erV8Hg8KCoqOil1bwldapH6y1/+Er1798a5556Lhx9+WHuUt7P+6JcQQgghhBDSdTkZxkm1tbUoKSmJxT/dt28fSkpKsH//fgDAsWPHUFJSgt27dwMA9u7di5KSktjvRP1+P2688UbMnTsXf/3rX7Fz505cd911GDFiRMztd+jQobj00ksxc+ZMbN68GZs3b8bMmTMxefJkDBkyBAAwYcIEDBs2DMXFxdi5cyf++te/Yt68eZg5c2aHOfsCXehx39tvvx1f+9rXkJ2dja1bt+Lee+/Fvn378Lvf/Q5A63/0GwgEEFCcFHjXlZDuA/VNSPeF+iaEtBtRo+mVLE8KbNu2DePHj49t33nnnQCA6dOnY/HixXjjjTdwww03xNJ/+MMfAgAeeOABzJ8/HwDw9NNPw+l0YurUqWhoaMDFF1+MxYsXw+Ewja5effVVzJ49O+YCPGXKFC02q8PhwMqVKzFr1ixcdNFF8Pl8mDZtGp544omUzqet6dBF6vz58/Hggw9a5vnHP/6B888/H3fccUfss3POOQfZ2dn4/ve/H7u7CrTuR78LFixotg7+Tw043AaiDmtntLRDpsOaYdfzBnLM5g17dRe3ur66w9/hPNOdzSZcHD3H9O2sL00ReCuE3adCQ45+zFCmfrlV47u4//7IbSVvWDeSi3MgbPCZbnH10kE4zayv06c7UHo8uqug6nLsEm60jX30faOKC6bqkNfcdlm5WeFDwnkzGjTbzFErnPdCwpFSSY76dFdBbx/d7fFIo+LKKxwI68OmE99nlbpDm+rmCwCOo6ZDoveIOE/RFQKNZt5IrX7tG4QTpKvefKjCe0Qvx1B2DevVgb1Bfxij8aD5CL5NuAraG/VtX6353l2ll+sMmPVzmU+fIBJMbQJIqO9/NekbAKJOs14OUb6vXO93KoFsvX+EfWZbBHrpIqnspztJqnpyV+rtklOqZ/UdNfuLPazXr7GX4kCZJZw2naL/WjSdMMFERKmu1He96Ot1iquxqm8AcCia9np1zUoXc9U1uCFbzxu06/3XrrrAin5/+Iip6SPHMrU0IyweHlJ0YQ+KRhCbUcVN1dm7UT9mgz6eqy6jjRG97vuresXeSzdfVd8A4DlqVsIujNKDDXresHIuDXa9v7kU7cXpWzRJRKmSPaAnhoTrcki59A6hb2+dmMcqlfrU6Z3R8dW5hUNtpO99zesb0DXkOyYccpU0qadQmt4WwSzFcfYU/VG+GhEFwFVl7us/rNc1/ZBw2lXGoGCmGF97mXWKuoXTuZVRsbzGwvFY1XhDupifVH17hb69+viYprjB2sUc43To+wYVd+RgVO/Lzjq9wup3omNHdDfdykqzT0aF2zDqhXOyMs/JMU91ZwcAW475z4+KBr3fex3meQdFlIKD1fqAWV9lCspRoY8FHjGHq87OgQY9b7hOP06t4i7vEK7Y6rgh3buFqbo27kUPC0dz6NvquOurTaxvd7XQtzKfh0Mtd9TubNiM+PZsLk8qjBs3DoZFbNUZM2ZgxowZlmV4vV4sXLjQ0n8nJycHS5cutSxnwIABeOuttyzztDcd+rjvrbfeij179li+hg8f3uy+o0aNAgB8+umnAJp+9CvvmLbkR7/33nsvqqqqYq8DB7qsOTYhREB9E9J9ob4JIe2GYbTsRdqMDr2Tmpubi9zc3OQZm2Hnzp0AgL59+wJo+tHvww8/jNLS0thnLfnR78mKXUQI6Xiob0K6L9Q3IaS9SMXdl7QNXeI3qZs2bcLmzZsxfvx4+P1+/OMf/8Add9yBKVOmYMCAAQD0H/0+/vjjOHbsWKf40S8hhBBCCCGkC6O491rmIW1Gl1ikejwe/M///A8efPBBBAIBDBw4EDNnzsRdd90Vy9NZf/RLCCGEEEII6brYIgZsSW6V2iJcpbYlXWKR+rWvfQ2bN29Omq8z/uiXEEIIIYQQ0nWxGQZsSX5zmiydpEaXWKQSQgghhBBCSIfAx33bHS5SE5BWFoJThHAAALu4le+sUWLSCGtqm6FY1BfqTe2sE8c7qBgty4g5otOHMhTLcFFH1b5ehqtIOyTDjpjb7koRHqJOxDtQQvEE/bqHeUOebh/fkGueS0h3i0dECcUT7CVCeKTrFvV2V+LwOrKNDCU8hGHXTatV23kAcCo26049UgwcSmQJV62eJq+9akXe0Fs/lxpDt6wvVcJtVDfq4SECYbNv1DcIf/gG0QeVKoT0qBewi+ZS7eylRb0MD6OG0wnkiEOqzSfaXYbtUI/jqtHzxrW1Uj9Xg9BVvRLuo8F8Hw4nDgmTCr5DYThd8WVJzbhq9JhTtqC5jyOghw+p7WdeO7so2ldqEd5E6FuG+WmwmRdAtfIH9D7oOyJCutTreVWNS30bThFqRNF4Qx8RvihX5FU0HhGhtoJ+c9+6DBFGxm2hb4EhQnqo3VeGSXFWtEzfAOBW+qi89jLUQEAJSVJ9hn7tDzv1zA0hc0wMR/T61dUrRj+N8XOMSljRuAwxZRfh0NyqFmV8DaUKAT3KVVwIGmhtK/Rdo2+rGrfSN6BrXNU3YGq8rfSdVh6G09l8WerjeHH6bjT3cdXqhkx1IsxM2KeE4zgkxlOnnKDMt1HxrUvqydFoZpZ9UA1H5RRjpkfO4fVKeDyHCJ/TS8zhisYbc0ReJYpT1JNY3wBQk66EgnOJ8D7yMUmlj6rzNwCELeYZxwH9OjgbzPeOBi0JLvE9yx5K3LZhEWKo6kxznj4i9N2ozNkRoe+GRv37kKpxKctw3Pcjpa6i+8pQZfogqCdpYcNkVxR51RB97no9s1N8B1Lb2inb2kLfjkZz2xFq+bjf6WiJey/vpLYpXKQSQgghhBBCSAJsUQO2aJLHfZOkk9TgIpUQQgghhBBCEmCLxt+Bby4PaTu4SCWEEEIIIYSQRPBx33aHi1RCCCGEEEIISQSNk9odLlIJIYQQQgghJAEMQdP+cJGaCJut6SWICjPGQI5pxxbxCVe8DHM76tbLkk6sqgObdP+TpnhqHWzCSE6ts024w0m3OBjmw/O2iP4gvXT7tCuObK5q3UVQPoPvbDBPoEE4BTbkKfmEM7FRL4+puKUKs2F5TNWxTrpg+o6I7cPmzu4aPbOj0dyOuvX6yG2ViFu/aJ5y/dzqDdPGrz5dvxA2h3mBjZB+DFtEuEYqLqdxv8+Pc9pVyhHXPuoR20r1ZX/T9pUmtaJc1bU6mdunU3GqVd3/AN1pVXVEbKvh3wbzPLXyHfoJBrL1hor4TFfXULp+rVS3zzgnVtF/DbW7JDa9bDqmpnHh0qy0v9S31LRq6BCn76C+s6uq+f0AwBHQ+3pjtllWY2+9DlHFVdQQrpe2sO4w6lCMVuP0Lfudku6p0NPSVH1X6RfCWa9vR11K/Rzx471eB/O8PUf09mu061bbgUyz39gcYmwNK/uK84y6E/fwOIduoSe1j6Wkb9E3VafQOH0LTWvOqlLfjYbIa56sdFJuawzE95kYynWO07c3sb5DaYn7h9R7XLp6utKkVXynsLkTz+EO5VrZw7LzJG5Te71+kT0ir+p47Ajq+nY0mu0Q6KWXK530o4rGbcKi1yHcqLU2s5Ye3JXme98R4WqsaNxZp18IqWltWywmZJQC72Ezb4Ndd/OuzFTOUzj/GlHxPUE5jOHSjym/kqkal3qSbt5RZfi0/M4oo07IbaXJpDuydPBV6+QUTvPqHC4jIXQbogaQ7NxonNSmcJFKCCGEEEIIIQngndT2h4tUQgghhBBCCEmEgRYYJ7VLTXoMXKQSQgghhBBCSCLo7tvucJFKCCGEEEIIIQmwRQzYktwqtXXX3+N2EFykEkIIIYQQQkgieCe13eEilRBCCCGEEEISwUVqu8NFagKCmQ5EXQ5EXbqFecinb4cVZ/KoCAej2YInjl7SVE6a+V5a50vrdjXUgLQIV+3EQxl6WkMfYcfuNCsoQ6hIS3jDqv7SUl+xWY+6ZWgbMy3Ool6EoHHVKoeQ4TWEjbpaBxnuw1mvDxqaPboYUNSQFFGnXr+I6Auqzbu7Vq+Qr1yGkjHjDITT9ZgDWtgJh14fWzRxyBEZniauTZSiZNgJaTVvV8MaWYT/MGS4BIvrENZd++P1oYRaUEOVAIBLuWbqMcIhUYFWclzfABBR6iHDTERkKA/lHGRbJAx5ASCcLj5Q+6uFvgFd4zLUhapxK30DQuMySoJVCAgLfQO6xlV9N9VXCalQpx/UXSMOo5y3Vb8C9HA77hoZIkfpO+LRK0NoWtW4IfUtwqS46sxt32E9rz0iwo/VmfEhoh4hPrtSv7hwT7IOicMaxYWSUIcRESrGSt9x11cNVyPzCiznP7dsa7ON1LYEAHwVya2t9B3KdMBoRt+AHirKUt9SIxaaiaQlTgNEeCUZ1ieFObwxVxkzhb6jYg7X6iD1Lb9HqyHwRBikiFfRt9A+xBzkrDe31fkbaCaMnEUIGhlOy1NlHtdVL8KVhZTQWiLkjPz+pupfjrvOBv3cvEdV7Ql9+019R7xychVjoLop2ssesprf9WKlFtU5XEQCihtXVOLC1USbfw/E60MNnRYX3kephCG+c0Epp6003iGchEXq+vXr8fjjj2P79u0oLS3FihUrcNVVVynFGXjwwQfx29/+FhUVFbjwwgvx7LPP4uyzz47lCQQCmDdvHv74xz+ioaEBF198MZ577jn069cvlqeiogKzZ8/GG2+8AQCYMmUKFi5ciF69esXy7N+/H//5n/+Jd999Fz6fD9OmTcMTTzwBt1sPF9eeJFk6EUIIIYQQQkjPxRYxWvRKhbq6OowcORLPPPNMs+mPPfYYnnrqKTzzzDP4xz/+gYKCAnznO99BTY35X945c+ZgxYoVWLZsGTZs2IDa2lpMnjwZkYj5n45p06ahpKQEq1atwqpVq1BSUoLi4uJYeiQSweWXX466ujps2LABy5Ytw/LlyzF37twUW6lt4Z1UQgghhBBCCEnESbiTOmnSJEyaNClBUQZ+9atf4b777sP3vvc9AMArr7yC/Px8/OEPf8DNN9+MqqoqLFq0CEuWLMEll1wCAFi6dCn69++PtWvXYuLEidizZw9WrVqFzZs348ILLwQAvPjiixg9ejT27t2LIUOGYPXq1di9ezcOHDiAwsJCAMCTTz6JGTNm4OGHH0ZWVlZK59VW8E4qIYQQQgghhCQiarTs1Ubs27cPZWVlmDBhQuwzj8eDsWPHYuPGjQCA7du3IxQKaXkKCwsxfPjwWJ5NmzbB7/fHFqgAMGrUKPj9fi3P8OHDYwtUAJg4cSICgQC2b9/eZueUKryTSgghhBBCCCGJSOFOanV1tfaxx+OBx+Npbo+ElJWVAQDy8/O1z/Pz8/H555/H8rjdbmRnZ8flOb5/WVkZ8vLy4srPy8vT8sjjZGdnw+12x/J0BLyTSgghhBBCCCGJMKJANMnLaHKf6t+/P/x+f+y1YMGCVh/WZhMmVYYR91lcVUWe5vK3Jk97wzupCTh2lh0Or11zMwOAiHBq1Bw+7Snc5pf2f6odm0iLCFc8u+L4GLJwDZUufdLVTXPUE1WXLp2tJc69Mmj+X0S6HEoiXvO9IyASLdx+pSuedGWMeBRRRnWnObvi6Bn26NchmKkXpLpEhoW7Y0SYoan1c1eLNMXhzyb7hYULo5Wbr9y2y7xWDp9Wzo/S0Va6/arHlK614pqp+wZ66eddn6e4WCr/fIwE2ub/aseGNukb0HUhnVjjXK2tNK7ZIIs0C3fNONdL4fCqOgPL+qgal+6qVsc0HK3Xd5ymFQdqW8DCrVIag4p/KjssnGRlX1fbTEpGdXOVrpyGGBtUjVvpu2lbOYZ0vRR1cCnOxfYKaZ+r6h3WWDh0yz6mpssx0Gq/OCd3RZdS77IOqsat9A0AgWzzQKq+AXOsP9n6BnSNx+k7le9ialvIcSGaeA6X+pYOvmod4r5vqBqXF0N0Qk3jJzCda/puFPqW/UzJG7WYA2Wd4pyqZV9SrlNEzMu2qPKdQpjWhL36BQ5lKHO2N7G+m46jHF/0ZWed+d5dlVjfgOVXO0tNx6XJMdDKedvK3ddiDo/Td9x3z+b3A4BGRd+R/Ob1DbSdxjuEqIGkYvrqcd8DBw5ov+NM9S4qABQUFABousvZt2/f2Ofl5eWxu54FBQUIBoOoqKjQ7qaWl5djzJgxsTyHDh2KK//w4cNaOVu2bNHSKyoqEAqF4u6wtidduLcQQgghhBBCyEnGiLbsBSArK0t7tWaROnjwYBQUFGDNmjWxz4LBIN5///3YArSoqAgul0vLU1pail27dsXyjB49GlVVVdi6dWssz5YtW1BVVaXl2bVrF0pLS2N5Vq9eDY/Hg6KiopTr3lbwTiohhBBCCCGEJOIkuPvW1tbi008/jW3v27cPJSUlyMnJwYABAzBnzhw88sgjOOOMM3DGGWfgkUceQVpaGqZNmwYA8Pv9uPHGGzF37lz07t0bOTk5mDdvHkaMGBFz+x06dCguvfRSzJw5Ey+88AIA4KabbsLkyZMxZMgQAMCECRMwbNgwFBcX4/HHH8exY8cwb948zJw5s8OcfQEuUgkhhBBCCCEkMSk87ttStm3bhvHjx8e277zzTgDA9OnTsXjxYtx1111oaGjArFmzUFFRgQsvvBCrV69GZmZmbJ+nn34aTqcTU6dORUNDAy6++GIsXrwYDof5TParr76K2bNnx1yAp0yZosVmdTgcWLlyJWbNmoWLLroIPp8P06ZNwxNPPJHS+bQ1XKQSQgghhBBCSCKiBuINPZrL03LGjRsHw+Luq81mw/z58zF//vyEebxeLxYuXIiFCxcmzJOTk4OlS5da1mXAgAF46623kta5PeEilRBCCCGEEEIScRIe9yXWcJFKCCGEEEIIIYmIRpH8TmqSdJISXKQmwHA3WahHRSgWGZLGUKzn48K2qN7Jcf1Wxg9Qk0SaCC0RjViEMIi03EPfKmwLgrrxs5WNely5VtbykcRpcaE4xHaiY0hUu3MAiLqF5X+m0n5WoWyS/ENMTXfW62nOBn1btdCPaz9b8/mA+FA20vZdKyZJe1qh7WsRoiLODtwq1IUMDWIRtkOGK1C31dAqUavjpYDhMstVNS7b17BL/auxY0ShqTzmo2SNumRIBb0crR9KfVtoUWpa2w4k1rckWdgEq3FETTshfYs66OFgRKioLHPbHhLneQLfH5yN5nuHCK9kpWmJFk5D6ttiRo7Tt6iD1U+lrM47rqmVa+hIpjctNIgoNy5ckpI3wXkbScKStRRN367EYeNkKCZtW4ZpsppbZZLQsHrutkjiECVxx7EIIxVXTlw4GCU0S7J+b3VqLdQ3oGs8WYg57bzlXGExh6thZORx2krfgB72LpVQRVZzuCG+y8VJ1mK8tAzFYRWeStQ1aTg6tZi48H0WaeqcLedzNcxbG83hHQLvpLY7XKQSQgghhBBCSCIiZoiZhPBOapvCRSohhBBCCCGEJMAwojCSLFKTpZPU4CKVEEIIIYQQQhJhGMl/1sPHfdsULlIJIYQQQgghJBFGC+KkcpHapnCRSgghhBBCCCGJiESacSgTGF3ZGarzwUVqAiIeA4bHiLdUs7DBtIVb7rwZR1v980Wtr5Xjm9iOc/CUrqZRC0dh6fZpJE6zcrmNc9BT3SKtjiHTk7VlS6+LrJ+Vy2kSN9KWksw52bLcE+lDVm6FVse0cipO4niqpcv+pqWZb6PScbOVRLwGDK8Rd+ykztWKo2YqPz2xdIpO9o9ZtU7CQdwWVRs8STmqvmSF5L7RlndgrX5x7shKkXK2EQ6eqbRRS7WXzJlYS7dwUpX7JtVpgvq0KWmt2y2pE3EqY4GV3q00nWDsl276rSXiU/Rts6iHvMaavlNwyj+Base1m9IGceVa1CnegVa1ApYNnjirZf0s9A0IjacwZyf7TqEXZJGWZB42LL4fpXINU5oTUyhHrUPEh1aTaP5MmjfJdx4t3UpX4piak38bzeEdgRGNwkhiIc3fpLYtXKQSQgghhBBCSCL4uG+7w0UqIYQQQgghhCQiaiS/5c5FapvCRSohhBBCCCGEJMCIRGEk+U0qH/dtW7hIJYQQQgghhJBEGFEASRahXKS2KVykEkIIIYQQQkgCjKgBI8njvgYf921TuEgVHO9g0cbGpg+SuPtadsd2cPeNO4Rqo5bMhTdqkWbhKpjUia+lTrupuOudQN442sh590QcHVt6jDi6kLtvMtfQVrn7fqXL1k4EcfoWx05aqpWbqdVuJ9JfLctNrPc4E0ILXabiIpqSs3ZH6F/drTu7+7aSE3H3TcnNuzXuvidD362cs9tM35IU8sZVQZ2HrfQttm1Sz63VXlvq28rd9yTRldx9T4RU3H2t5uyT4u57ghrvSMJGIOmd0jBC7VSbnoHN6Io95SRy8OBB9O/fv6OrQQix4MCBA+jXr1/K+1HfhHR+qG9Cujet1XhH0NjYiMGDB6OsrKxF+QsKCrBv3z54vd7kmYklXKQKotEo9u7di2HDhuHAgQPIysrq6Cp1CNXV1ejfvz/boAe3QWc8f8MwUFNTg8LCQtjtyf5FHE80GsWXX34JwzAwYMCATnVu7UlnvLbtTU9vg854/tR329EZr2970tPPH+icbXCiGu8oGhsbEQwGW5TX7XZzgdpG8HFfgd1uxymnnAIAyMrK6jTC7ijYBmyDznb+fr+/1fva7Xb069cP1dXVADrfubU3Pf38AbZBZzt/6rtt6elt0NPPH+h8bXAiGu8ovF4vF54dQNf5NwYhhBBCCCGEkG4PF6mEEEIIIYQQQjoNXKQ2g8fjwQMPPACPx9PRVekw2AZsg+58/t353FpCTz9/gG3Qnc+/O59bS+npbdDTzx9gG5CuD42TCCGEEEIIIYR0GngnlRBCCCGEEEJIp4GLVEIIIYQQQgghnQYuUgkhhBBCCCGEdBq4SG2G5557DoMHD4bX60VRURH+9re/dXSV2oT169fjiiuuQGFhIWw2G15//XUt3TAMzJ8/H4WFhfD5fBg3bhw++ugjLU8gEMBtt92G3NxcpKenY8qUKTh48GA7nkXrWbBgAS644AJkZmYiLy8PV111Ffbu3avl6e5t8Jvf/AbnnHNOLG7a6NGj8Ze//CWW3t3PH+i++gao8Z6uceq7ie6qceq7Z+sboMZJD8MgGsuWLTNcLpfx4osvGrt37zZuv/12Iz093fj88887umonzNtvv23cd999xvLlyw0AxooVK7T0Rx991MjMzDSWL19ufPjhh8Y111xj9O3b16iuro7lueWWW4xTTjnFWLNmjbFjxw5j/PjxxsiRI41wONzOZ5M6EydONF5++WVj165dRklJiXH55ZcbAwYMMGpra2N5unsbvPHGG8bKlSuNvXv3Gnv37jV++tOfGi6Xy9i1a5dhGN3//Luzvg2DGu/pGu/p+jaM7q1x6rtn69swqHHSs+AiVfD1r3/duOWWW7TPzjrrLOOee+7poBqdHOQEF41GjYKCAuPRRx+NfdbY2Gj4/X7j+eefNwzDMCorKw2Xy2UsW7YslueLL74w7Ha7sWrVqnare1tRXl5uADDef/99wzB6ZhsYhmFkZ2cbv/vd73rE+fcUfRsGNW4Y1Lhh9Cx9G0bP0Tj1TX0fp6dpnPQc+LivQjAYxPbt2zFhwgTt8wkTJmDjxo0dVKv2Yd++fSgrK9PO3ePxYOzYsbFz3759O0KhkJansLAQw4cP75LtU1VVBQDIyckB0PPaIBKJYNmyZairq8Po0aO7/fn3ZH0DPa9/Az1b4z1N30DP1nhPuL6SnqxvoGdqnPQsuEhVOHLkCCKRCPLz87XP8/PzUVZW1kG1ah+On5/VuZeVlcHtdiM7Ozthnq6CYRi488478Y1vfAPDhw8H0HPa4MMPP0RGRgY8Hg9uueUWrFixAsOGDev259+T9Q30nP59nJ6q8Z6qb6Bna7wnXF+VnqpvoGdrnPQsnB1dgc6IzWbTtg3DiPusu9Kac++K7XPrrbfigw8+wIYNG+LSunsbDBkyBCUlJaisrMTy5csxffp0vP/++7H07n7+PVnfQPe/vsfpqRrv6foGerbGe8L1BXquvgFqnPQceCdVITc3Fw6HI+6/SeXl5XH/mepuFBQUAIDluRcUFCAYDKKioiJhnq7AbbfdhjfeeAPr1q1Dv379Yp/3lDZwu904/fTTcf7552PBggUYOXIkfv3rX3f78+/J+gZ6Tv8GerbGe6q+gZ6t8Z5wfY/Tk/UN9GyNk54FF6kKbrcbRUVFWLNmjfb5mjVrMGbMmA6qVfswePBgFBQUaOceDAbx/vvvx869qKgILpdLy1NaWopdu3Z1ifYxDAO33norXnvtNbz77rsYPHiwlt4T2qA5DMNAIBDo9uffk/UN9Iz+TY3H01P0DfRsjfeE60t9N09P0jjpYbSHO1NX4rh9/aJFi4zdu3cbc+bMMdLT043PPvuso6t2wtTU1Bg7d+40du7caQAwnnrqKWPnzp0xa/5HH33U8Pv9xmuvvWZ8+OGHxo9+9KNmrcv79etnrF271tixY4fx7W9/u8tYl//Hf/yH4ff7jffee88oLS2Nverr62N5unsb3Hvvvcb69euNffv2GR988IHx05/+1LDb7cbq1asNw+j+59+d9W0Y1HhP13hP17dhdG+NU989W9+GQY2TngUXqc3w7LPPGgMHDjTcbrfxta99LWZv3tVZt26dASDuNX36dMMwmuzbH3jgAaOgoMDweDzGt771LePDDz/UymhoaDBuvfVWIycnx/D5fMbkyZON/fv3d8DZpE5z5w7AePnll2N5unsb/PjHP4717T59+hgXX3xxbHIzjO5//obRffVtGNR4T9c49d1Ed9U49d2z9W0Y1DjpWdgMwzBO7r1aQgghhBBCCCGkZfA3qYQQQgghhBBCOg1cpBJCCCGEEEII6TRwkUoIIYQQQgghpNPARSohhBBCCCGEkE4DF6mEEEIIIYQQQjoNXKQSQgghhBBCCOk0cJFKCCGEEEIIIaTTwEUqIYQQQgghhJBOAxep5KQzbtw4zJkzp9scc8aMGbjqqqtOStmEdEWocUK6L9Q3IaQjcHZ0BQg5Gbz22mtwuVyx7UGDBmHOnDntPtESQk4O1Dgh3RfqmxDCRSrpluTk5HR0FQghJxFqnJDuC/VNCOHjvqRdqaiowPXXX4/s7GykpaVh0qRJ+OSTT2LpixcvRq9evfDOO+9g6NChyMjIwKWXXorS0tJYnnA4jNmzZ6NXr17o3bs37r77bkyfPl17fEd9VGjcuHH4/PPPcccdd8Bms8FmswEA5s+fj3PPPVer369+9SsMGjQoth2JRHDnnXfGjnXXXXfBMAxtH8Mw8Nhjj+HUU0+Fz+fDyJEj8ec//7ltGoyQLgY1Tkj3hfomhLQXXKSSdmXGjBnYtm0b3njjDWzatAmGYeCyyy5DKBSK5amvr8cTTzyBJUuWYP369di/fz/mzZsXS//lL3+JV199FS+//DL+/ve/o7q6Gq+//nrCY7722mvo168ffv7zn6O0tFSbLJPx5JNP4qWXXsKiRYuwYcMGHDt2DCtWrNDy/OxnP8PLL7+M3/zmN/joo49wxx134LrrrsP777/f8oYhpJtAjRPSfaG+CSHthkHISWbs2LHG7bffbnz88ccGAOPvf/97LO3IkSOGz+cz/vSnPxmGYRgvv/yyAcD49NNPY3meffZZIz8/P7adn59vPP7447HtcDhsDBgwwLjyyivjjnmcgQMHGk8//bRWrwceeMAYOXKk9tnTTz9tDBw4MLbdt29f49FHH41th0Iho1+/frFj1dbWGl6v19i4caNWzo033mj86Ec/smwXQroL1Dgh3RfqmxDSEfA3qaTd2LNnD5xOJy688MLYZ71798aQIUOwZ8+e2GdpaWk47bTTYtt9+/ZFeXk5AKCqqgqHDh3C17/+9Vi6w+FAUVERotFom9a3qqoKpaWlGD16dOwzp9OJ888/P/a40O7du9HY2IjvfOc72r7BYBDnnXdem9aHkM4ONU5I94X6JoS0J1ykknbDEL8DUT8//hsTAJqjHwDYbLa4fdX8VmVbYbfb4/ZTH1lqCccn1ZUrV+KUU07R0jweT8p1IqQrQ40T0n2hvgkh7Ql/k0rajWHDhiEcDmPLli2xz44ePYqPP/4YQ4cObVEZfr8f+fn52Lp1a+yzSCSCnTt3Wu7ndrsRiUS0z/r06YOysjJtkispKdGO1bdvX2zevDn2WTgcxvbt27Vz8ng82L9/P04//XTt1b9//xadEyHdBWqckO4L9U0IaU94J5W0G2eccQauvPJKzJw5Ey+88AIyMzNxzz334JRTTsGVV17Z4nJuu+02LFiwAKeffjrOOussLFy4EBUVFXH/mVUZNGgQ1q9fjx/+8IfweDzIzc3FuHHjcPjwYTz22GP4/ve/j1WrVuEvf/kLsrKyYvvdfvvtePTRR3HGGWdg6NCheOqpp1BZWRlLz8zMxLx583DHHXcgGo3iG9/4Bqqrq7Fx40ZkZGRg+vTprWorQroi1Dgh3RfqmxDSnvBOKmlXXn75ZRQVFWHy5MkYPXo0DMPA22+/Hfd4kBV33303fvSjH+H666/H6NGjkZGRgYkTJ8Lr9Sbc5+c//zk+++wznHbaaejTpw8AYOjQoXjuuefw7LPPYuTIkdi6davmQAgAc+fOxfXXX48ZM2Zg9OjRyMzMxHe/+10tzy9+8Qvcf//9WLBgAYYOHYqJEyfizTffxODBg1NoGUK6B9Q4Id0X6psQ0l7YjNb8EICQTkQ0GsXQoUMxdepU/OIXv+jo6hBC2hhqnJDuC/VNCGkOPu5Luhyff/45Vq9ejbFjxyIQCOCZZ57Bvn37MG3atI6uGiGkDaDGCem+UN+EkJbAx31Jl8Nut2Px4sW44IILcNFFF+HDDz/E2rVrW2zcQAjp3FDjhHRfqG9CSEvg476EEEIIIYQQQjoNvJNKCCGEEEIIIaTTwEUqIYQQQgghhJBOAxephBBCCCGEEEI6DVykEkIIIYQQQgjpNHCRSgghhBBCCCGk08BFKiGEEEIIIYSQTgMXqYQQQgghhBBCOg1cpBJCCCGEEEII6TRwkUoIIYQQQgghpNPw/wPbSKvFD9gAaQAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6gAAAFACAYAAACxyVHuAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAq2VJREFUeJzsnXmYFNXZ9u/ee/aFbZgwLIqyC4gRx1cRFAUkKkiMC/q6oEYDbigalyC4BBUVMaLETwWTQHA3LkicAIq8jkQQRBBQFASFYRuG2Xut749xus55erq6exgcYO7fdfV1dfU5dfbnnDpdVfdjMwzDACGEEEIIIYQQ0szYm7sAhBBCCCGEEEIIwA0qIYQQQgghhJDDBG5QCSGEEEIIIYQcFnCDSgghhBBCCCHksIAbVEIIIYQQQgghhwXcoBJCCCGEEEIIOSzgBpUQQgghhBBCyGEBN6iEEEIIIYQQQg4LuEElhBBCCCGEEHJYwA0qIYQQcoRjs9kwZcqU5i5GTDp37ozf/OY3zV0MQgghRwDcoBJCCGkRbNmyBRMmTMDxxx+P1NRUpKamomfPnhg/fjzWrl3b3MU75OzYsQNTpkzBmjVrDkn6X3/9NaZMmYKtW7cekvQJIYS0DJzNXQBCCCHkUPPee+/h4osvhtPpxNixY9G3b1/Y7XZs3LgRb775Jp577jls2bIFnTp1au6iHjJ27NiBqVOnonPnzujXr1+Tp//1119j6tSpGDx4MDp37tzk6RNCCGkZcINKCCHkqOa7777DJZdcgk6dOmHx4sVo3769Fv7oo4/i2Wefhd1u/VBRVVUV0tLSDmVRDyuqq6uRmpra3MUghBDSwuAjvoQQQo5qHnvsMVRVVWHOnDlRm1MAcDqduPnmm1FQUBD57aqrrkJ6ejq+++47nHvuucjIyMDYsWMB1G1Ub7/9dhQUFMDj8aBbt254/PHHYRhG5PytW7fCZrNh7ty5UfnJ90WnTJkCm82GzZs346qrrkJ2djaysrJw9dVXo7q6WjvX5/PhtttuQ5s2bZCRkYHzzz8fP/74Y9w2+Oijj/DrX/8aAHD11VfDZrNp5Rs8eDB69+6NVatWYdCgQUhNTcU999zTYHnr6dy5M6666ioAwNy5c3HRRRcBAIYMGRJJ/6OPPtLOWb58OU4++WR4vV4cc8wx+Nvf/ha37IQQQloW3KASQgg5qnnvvffQtWtXDBw4MKnzgsEghg0bhrZt2+Lxxx/HmDFjYBgGzj//fMyYMQPDhw/Hk08+iW7dumHSpEmYOHHiQZXzd7/7HSoqKjBt2jT87ne/w9y5czF16lQtzrXXXounnnoK55xzDh555BG4XC6MHDkybto9evTAAw88AAC4/vrr8fe//x1///vfMWjQoEicffv2YcSIEejXrx+eeuopDBkyJOGyDxo0CDfffDMA4J577omk36NHj0iczZs347e//S3OPvtsPPHEE8jJycFVV12F9evXJ5wPIYSQox8+4ksIIeSopby8HDt27MCoUaOiwsrKyhAMBiPHaWlpSElJiRz7fD5cdNFFmDZtWuS3f/3rX1iyZAkeeugh3HvvvQCA8ePH46KLLsLMmTMxYcIEHHvssY0qa//+/fHiiy9Gjvft24cXX3wRjz76KADgyy+/xD/+8Q/84Q9/wKxZsyJ5jx07Nq7IU7t27TBixAhMnjwZhYWFuPzyy6PilJSUYPbs2fj973+fdNmPOeYYnH766Xj66adx9tlnY/DgwVFxNm3ahGXLluH0008HULchLygowJw5c/D4448nnSchhJCjE95BJYQQctRSXl4OAEhPT48KGzx4MNq0aRP51G/6VG688UbteOHChXA4HJG7hfXcfvvtMAwDH3zwQaPLesMNN2jHp59+Ovbt2xepw8KFCwEgKu9bb7210XmqeDweXH311U2SVkP07NkzsjkFgDZt2qBbt274/vvvD1mehBBCjjx4B5UQQshRS0ZGBgCgsrIyKuyvf/0rKioqsGvXrgbvKDqdTnTo0EH77YcffkB+fn4k3XrqH2X94YcfGl3Wjh07asc5OTkAgP379yMzMxM//PAD7HZ71B3abt26NTpPlV/96ldwu91NklZDyPoBdXXcv3//IcuTEELIkQc3qIQQQo5asrKy0L59e6xbty4qrP6d1Fh+Oz0eT1xl31jYbLYGfw+FQjHPcTgcDf6uii8dStTHmxPBqi4N0dz1I4QQcmTAR3wJIYQc1YwcORKbN2/Gf//734NOq1OnTtixYwcqKiq03zdu3BgJB8y7n2VlZVq8g7nD2qlTJ4TDYXz33Xfa75s2bUro/Fib5njk5ORE1cPv92Pnzp1Nkj4hhBCiwg0qIYSQo5o777wTqampuOaaa7Br166o8GTu4J177rkIhUJ45plntN9nzJgBm82GESNGAAAyMzPRunVrLFu2TIv37LPPNqIGddSn/fTTT2u/P/XUUwmdX+/DVW4243HsscdG1eP555+PuoPa2PQJIYQQFT7iSwgh5KjmuOOOw/z583HppZeiW7duGDt2LPr27QvDMLBlyxbMnz8fdrs96n3ThjjvvPMwZMgQ3Hvvvdi6dSv69u2LDz/8EP/6179w6623au+HXnvttXjkkUdw7bXX4qSTTsKyZcvwzTffNLoe/fr1w6WXXopnn30WBw4cwKmnnorFixdj8+bNCZ1/7LHHIjs7G7Nnz0ZGRgbS0tIwcOBAdOnSxfK8a6+9FjfccAPGjBmDs88+G19++SX+/e9/o3Xr1lHlczgcePTRR3HgwAF4PB6ceeaZaNu2baPrTAghpOXBDSohhJCjngsuuABfffUVnnjiCXz44Yd46aWXYLPZ0KlTJ4wcORI33HAD+vbtGzcdu92Od955B5MnT8Yrr7yCOXPmoHPnzpg+fTpuv/12Le7kyZOxZ88evP7663j11VcxYsQIfPDBBwe1YXvppZfQpk0bzJs3D2+//TbOPPNMvP/++ygoKIh7rsvlwssvv4y7774bN9xwA4LBIObMmRN3g3rddddhy5YtePHFF7Fo0SKcfvrpKCoqwllnnaXFy8vLw+zZszFt2jSMGzcOoVAIS5cu5QaVEEJIUtgMqhMQQgghhBBCCDkM4DuohBBCCCGEEEIOC7hBJYQQQgghhBByWMANKiGEEEIIIYSQwwJuUAkhhBBCCCGEHBZwg0oIIYQQQggh5LCAG1RCCCGEEEIIIYcF3KASQgghhBBCCDks4AaVEEIIIYQQQshhATeohBBCCCGEEEIOC7hBJYQQQgghhBByWMANKiGEEEIIIYSQwwJuUAkhhBBCCCGEHBZwg0oIIYQQQggh5LCAG1RCCCGEEEIIIYcF3KASQgghhBBCCDks4Aa1BfLRRx/BZrOhrKysuYtCyFEBbYqQoxfaNyGE/LJwg3qUM3jwYNx6663ab6eeeip27tyJrKys5ilUIyktLcVNN92Ebt26ISUlBR07dsTNN9+MAwcOaPG2bduGkSNHIjU1FW3btsWkSZMQDAYj4Tt37sRll12G448/Hna7Pap9gLp2s9lsUZ+RI0dalrG2thbjx49Hq1atkJ6ejjFjxmDXrl1anJtvvhkDBgyAx+NBv379Eq7/Rx99hBNPPBEejwddu3bF3LlztfBly5bhvPPOQ35+Pmw2G95+++2E0yaJQ5uiTQHA1q1bG6yP+qlPb+3atTj99NPh9XpRUFCAxx57LKosZWVlGD9+PNq3bw+Px4Pjjz8eCxcutCx/aWkpxo4di8zMTGRnZ2PcuHGorKzU4iSStySRNo83Jo5UaN+0byBx+66trcVVV12FPn36wOl0YtSoUVHlePPNN3H22WejTZs2yMzMRGFhIf7973/HLT/tm7RkuEFtgbjdbuTl5cFmszV3UZJix44d2LFjBx5//HGsW7cOc+fOxaJFizBu3LhInFAohJEjR8Lv9+PTTz/Fyy+/jLlz52Ly5MmROD6fD23atMF9992Hvn37NpjXm2++iZ07d0Y+69atg8PhwEUXXWRZxttuuw3vvvsuXnvtNXz88cfYsWMHLrzwwqh411xzDS6++OKE675lyxaMHDkSQ4YMwZo1a3Drrbfi2muv1Ra5qqoq9O3bF7NmzUo4XdI00KZank0VFBRo9bn99tvRq1cv7beLL74Y5eXlOOecc9CpUyesWrUK06dPx5QpU/D8889H0vL7/Tj77LOxdetWvP7669i0aRP+3//7f/jVr35lWYexY8di/fr1KCoqwnvvvYdly5bh+uuvj4QnkndDxGvzRMbE0QTtm/Ydy75DoRBSUlJw8803Y+jQoQ2WZdmyZTj77LOxcOFCrFq1CkOGDMF5552H1atXW9aB9k1aNAY5arnyyisNANpny5YtxtKlSw0Axv79+w3DMIw5c+YYWVlZxrvvvmscf/zxRkpKijFmzBijqqrKmDt3rtGpUycjOzvbuOmmm4xgMBhJv7a21rj99tuN/Px8IzU11Tj55JONpUuX/qJ1fPXVVw23220EAgHDMAxj4cKFht1uN0pKSiJxnnvuOSMzM9Pw+XxR559xxhnGLbfcEjefGTNmGBkZGUZlZWXMOGVlZYbL5TJee+21yG8bNmwwABjFxcVR8e+//36jb9++cfM2DMO48847jV69emm/XXzxxcawYcMajA/AeOuttxJKmyQObaoO2lQ0sfJ+9tlnjZycHK2t7rrrLqNbt26R4+eee8445phjDL/fn1DZDcMwvv76awOA8fnnn0d+++CDDwybzWb89NNPCectSaTNkx0TRwq07zpo39EkkveVV15pXHDBBQmVr2fPnsbUqVNjhtO+SUuHd1CPYmbOnInCwkJcd911kX/8CgoKGoxbXV2Np59+GgsWLMCiRYvw0UcfYfTo0Vi4cCEWLlyIv//97/jrX/+K119/PXLOhAkTUFxcjAULFmDt2rW46KKLMHz4cHz77bcxyzRixAikp6fH/PTq1SupOh44cACZmZlwOp0AgOLiYvTp0wft2rWLxBk2bBjKy8uxfv36pNJWefHFF3HJJZcgLS0tZpxVq1YhEAho/6J2794dHTt2RHFxcaPzBurqJf+dHTZs2EGnS5KDNlUHbSq5fAYNGgS3263ls2nTJuzfvx8A8M4776CwsBDjx49Hu3bt0Lt3b/z5z39GKBSKnDN37lztDl5xcTGys7Nx0kknRX4bOnQo7HY7VqxYkXDe9e9Xbt26FUBibX6oxkRzQ/uug/Z9aAmHw6ioqEBubm7kN9o3ITrO5i4AOXRkZWXB7XYjNTUVeXl5lnEDgQCee+45HHvssQCA3/72t/j73/+OXbt2IT09HT179sSQIUOwdOlSXHzxxdi2bRvmzJmDbdu2IT8/HwBwxx13YNGiRZgzZw7+/Oc/N5jPCy+8gJqampjlcLlcCddv7969ePDBB7VHXkpKSrRJFUDkuKSkJOG0Vf773/9i3bp1ePHFFy3jlZSUwO12Izs7Oyr/xuatpt1QvcrLy1FTU4OUlJSDSp8kBm2qDtpUcvl06dIlKp/6sJycHHz//fdYsmQJxo4di4ULF2Lz5s34wx/+gEAggPvvvx9A3djr1q2blm7btm21dJ1OJ3JzcyNtk0jeqamp6NatW2ScJNLmh2JMHA7QvuugfR9aHn/8cVRWVuJ3v/td5DfaNyE63KASAEBqampkoQXqJqPOnTsjPT1d+2337t0AgK+++gqhUAjHH3+8lo7P50OrVq1i5hPvnapEKS8vx8iRI9GzZ09MmTKlSdKMxYsvvog+ffrg5JNPjvz25z//Wbug+Prrr5ssP7XNL7/8csyePbvJ0ia/HLSp2NCmdMLhMNq2bYvnn38eDocDAwYMwE8//YTp06dHNqijR4/G6NGjmzzvk08+GRs3bmzydI92aN+xoX3HZv78+Zg6dSr+9a9/aRtQ2jchOtygEgDR/8LabLYGfwuHwwCAyspKOBwOrFq1Cg6HQ4unLhaSESNG4JNPPokZ3qlTp7iPkFRUVGD48OHIyMjAW2+9pZUzLy8P//3vf7X49ep08f4Rb4iqqiosWLAADzzwgPb7DTfcoP37mZ+fj7y8PPj9fpSVlWn/Tu7atSupvNesWRP5npmZGSm7VNnbtWsXMjMzeff0MIU21TAtzaZi5VMfBgDt27eHy+XS+r1Hjx4oKSmB3+/XHuFT063f/NQTDAZRWloaSTeRvBtKN16bN/WYOBKhfTdMS7PvZFiwYAGuvfZavPbaazEFleqhfZOWDjeoRzlut1t7j6mp6N+/P0KhEHbv3o3TTz894fMO9nGl8vJyDBs2DB6PB++88w68Xq8WXlhYiIcffhi7d++O/DtZVFSEzMxM9OzZM+Fy1vPaa6/B5/Ph8ssv137Pzc3V3h8BgAEDBsDlcmHx4sUYM2YMAGDTpk3Ytm0bCgsLE86za9euUb8VFhZGuZwoKipKKl3SNNCmaFPJUFhYiHvvvReBQCDSF0VFRejWrRtycnIAAP/zP/+D+fPnIxwOw26vk4b45ptv0L59+wY3p/XplpWVYdWqVRgwYAAAYMmSJQiHwxg4cGDCeUsSafOmHhOHE7Rv2veh4J///CeuueYaLFiwIK7rHYD2TQhVfI9yrrvuOuPXv/61sWXLFmPPnj1GKBSKqUio0pBinVSoGzt2rNG5c2fjjTfeML7//ntjxYoVxp///GfjvffeOyR1OXDggDFw4ECjT58+xubNm42dO3dGPvVKicFg0Ojdu7dxzjnnGGvWrDEWLVpktGnTxrj77ru1tFavXm2sXr3aGDBggHHZZZcZq1evNtavXx+V52mnnWZcfPHFCZfxhhtuMDp27GgsWbLEWLlypVFYWGgUFhZqcb799ltj9erVxu9//3vj+OOPj5TFSh3v+++/N1JTU41JkyYZGzZsMGbNmmU4HA5j0aJFkTgVFRWRtAAYTz75pLF69Wrjhx9+SLj8JD60KdpUQzYVS+WzrKzMaNeunXHFFVcY69atMxYsWGCkpqYaf/3rXyNxtm3bZmRkZBgTJkwwNm3aZLz33ntG27ZtjYceeigS580334xS5xw+fLjRv39/Y8WKFcby5cuN4447zrj00kuTynvFihVGt27djB9//DHhNk90TByJ0L5p38nYt2EYxvr1643Vq1cb5513njF48OBImvXMmzfPcDqdxqxZs7Q+KCsri8ShfROiww3qUc6mTZuMU045xUhJSYkrma+SyGLr9/uNyZMnG507dzZcLpfRvn17Y/To0cbatWsPSV3qy93QZ8uWLZF4W7duNUaMGGGkpKQYrVu3Nm6//faIpH49DaXRqVMnLc7GjRsNAMaHH36YcBlramqMP/zhD0ZOTo6RmppqjB492ti5c6cW54wzzohbh1j179evn+F2u41jjjnGmDNnTkLtc+WVVyZcfhIf2hRtqiGbsrqA/fLLL43TTjvN8Hg8xq9+9SvjkUceiYrz6aefGgMHDjQ8Ho9xzDHHGA8//LDmomTOnDmG/E953759xqWXXmqkp6cbmZmZxtVXX21UVFQklXd9HdW2SqTNExkTRyK0b9p3svbdqVOnBtOJV341H9o3ITo2wzCMxO61EkIIIYQQQgghhw76QSWEEEIIIYQQcljADSohhBBCCCGEkMMCblAJIYQQQgghhBwWcINKCCGEEEIIIeSwgBtUQgghhBBCCCGHBdygEkIIIYQQQgg5LHA2dwEOJ8LhMHbs2IGMjAzYbLbmLg4hRGAYBioqKpCfnw+7Pfn/12jjhBy+0L4JObo5WBtvLmpra+H3+xOK63a74fV6D3GJjn64QVXYsWMHCgoKmrsYhJA4bN++HR06dEj6PNo4IYc/tG9Cjm4aa+PNQW1tLbp0SkfJ7lBC8fPy8rBlyxZuUg8SblAVMjIyAAAD/3k9nKluAIDNZmhx7Mqx3SJMIsNsFmHxzrUKCxux/zW2CguJMDWuPC8Y1v/1Chn2mHFDIm5YOQ5Bj2so54bCojwyTyU8LOPKeirhhmhKQ6RrhBsujyQqzLILD+affIuERbJyrGphdiPmsV2EQY5VJVzWRD3XIfOQ9qHFDWthDsi44QbjBqt9WHXZXyO2miz15w2YdwMcqZ6oMjpterlsSdi71dygpZlckS1Rc5Hj3uo4yk6TsGEjwXTqzlXtNHaYPDakTYfsMcOijtUyRXVDU7W+9Zzd2CytbNgybpw8LG8mSntXjqPOs1vYg7B/pyPc4HcAcAg7q08rVO3DmiuePWj77vu38XCken4ul5mXLLOch+xQ6/7Lr8tyXQkjtg3LuFZ2KtdaNa5cE4Mhh56n0kSyHkZIrO/KcThkbadQ05JhjUX2ieW4t0ooCfs+ZByqJwAs1ndp006xHjpir+EuJa6cC9S4oWof1v3vM4228ebA7/ejZHcIW1Z1QmaG9V3f8oowugz4AX6/nxvUg4QbVIX6R4KcqW440zw//3ZoNqjqQng4bFBt4sLS6mIWYiG0WVzc2qIuSpVjudhZLFgyHTVchtlkuk21QTUSC4umGTaoMiyJDaoc89YbVHUjeRAbVIsLRxm3Lu3GtWn9eY5UD5xpzbNBtTfhxY96AXswG9RkbNjqjyQYidtp1EVpOPYmFFYbVHkhfDRtUC3ObY4Nqs1ygypsWtmUOuJsUKPnjoO3b8fPa7ijhWxQpX1peVqs4VFrotig2lQbluUTG1TVTiHtMiTnCm5QrWmGDaqwQ7lBtVtsUB1O8+6i1QY1ktcR+Ah+Wnrdx4rQ4TB0jhK4QSWEEEIIIYSQGIRhIBznz4t44SRxjpw3lAkhhBBCCCHkFyZghBL6JMOyZctw3nnnIT8/HzabDW+//XZUnA0bNuD8889HVlYW0tLS8Otf/xrbtm2LhNfW1mL8+PFo1aoV0tPTMWbMGOzatUtLY9u2bRg5ciRSU1PRtm1bTJo0CcFgUIvz0Ucf4cQTT4TH40HXrl0xd+7cpOrS1HCDSgghhBBCCCExqL+DGu+TDFVVVejbty9mzZrVYPh3332H0047Dd27d8dHH32EtWvX4k9/+pP2futtt92Gd999F6+99ho+/vhj7NixAxdeeGEkPBQKYeTIkfD7/fj000/x8ssvY+7cuZg8eXIkzpYtWzBy5EgMGTIEa9aswa233oprr70W//73v5NspaaDj/gSQgghhBBCSAzCMBBq4kd8R4wYgREjRsQMv/fee3Huuefisccei/x27LHHRr4fOHAAL774IubPn48zzzwTADBnzhz06NEDn332GU455RR8+OGH+Prrr/Gf//wH7dq1Q79+/fDggw/irrvuwpQpU+B2uzF79mx06dIFTzzxBACgR48eWL58OWbMmIFhw4YlVaemghvUBqgJuOEIuBsMUwUFpIBBY5GiKVIwwukwHxmwEnEBdHGGeAqbAUUMwRfUh0Iy6ptqeJTKX1RcReTBQuUvSiRFCqMEzTxtUnxBvo+fzHxhqIIQsdOJ1/NaU0uVXPncggyPkacsnwyzqqYUwlArEIpqL6mMopzsEFEV0QSbFFTw6I+6ON3mscuph8ljh1IGh6r8HEzu8ZlY1AZdcARcUb9H2ZNFq0qNB9X2ogQklGOXXbSLFGqxsGF57AuZdhsQ4iZ+cRwImsdBqb6p2rCFzQLJKepqYymOaIo2tUWlE+M7cBBCKHHStZgLDCubtrJnSRzBJ1u0togZN/FcRD2tGyVsUX7V3g2vGLduMa4V+3fGsfd6UZVQqKns2wlHoM42rESfpC06LITc5NygnittWB6rSBtW7TQQ1m22VqzLVjYcpb6rjCUpZmRYrMNR4oVKeNRaa3Esx649ak1HzLga1sXTbU/0UVRcC90oWImOJfOsoaiLzaJNotovRnHiYhX3INov6BTt6TErYHPrlQl4zMdFnc7Ygmkhv1VnH94k8w5qeXm59rvH44HH40kuv3AY77//Pu68804MGzYMq1evRpcuXXD33Xdj1KhRAIBVq1YhEAhg6NChkfO6d++Ojh07ori4GKeccgqKi4vRp08ftGvXLhJn2LBhuPHGG7F+/Xr0798fxcXFWhr1cW699dakytyU8BFfQgghhBBCCIlBwDAS+gBAQUEBsrKyIp9p06Ylnd/u3btRWVmJRx55BMOHD8eHH36I0aNH48ILL8THH38MACgpKYHb7UZ2drZ2brt27VBSUhKJo25O68Prw6zilJeXo6amJumyNwW8g0oIIYQQQgghMQgl8Ihvffj27duRmZkZ+T3Zu6dA3R1UALjgggtw2223AQD69euHTz/9FLNnz8YZZ5yRdJpHEryDSgghhBBCCCExCBmJfQAgMzNT+zRmg9q6dWs4nU707NlT+71Hjx4RFd+8vDz4/X6UlZVpcXbt2oW8vLxIHKnqW38cL05mZiZSUlKSLntTwA0qIYQQQgghhMQgnOCnqXC73fj1r3+NTZs2ab9/88036NSpEwBgwIABcLlcWLx4cSR806ZN2LZtGwoLCwEAhYWF+Oqrr7B79+5InKKiImRmZkY2v4WFhVoa9XHq02gO+IgvIYQQQgghhMQgaNgQiCMyF4wTLqmsrMTmzZsjx1u2bMGaNWuQm5uLjh07YtKkSbj44osxaNAgDBkyBIsWLcK7776Ljz76CACQlZWFcePGYeLEicjNzUVmZiZuuukmFBYW4pRTTgEAnHPOOejZsyeuuOIKPPbYYygpKcF9992H8ePHR+7s3nDDDXjmmWdw55134pprrsGSJUvw6quv4v3330+qPk0JN6gNUFHrhsNe12nBoK6MF/SZx6qSLADAL44DitKsxd8qUQqRVspzDhlZRFVU4ewBoQgpjh1+JUz316uVyZDKraKaanhUmBSEjfFdItskqv1UBcA47aeVT6jShYUFyPCYZZJqm1J8UmkHQ+YRVXEL5WCRj13pJ6moqLVRPKXTcOywsFs/OeRVwrxCfVNR7rSLtnO4Yit3elz6gJOql6rqsKpyGRIql42lqtYFh90dpW4ZEjYdVmw4yt6FKqVmM8koRFpgC4o8xByj2rTDJ8ZKQCSmdo9FGaJEHqPUimOfG4Va7ai5SqSrlFfOR6rYqpV9A0BIeZJKHbsAEEoV9u9Sxp20fbU/ZT9EqZcqceM0kE1TL5VztB5XncPtok2SQZ2XQ15p36LeGWZGDo+eqcMZeyGTtqPasCEV5cNSgfbn3wNNY9+1tS7Y7XVK/FbK8dL+o9SjVaKCFHVgoXws66vZnsxDsWmbTy+P3W+LeSzHgxQOTlhMOl48qyaReSrj1+7Tw5y1+rGr2szYVSXWDp+ZcNgpVI8z9TbyZZnh/iw9biBDjPUU5Vjau9UEbqHoH722xl6XbaI/HX45rzR8nsxThsnrrrDihCKYIua8NDHxpihq1MLeneJ601IZWmmzUJRKvBIWOHIf3AzBhlCcBTxeuGTlypUYMmRI5HjixIkAgCuvvBJz587F6NGjMXv2bEybNg0333wzunXrhjfeeAOnnXZa5JwZM2bAbrdjzJgx8Pl8GDZsGJ599tlIuMPhwHvvvYcbb7wRhYWFSEtLw5VXXokHHnggEqdLly54//33cdttt2HmzJno0KEDXnjhhWZzMQNwg0oIIYQQQgghMTkUG9TBgwfDiPIDqHPNNdfgmmuuiRnu9Xoxa9YszJo1K2acTp06YeHChXHLsnr1ausC/4Jwg0oIIYQQQgghMQgbtig/xg3FaSm88847SZ9z9tlnJyy6xA0qIYQQQgghhMTgUNxBPZIZNWpUUvFtNhu+/fZbHHPMMQnF5waVEEIIIYQQQmIQNBwIyBd+o+K0nA0qAJSUlKBt27YJxc3IyEgqbW5QCSGEEEIIISQGvIOqc+WVVyblI/Xyyy9HZmZmwvG5QSWEEEIIIYSQGIQMO0Jx7qCGElXPPgqYM2dOUvGfe+65pOJzg9oALmcYjp9dYtRWufXAMvPYfUBKwutRNZcgQhJedfHiEHLsVi5LotyiSFV+xTgcojyOWt1ynD4jZpj6J1AwRa9nIFX/hyiY0vB3AAi7EBMriXrZJs5q/dhVY5bX7o9ddgDwZ5g/+DL1wFrxZII/y+woT6ZeiNQUs0EdQtM/KGTVa/1mxf01eiOEa/VOU10LSDcDrkq9vM4q5XuNXnb12CHaRLZ1SBnWYZeQ5hf9W9takfFP1QdnTq5ZoE5Z+/XyWPlWikNtyBzolQGzsMGwr6HoSZPiCcLhCaCyyqP9HqrS+8pRafaVXbpxEXaquQgQYep4tnT/AujjVzShQ5yrpuusEfYtbFp98ijsFu42lHklJMZDSG8izcbDYnqUqO0gbdpdoZfPU2ZW1luqV9RZrpwsFA+DWbovmcoOZoErOoi5SridcOSaNp2RoRuU12nOBSHhOqI2oI+TmlrzOFirT9KGcKtgqzHHlKNGT9dVqR1q8560d3sg9pWQtGF1nQh59DBfjrB/j1nerNZ6pl2yS838xcAt9emTf7Vity6HXNREeX92JRU0msa+Hc5QZA33+8y+Cfv0vrFV6XOx6sZFuniSdqraf5RbJOm2TXMPJsqqrnvSFYtwv+Kqit2Osl9V9yxR1wkx4gHRa3jIwsblHKiOUdWeAcC7T28Uz25z7bDtO6An5DEz9XfI0YJqc3V79ynBvlZiwszVL4IyMs0Cpnn0MLviZiYQ0husslZvBJ8ypkJiTKFGrO+1pj1ZreeA7opHjiG1H6z6BADCatXEI6cBp7jGaGVm2qlVqRbmdeiFUNfiKr++MAQV11FyvgyrYUHrueBwJgwbwrDeoIbj+m0iiXLkOiQihBBCCCGEkEOM33Ak9GlpfPnll3jooYfw7LPPYu/evVpYeXm5pYscK7hBJYQQQgghhJAY1N1Bjf9pSXz44Yc4+eSTsWDBAjz66KPo3r07li5dGgmvqanByy+/3Ki0uUElhBBCCCGEkBiEYUcozifeI8BHG1OmTMEdd9yBdevWYevWrbjzzjtx/vnnY9GiRQedNt9BJYQQQgghhJAYJCaS1LLeQV2/fj3+/ve/A6jzc3rnnXeiQ4cO+O1vf4sFCxbg17/+daPT5gaVEEIIIYQQQmIQMBwIxHnH1EK77qjE4/GgrKxM++2yyy6D3W7HxRdfjCeeeKLRaXOD2gDpHh+cPwvFVRzQJe1UJU+pxhmlPKsoskkVWneFqTbnPqCrmjlr9WPDZuYZ8uj/3hhRCqxmeDBFKKmJuD5F9c+eqluVWjepDhhMhX6cEjtM/tmkKhhaqZnK9sr4UY+csmm3mefWH7QwR1aWXr4+XSLfS3voBax26/XOblsR+f4/+Vu0sN5pP5nlsevqltVhXdFum69V5PvmKl0q+PuyXO14z17FL1RQVwe1B/S29yhihyl7xLipNseUIZQZA2lSidk8DgjVRjn/KuKGsIn+zPSYg7xv1o9a2LGeXdpxtkN0qkJpKF073hHIjnz/rtpsP7/dj+UxU0mc9unlcKW5sSWg90VQ9KNq71JFVdq7XTl2CzVW1d5d1brSZJTCsmqnUkjULm06xnkAarPFXGEx26t2KZW3paqnauNRaYrFWW0j6b9cqpl6DpiKke5tupqkUVpmnteutRZW01X3q1ZRYGZUna83bmZHXS10QN72yPcT0n/SwnKdZidWiXGx05+tHW+tVuz9gF6+PWX62A6qsshigpQmkrLHbFBXlV4XdV72ZerpRM3RaTGzRFjMgTanmU+6Rx/k3dNLIt9/5dFVu3/l0o9V9gX1Ntgb1B22b6+ts0O/N4CVMVNJnIKcMjjT6tp5Z7k5Pspr07R4qmovADiqlTVRKu/L9V1RYJVqu1JBW7Vxw2ETYYqavk+sw0GhxK3Yf9Ar1Xel+rai4ittTymPVOIO6iK5lkrdhl/+YH51iPJJtWBDVZPN1W3Y39rsp7Kuuu1VFkDENSeSlHa6LG6/9rpND8gyrxXaOfW5QF3Df/Tr64Jq34Bu4/vK9THlFw1mVJv1lGPKXaEfq+MmJJXWlXlZTD8IpstxYh4bLjEpp+mFyE4zF7ZjM3SBmzxPuXbcwW3Oyx6bfk2mruG7/Xp//lhrSi37K/3YgCOT+sd4reO0rB1qv379sHTpUgwYMED7/ZJLLoFhGLjyyisbnTY3qIQQQgghhBASg7BhRzjOI77hFvaI74033ohly5Y1GHbppZfCMAz8v//3/xqVNjeohBBCCCGEEBID3kGNZvTo0Rg9enTM8MsuuwyXXXZZo9JuWXJThBBCCCGEEJIEQdgj76HG+gS5rcIf/vCHKH+ojYEtSQghhBBCCCExqFfxjfdp6fzjH/9AeXl5/Ihx4CO+hBBCCCGEEBKDMGwIS+XCBuK0dIwmeg+XG1RCCCGEEEIIiUFiflB5B7Wp4Aa1AWqDLjgCdZreNrv+T0AoTXHl4dAHok3K0isS9nYhx15bY57rrNHTcdZKVyOKDH2Ua5bYMvSBVP2fHL/ufUVzRSBd0BhOQwnT3RsYwi0B7Bb/loSkjL9ZV+8ePcylKMR7Duh5OqtF4yr1dLbT3biEOudpx2XHm34yqn4lipejp9s523SVcFrmt1rY6SnbzLKKf8l2hXTfLFYuVcJC87/ab8rSV1XoJildvoTVY5twV6B0Q1C4I6puox/XtlHiChdD8g/AsCpTL/q6VYpZz47ufVrYyd5t2nE7h1n4APT+/T6g6+2rbj1qQqY9BMJN88+cgbp/OkNh4YrFwgVHSPRblDsexbuA8EqiufmR9m4XjtPsivsV6YpFopbBlylcC+lK/wgonj6kaxHN3p2ija3cvgX1PJ3V4rjKPJaud6SNq0Mi2FafrMIFptuHqnzdjUN5ZzG22ykJZegTZvtM/bGjARmm24kz0zZpYdnKWN8j7HurS3c7kar4ILHbRNuKcVNSa9p42KWnK12QqIhktbEa0D1dwKd7yUAwQxlIsn/Fsd1jxm2Torvt6OLdE/l+esp3Wlhnp+6fJKyIhWwL7tbCNgb0Obv6Z9ccPrdc4BpHXko53Kl1ae6pUga+Q69rWLjgsCnroHSDJl21qO6X5PoZFO5r1LSkTauuR6SrqKi5WBkuQbm+6557oHr2CabEtvd4qOPOLuYuj3S9o7jiclWLPKUbrLbmBUgoRa5XZkXlmu1vozegLc1s3LwsYd+KWxkAGJa+PvI9Q3TEjpDZoRmOWi3MIXyBWd0l2xMWY6HWrEvIIxcN/VBdC6L3Oaq7QTGOs/TBanebdXN79WuczBS9bl2yTNcxqis9ADg9Vb8G6qK4CnLZ9Lr8GDLX++8VN3EAsNGdH/leaw9iAY5MEhNJ4ga1oqIifqQEYEsSQgghhBBCSAyCcQSSAoYDQfnPdQvg+eefxwcffAAA+PDDD/H88883SbrcoBJCCCGEEEJIDOr9oMb7JMOyZctw3nnnIT8/HzabDW+//bYWftVVV8Fms2mf4cOHa3FKS0sxduxYZGZmIjs7G+PGjUNlpf7I0tq1a3H66afD6/WioKAAjz32WFRZXnvtNXTv3h1erxd9+vTBwoULE6rD6NGj8cADD6CiogJTp061dDuTDNygEkIIIYQQQkgMQrAl9EmGqqoq9O3bF7NmzYoZZ/jw4di5c2fk889//lMLHzt2LNavX4+ioiK89957WLZsGa6//vpIeHl5Oc455xx06tQJq1atwvTp0zFlyhTtTuenn36KSy+9FOPGjcPq1asxatQojBo1CuvWrbMs/7Jly7BhwwYMHDgQp5xyCk4++WRs2LABy5YtS6odGoLvoBJCCCGEEEJIDBK5Q5rsHdQRI0ZgxIgRlnE8Hg/y8vIaDNuwYQMWLVqEzz//HCeddBIA4C9/+QvOPfdcPP7448jPz8e8efPg9/vx0ksvwe12o1evXlizZg2efPLJyEZ25syZGD58OCZNmgQAePDBB1FUVIRnnnkGs2fPjlm2pUuXAgB27NiBH374ATt27MDSpUths9kwaNCgpNpCwjuohBBCCCGEEBKDgGGP+w5q4BCo+H700Udo27YtunXrhhtvvBH79pmClMXFxcjOzo5sTgFg6NChsNvtWLFiRSTOoEGD4HabAoPDhg3Dpk2bsH///kicoUOHavkOGzYMxcXFlmW7//77ce+996KkpATLly/Hzp07ce+992Ly5MkHXW/eQW0ArzMAp6tukKW0OaCF2doqKmtC1s8f1F+OrvKZg6G2RleeDCtKjvAJNeCAUGdVlDIdPhEWljJ/5teQUGcNZutqbq50U1o4NUXIDCs4HULBTqrQ1pp1CwX0Ngj59bqF7GZ4rZAHDbnNdINe/Txfdop27P6VKZMqlQ9rWotjRTBSU7MEYHPrx25FQjXDXqOFtbabKpUem660XGvoqmUVYTPuF2UFWtiOcl1eNRQy62rP1vuh1ibGjaKEGxTKh6o6rCEs2xel4Kyo06YKNVWp8Ogxwx2ivYKKCm6tobeJX/z/pSr31hp6nmVhvX+/rzU7bW+tKVEarG2aKavC74HT5UGaV2/vlPa6GmKorVmHYEivT1DYe6BGqX+tsGnFDmyh2DYL6KqedjEXSCVRdS1UFcYBwMjU7d2TbkpuuoVNO+zmsV0oNdf69H4N+M0+CAVEmziFCrXdDA+79cIH0vX2cyhqlw6fPu5VdXKpVuprJZTW080xaheqrVJh12VT7V1vk7YOVRpXV+Ve79dlmteWd4h8312TroWFxBydmmmqaFaLx8GqPHr7BTIU9ecqvb1UteeAaBOpTqvZtFe34dQMXdUzK9U89grZeLW9XKItVdVeAAgYZtxyQ+/Pb33ttOMNFe3rzqmKvQ4lw57aDLgcdXk6lX5Ny9TrGkzT8wsq61etTygsB4VNK+u2TahZR9m40jRSjVm1f7tIxxDjN+RVrj+Euj5Sxdqm2LhTzNtOp3ks1/OATx+DYb/ZDmGnEICx620S9iheBNL0MLuYK1RhXKtr+rCc8lP0utiVsZ3q1Mer16Yfu5XGzrDrdWkDc2x8J1SYf6zN0Y6rg+Z49oo8czL0uWK/8r3WrdtBIFOvnLNSuRYQjgvUdggLFV+5MNidZj1z0vTrmPbputJxnte8xs137dfCch3imtFmXtdUG3q9y8Jm3bb622hhm6rNu3/+6qZR6m4OknEzU16ut7PH44HH42noFEuGDx+OCy+8EF26dMF3332He+65ByNGjEBxcTEcDgdKSkrQtq2uiu50OpGbm4uSkhIAQElJCbp06aLFadeuXSQsJycHJSUlkd/UOPVpWPH0009j1KhR6NevH37729/i6aefxsSJE5Ouq4QbVEIIIYQQQgiJgQGbpYuh+jgAUFCg35i4//77MWXKlKTzvOSSSyLf+/TpgxNOOAHHHnssPvroI5x11llJp3couPnmm2H72e3hhAkTEA6H45yRGNygEkIIIYQQQkgMkrmDun37dmRmmk/LNebuaUMcc8wxaN26NTZv3oyzzjoLeXl52L1b9zMdDAZRWloaeW81Ly8Pu3bt0uLUH8eLE+vdV5WXXnoJBQUFGDFiBP7zn/9g69atmkhTYzli3kGdMmVKlNRy9+7dI+G1tbUYP348WrVqhfT0dIwZMyaqsQkhhBBCCCEkGeK/f1r3AYDMzEzt01Qb1B9//BH79u1D+/Z1r0UUFhairKwMq1atisRZsmQJwuEwBg4cGImzbNkyBALm49VFRUXo1q0bcnJyInEWL16s5VVUVITCwsK4ZaKbGQC9evXSpJaXL18eCbvtttvw7rvv4rXXXsPHH3+MHTt24MILL2zG0hJCCCGEEEKOdMKGLaFPMlRWVmLNmjVYs2YNAGDLli1Ys2YNtm3bhsrKSkyaNAmfffYZtm7disWLF+OCCy5A165dMWzYMABAjx49MHz4cFx33XX473//i//7v//DhAkTcMkllyA/Px8AcNlll8HtdmPcuHFYv349XnnlFcycOVN7T/SWW27BokWL8MQTT2Djxo2YMmUKVq5ciQkTJliWn25mfsbpdDZ4u/nAgQN48cUXMX/+fJx55pkAgDlz5qBHjx747LPPcMopp/zSRSWEEEIIIYQcBYRhRzjOfb144ZKVK1diyJAhkeP6TeOVV16J5557DmvXrsXLL7+MsrIy5Ofn45xzzsGDDz6o3ZGdN28eJkyYgLPOOgt2ux1jxozB008/HQnPysrChx9+iPHjx2PAgAFo3bo1Jk+erD2Ge+qpp2L+/Pm47777cM899+C4447D22+/jd69e1uW/1C6mTmiNqjffvst8vPz4fV6UVhYiGnTpqFjx45YtWoVAoGAJpHcvXt3dOzYEcXFxTE3qD6fDz6fqWwpVbcIIUc2tHFCjl5o34SQX4qQYUMozh3SeOGSwYMHwzCktLfJv//977hp5ObmYv78+ZZxTjjhBHzyySeWcS666CJcdNFFcfNTuf/++xEMBnHmmWdi+fLluPnmmzFv3jw4nQe/vTxiNqgDBw7E3Llz0a1bN+zcuRNTp07F6aefjnXr1qGkpARutxvZ2dnaOfEkkqdNm4apU6dG/d4ndyfc6XWuFdIdPi1MldkPiX9KyoNe7XhnjenbY3e17npAdUkTCAv3AUKHXpXJdzmElLwtthsFl124ExBy6JluU1ZdPpagOhsOipfC99SkaccBpS6yPA7hAiaoSOOH3LrSV0hxqVAr5Pbtwm2Hs9o8duieA6JcrATbmvW2uazbz6/0xWaffrc+zW6OhQKn7lZGtp9d8StQ7tPHxYF9+lgwlLrapHuINL28fsXtQDBNHzc2Nar4E8/ui+32AF69H1JzdJn8NI/pikG6HKoNmY2tuoYBoiX+81xliMWOgC7jr07yBWnmeX4jOTcUsWw8P60CrjQfUrOkfcdWn6sJ6e5WSmp03x5lNaarHF9QH4T+QOyp1uUUro5cprS/S7g+cTt12f80l9kerT1VMfMAgOqQ6QbAjtgLYnVQr+duuz5eK2CO5yj7dgqb9phjtEaM1xrR1KprDuleRzE9iCk5yk2SI8Vso7BwbVET0Ou2xWe6Q/jCpbsUO861Ry2dFrYnqPf9hn2mPH/ZDt2NVBQes79ton+RK9xMKW1mq5EuPpQ+FO5IbP7Y/+JLtzLHtd6rHae7RAMrqO0l3XD95NDnxGrDtIfv/Lr7gvWV+dpx/TwSCCWn/hjLvp32cGTdPC7H7EensG+5tvmV+azUp7u+2l+Tqh2r655P2HdYuJlR3R15XLoNe12BmGEZbr0vVBuXaqJlorx+cV2hlUdZ9yqFy6RSm15P1eNKSKyXAeEOLqis4dJdXmMxPHqfuVKEKzDF/U9FQK/LVp/u7uT/7KZ9HevWhWXU9Wqbv7UW9t+dHbXjA7tM+7cJ23Nn6H2muu1KyRYXK9n6oerCyy/mLody7SSXKUO49wsrbdImtVILa+fV/8RRr/W+9+truMumr01qG1WE9cJv8rWPfF9Z1lkLK1fGWLAq9vxyuJPII7zJPuJ7NNDi3cyMGDEi8v2EE07AwIED0alTJ7z66qtISUmxODM2d999t9aI5eXlUdLQhJAjF9o4IUcvtG9CyC9F0HDAbsT+46cuTtO4WDmSoJsZQXZ2No4//nhs3rwZZ599Nvx+P8rKyrS7qPEkkhvrOJcQcmRAGyfk6IX2TQj5pQgb8e+QhmM/nHTU4nQ68cUXX8DlcqFPnz6w2+3417/+hTlz5qBnz56YMmUK3G53/IQER5SKr0plZSW+++47tG/fHgMGDIDL5dIkkjdt2oRt27YlJJFMCCGEEEIIIQ0RNuwJfVoiv//97/HNN98AAL7//ntccsklSE1NxWuvvYY777yzUWkeMS15xx134OOPP8bWrVvx6aefYvTo0XA4HLj00kuRlZWFcePGYeLEiVi6dClWrVqFq6++GoWFhVTwJYQQQgghhDSaMGwJfVoi33zzDfr16wcAeO211zBo0CDMnz8fc+fOxRtvvNGoNI+YR3x//PFHXHrppdi3bx/atGmD0047DZ999hnatKl7CX7GjBkReWWfz4dhw4bh2WefbeZSE0IIIYQQQo5kAmEHbBbiY/VxWiKGYUTePf3Pf/6D3/zmNwCAgoIC7N271+rUmBwxG9QFCxZYhnu9XsyaNQuzZs066LyOTdkDb0pd07hsuqperWGqQFaGdHVWn11vzkyXqdhmTxNqu4qKplQSrAzoz2rneky1xAyXrgKX7dKVFNu6Ysvs14Z1BcvqsJlPULz47VTU2+Qz963culroHq+p8hkMC1U/I7aKZrWopz9klkGqbksVVF+tmY7fJ9Ut9cPMHLO8qvIiAIREedW6rq38lRb2k99Ums1zl2lh+UKhVv0XrU/uDi1MKgdX1JrvUEmV3Moa8X6VIqjqaKvHNZSyy3oFRRupyoO/ytXHzPHZurphusNUPqwM6X1WUmMqlu7x6WqvH/u6acfVQfPcHLeuFNw1Vc+zs7fhCa0WwQZ/T5auabvhSXfBaxeKkNIWQ2b72226vbcWCpbpiqKuVAtV1Y73ChXsVJeu3JqpKHe2Esq8Hbz79XMVVUq7yDMgbNqn2L/VIqrOC4BeLwCoTFPnDWHfQgG4xm8eS2VjK6SdBgKq6rmeZ6pXL59bUequqNT7TNb7h+rcyPfyoO7v7b9Oc4wen6KrwUt1y16tzfD10Kmujf3uTaBWbxOnWyivZ5llcAsFd4c99stONWK+VOP2aqXXpWeGPj8Fwua56yt0td1NlaYa7z6/bu++sJ6nOh4znfq6le850OCxzx7ABzh4OqaWwpMWrcQvFfJrxFgvD5jjxSlU8NV1GABSncq8GNTn6ZIqXeXZoag1ZwiV5Gwl3c4p+7SwHJdu/3LcqfjE+l4aNOcZub6r/KR4GwAAr1D79ylzVzAklLgDsdXK5XWDW6iV25U2MURcuX6pZHj19jtQbfbZgRrd3r+t0FV8t1eba3hbj6463SPNtAPZzgVZZdqxqtoc9OttEAqJawpFjdfu1MdfbpausJuebdZNel1QvTmo6wkQrcScrqwhJ2T9pIV57PoauqHS1GnZUauPhR+8uppxQJnvDwR0cdKgMrdKlfhO6ea65UdySvyHE2EkoOLbQu+gnnTSSXjooYcwdOhQfPzxx3juuecAAFu2bEG7du3inN0wR8wjvoQQQgghhBDyS2Mk8Hiv0UI3qE899RS++OILTJgwAffeey+6du0KAHj99ddx6qmnNirNI+YOKiGEEEIIIYT80tAPamxOOOEEfPXVV1G/T58+HQ5H4x575gaVEEIIIYQQQmIQTOAd1GALfQc1Fl6vN36kGHCDSgghhBBCCCExSESlt6W+g3oo4AaVEEIIIYQQQmLAR3x/WbhBJYQQQgghhJAYcIP6y8INagNkOqqR4ojRNIonh2ro0t5SZl+V885NrYoZJge06toCAFIdptx4il2X6G7t0qXS+3i3R75/72+rhe1Q3KQAQIbDlP73CHcbewOmTL4q0w9Eu69Q3emkO3R3AhLV1U2pX3e3ocqWSxl12UZ+5Tl/v5C+9zp1GXXV5cd+ny6N7nHocb3K8Y5qXXL9u3JTcr1Tuu5GIJAhyqC4J0p36n2W5dbbSJXUl24Q3OmhmHG9Lr3PVGn3DLfeZ5kiz9ZuU96+wFuqhbVx6mPKrgz6vcFMLUx1c+QQZS8TMvS7atIb/A4AKQ69jbqlmq4w3Epb2u1N42amnfsAUtzRNi5dNTiUsVMjXOy4hRuKLKUtUhx636jjV/aFxK3OG8LNxLGeXdrxzoBp0/sDuj1JO/2VZ3/MMK/NLO/eoHCRkSpdZJltIserpCZktmdZIFULk645VDuW6Vot+tL9iuqmS84F6cIuSn1mmbZV6POj6v4jJATvM8Q8p/Z9u3TdfvbY9LEeVNxQpHj8IkzvF9WlRppw99Paa46NXJfutilbHGcpLnOOcesunTLsel0qwuY7Qy5hbztq9TZS+UnMlxUBs397ZuuubXqk7dSO69161ASayL49B+D11I091RWTHPephj4eVOR6niVcuqmuc9p49PEh3Wip7o2kO6h2iruTAWlbtLA9Yr5V3dxJd1BZDr18qqsUmad6rmrPANBauJGT7WAVpq7LlQFPzDBAX5elnar2nsxcEHUtJVzZ7a42bXFntT7PhZRHM1uJebdTur5Gqo9x7q7S7Vu6xIOyDEr3WSlufZ3I9phjqp1Xd/+W5zGP5XVWqrguzLCbY6GVU3dlUxHS12V1jduouJwBotfw3bVmXfeIerdJM/PpmaXbe44y/9QG9TofSQTDdtgsXCDVxyFNA1uSEEIIIYQQQmJgAAm4mWl57Ny5E//4xz+wcOFC+P36nyVVVVV44IEHGpUuN6iEEEIIIYQQEoP6R3zjfVoSn3/+OXr27Inx48fjt7/9LXr16oX169dHwisrKzF16tRGpc0NKiGEEEIIIYTEgBvUaO655x6MHj0a+/fvx65du3D22WfjjDPOwOrVqw86bb6DSgghhBBCCCExoEhSNKtWrcKsWbNgt9uRkZGBZ599Fh07dsRZZ52Ff//73+jYsWOj0+YGlRBCCCGEEEJiEEpAJCnUAkWSamt10a4//vGPcDqdOOecc/DSSy81Ol1uUBvAYQtrymYqXkXtNlWo26qqfhJVUQ/QVSClwl5nochm9Y+MVJdcUX2sWT6RjlTc8ymKgCembdXCSvzZke/7g7r6pqxLltNUjMty6OqFXqEO7DfMMqjKkgCwT1EO9gkVX9lGVkTVUzlul6IrbKaI8gUMsz2dQqW10m6qEkr137Ch94PdbpZXKi+nCzVOVbFYKpJKpVhVIU7GbeUxlQc7CmXeDm79OENRfEyz6+PYBT1dVTlSKvWq6dQKBdy9Dl0l0W2hXJ0jVEcdirKkOt6CYuw1ljS7Dyn2EEKi39yiX9Vxl+l0xwwDAJfS5x6bPq5U1W5Z1/1C3dZjoVT8RVXnmGFSFdslxk73FFM59Ud/rn6yIi4p7TvPXaYdq/OKA9Z2qY6d/S6h2h3UFSKDisqntC9VaTQs5rzqkD7uMl3mcae0/VqYdKKuqgw7RX+qastyvMpxoyqd53r0/q0J6uWrDZjHWV5deVWSqagOtxLqqh28Zt26enV151YOfZ5LtZl95hXjKyDqorbRMe49Wlg7p6kkWhrS+zPTqddFXV9ynHrZs8U6UT/m5HzXWDIdtUj5eQypY9Qr7FKun+o8LtVtpZqsurZJFfy2Ll2BVY51lVRFwXxdTYEWJlWUqxWFf6lI3Mm9TzsuNcz+kTYdtpn1bOvWy+oQMi+quq1UOZdzvlqm8qBXC6sI6Meqjct1WJ1brdZzAEjNNtvPLsou7b06aM7hcqzJNlKR13YFqWWR73LeKK3V53OHsi5kuPS1Vs4VuYqNd/bq/dlJscVWDt2e5Fh1K3VR52AACNn1Ma9eG3gy9X6QyvAZiseG/NQDWli6Mo7lmFKVwmucTaPU3RzUCyHFi9OS6N27Nz799FOccMIJ2u933HEHwuEwLr300kan3fK2+oQQQgghhBCSIHwHNZr//d//xfLlyxsMu/POOzF16tRGP+bLDSohhBBCCCGExMAwbAl9kmHZsmU477zzkJ+fD5vNhrfffjtm3BtuuAE2mw1PPfWU9ntpaSnGjh2LzMxMZGdnY9y4cais1P3frl27Fqeffjq8Xi8KCgrw2GOPRaX/2muvoXv37vB6vejTpw8WLlwYt/zXXnst/vGPf8QMv+uuu7Bly5aY4VZwg0oIIYQQQgghMQiF7Ql9kqGqqgp9+/bFrFmzLOO99dZb+Oyzz5Cfnx8VNnbsWKxfvx5FRUV47733sGzZMlx//fWR8PLycpxzzjno1KkTVq1ahenTp2PKlCl4/vnnI3E+/fRTXHrppRg3bhxWr16NUaNGYdSoUVi3bl3cOixcuBAbN24EAHz77bd4//33E62+JdygEkIIIYQQQkgMjAQe7032DuqIESPw0EMPYfTo0THj/PTTT7jpppswb948uFz6O8UbNmzAokWL8MILL2DgwIE47bTT8Je//AULFizAjh07AADz5s2D3+/HSy+9hF69euGSSy7BzTffjCeffDKSzsyZMzF8+HBMmjQJPXr0wIMPPogTTzwRzzzzTNw6tG/fHrfddhsA4JZbbsGvfvWrpNogFtygEkIIIYQQQkgMDACGEefzc9zy8nLt4/P5rJKOSTgcxhVXXIFJkyahV69eUeHFxcXIzs7GSSedFPlt6NChsNvtWLFiRSTOoEGD4HabImHDhg3Dpk2bsH///kicoUOHamkPGzYMxcXFccvYv39/nHzyybjiiitw8skno1+/fo2pahRU8SWEEEIIIYSQGIRhgy1BFd+CAl2R+/7778eUKVOSzvPRRx+F0+nEzTff3GB4SUkJ2rZtq/3mdDqRm5uLkpKSSJwuXbpocdq1axcJy8nJQUlJSeQ3NU59GrEYMmQIbDYb9u/fjy+//BL9+vXDxx9/DJvNhiVLliRVVwk3qA2wN5gBb7CuaaTkustmSmTLsFwhpS9l4PV0TBnweK5ZVCl3KWFdFfZoxwFFgn2/kIBPF1LpWTDdAuwKZGlhrVymmwJV2h6IrqcqsS9l/K0kt6UbHIcizV/r0MsupeWt2la66bCSj5eo6aY49LoE3RZuMITUvOquQHUpBABd03Zrx209pgsC6fJBlqFCke6Xkvqq24l2Ll0CXo4pVYZeugqRfaa69ZBxZRlUZP+2clXFiBkdt1oZ16pMfm2oaSTqK0JeBEPOKDcTVm5TpP1ItxOW9q6MSTke5bHqwiTeuFfDc4UbEpnuFl+byHc5HtR0pUsQ6YbIyuWLxGEo7oJcwj2VQ3dLUh02/92V9ZRuXVTSHbHde0kqQ7qrC9X1UZpDH4PSzZSKtBHVzcyvUnTbS3Pq6QZUdzpirpL9rYbne8u0MNXGvTY9j+jymu1XK8cURFsrceW8prpfU11HAIDDFds9iVwX5Lrl/nldrTGaxr5rwm4Y4eg1XF2/G0Kdh+R4lWPSbtEWcm5Q10jpkkxtJzk+DwgXb6rdShv+wd9KO9bmVDFNZzis3RupaNcfNr3sdkfsdU/OP9JVixzrKqo7s5QkyhoUfRQQ7wMGXGa4LJ9qa9LNoIzrcJvhaU59fgyn63ODOhZqhEssaf8Finu41k7dVYtaBr+op1tcZlUp4dLNjNU6Je00yxm77TOdetvKNVxFLYPvCFa5DYXtQIJ+ULdv347MzMzI7x6PJ9YpMVm1ahVmzpyJL774Ajbb4dluS5cuBQBcfPHF+MMf/oDFixdjwYIFTZI2H/ElhBBCCCGEkBjEfbz35w8AZGZmap/GbFA/+eQT7N69Gx07doTT6YTT6cQPP/yA22+/HZ07dwYA5OXlYfdu/aZHMBhEaWkp8vLyInF27dJ9Zdcfx4tTH27FK6+8gtzcXFx33XVo1aoVXnnllaTr2hDcoBJCCCGEEEJIDA6FmxkrrrjiCqxduxZr1qyJfPLz8zFp0iT8+9//BgAUFhairKwMq1atipy3ZMkShMNhDBw4MBJn2bJlCATMO+RFRUXo1q0bcnJyInEWL16s5V9UVITCwsK45TzxxBPx5z//GQDw8MMPo3///gdX8Z/hI76EEEIIIYQQEoNENqDJblArKyuxefPmyPGWLVuwZs0a5ObmomPHjmjVSn903+VyIS8vD926dQMA9OjRA8OHD8d1112H2bNnIxAIYMKECbjkkksiLmkuu+wyTJ06FePGjcNdd92FdevWYebMmZgxY0Yk3VtuuQVnnHEGnnjiCYwcORILFizAypUrNVc0sfjmm28QCoWQk5ODPXv24Ntvv8Xxxx+fVDs0BO+gEkIIIYQQQkgMQmFbQp9kWLlyJfr37x+56zhx4kT0798fkydPTjiNefPmoXv37jjrrLNw7rnn4rTTTtM2lllZWfjwww+xZcsWDBgwALfffjsmT56s+Uo99dRTMX/+fDz//PPo27cvXn/9dbz99tvo3bt33Pzz8/MPiZsZ3kElhBBCCCGEkBjUvWMa7w5qcmkOHjwYRhInbd26Neq33NxczJ8/3/K8E044AZ988ollnIsuuggXXXRRwmWph25mfkHKgynwBV0Nhkl1NxUrtVgrFUqZplQSVcMDQplXKgJKZT8rVDW3kFCl9Cpqh6kuoUIpVOAOhEwV2kp4LeNqeYqyhxXDtzpPxpVIBcV4SqOxkHmoqo120Uc+0S9WWaYKtVCp5GeFqpSnqp5KpHIfxNBUz/VEKS8L5UOl7f2GPmWo9ZblkX2m2occ8zJurLr5gomPbysqwx4Ewy5N9bqhclghx4eqSin7VLNTMU9IpVS1DLI8DjG2Ux2x28Nq3Mu5KtUe20dbhVAWVe0rmfaKZ9OJzg2ScJS6qqGEWV9MqAqv0gr9Sn/WCBlUOceo826KULN0umOvC1J1NHpeMcsg20Rtr7JQmhYmVXLV8sn1RSpZq6qtPjGP1Mp5TkEq5Hos+kGq1UbSDzaNim9VyIPgz4qparvJeUeqkKtq23JtlePVo6Ql29AuJlyHhfK1mq4sj5UyqlV5JHK8qvO4XLvktYCq4h9vHVbbQYZZnSvLF1LD4rj1UM+V9mMXyqcupV+s+lfamsehz4+qPeXYYqvTy3zkuibtSS1DRThFhJl9Jm3NLZXgNdVuYcPCpq3U0+X66FKUzT1RM6ZJZTD2mtFUa3hzcCge8T3SoZsZQgghhBBCCGkGDER5bGowTkuCbmYIIYQQQgghpBn4pVV8jxQOOzczn3zyCS6//HIUFhbip59+AgD8/e9/x/Lly5ukYIQQQgghhBDS7IRtMOJ8kKRI0tHAoXIz06gN6htvvIFhw4YhJSUFq1evhs9X93z+gQMHIoUkhBBCCCGEkCOdOpGk+J+WxnHHHRfxp5qdnd0kLmaARm5QH3roIcyePRv/7//9P7hc5gvX//M//4MvvviiSQpGCCGEEEIIIc0NH/GNzb59+zB+/Hj07NkTrVu3Rm5urvZpDI0SSdq0aRMGDRoU9XtWVhbKysoaVRBCCCGEEEIIOewwbHWfeHFaIFdccQU2b96McePGoV27drDZDr4dGrVBzcvLw+bNm9G5c2ft9+XLl+OYY4456EI1N5UhDwKhhuX0rVzJSKl0FZ+Q605VZMujZMARWxY8WqpdvwmuSsQ7hJ6YPFfNV0rCV1vURaZTo7SVbINgWLqSMMsrXSyo0vLyPKu2jedKQpOhly59RLpOpX9dIq5TkViXrgKqQ9by8SpyDDk09zXSRY6QyVfKkGWviRn3QDBVC9tvIdXvieOaSB1jVq4u4rkcUest7UG6aVD7VG1rXyhxtyZWVAW9CAZd0fYkyqGOSTnOpO3VqH3urNXCvHYzn1rhwqpGuucJx36wReYpx7M1Zj6yLhW2ht1+NITaj/HcTqjhUe41wrLPY9dbndei3T/FnhvkHChdaKjzjLQ1te9rpCuOoB63xmZh7/Zk+khHdVck23pvMCPyXc4b0p1KusMcj/HczGj2HsfFhxVhpX/juRiqn1d8oaZxQXEgmALPz3bmsHBDIsekPRS7r2SZs5QpTLqDka5bahUXIdJ1hxx3Wnks1vBYbdhQGazc3Ml05Lpcrazvcl22shkre5ao61o8nGL9VNfpePOhPlfEjivnZGlP6hwo3eDIOSfWeT+frKH22X6LtVaOCyv3gnHdeyl9KucCiZVrIJWoazvlvUxf6MjVZjXCdZ94cVoin3zyCZYvX46+ffs2WZqNGinXXXcdbrnlFqxYsQI2mw07duzAvHnzcMcdd+DGG29sssIRQgghhBBCSHPCR3xj0717d9TU1MSPmASNuoP6xz/+EeFwGGeddRaqq6sxaNAgeDwe3HHHHbjpppuatICEEEIIIYQQ0qy0QBGkRHj22Wfxxz/+EZMnT0bv3r01fSIAyMzMTDrNRm1QbTYb7r33XkyaNAmbN29GZWUlevbsifT09MYkRwghhBBCCCGHJYncIW2pd1Czs7NRXl6OM888U/vdMAzYbDaEQok/xl9Pozao9bjdbvTs2fNgkiCEEEIIIYSQwxeKJMVk7NixcLlcmD9//i8vknThhRcmnOibb77ZqMIQQgghhBBCyGGFgfiP+LbQR4DXrVuH1atXo1u3bk2WZsIb1KysrMh3wzDw1ltvISsrCyeddBIAYNWqVSgrK0tqI3u4EjZsMZVhA3Bo8axIVF2yIqwraEoFQFWBz0rxD9DV3aSum1ROrQx5zHQtVf70MCv13doY6scN5RM0Yiu3SmRbWsW1Uvl0WijzynCPI6iFuS2URK2wUgOuC1cUAZOpZxKKs1K5T1UH9dit+0ztbyvl1XiKn8koYKvKm2q9Qk3072TAcMBuOOKq0Kr1k/YjbVFVQ4y2Na8ST6j/CgXoZFBVK6UNS7tVkWMyVpqAPlbq0o09B8oyqG0k+y4ZlU/9PJGOxbiT9m6FrLdavlqhHi1Ve9V5V45lqVCqxpVzgZUCqCxfVdATIyaQ4tBVZa0UQCVW/ZuMmroaV4bFUgsNNJEEpj/sBMLxL2+ile7NclnVVaLad1061gq7iRKQ6vqKuqycY2Rd1PESNXdZXFP4QnpcqzVdnpvMGq4i7dRKLVbagVuxITlXRdmXEVvRX1Uo9lmoE0usPAEAumq2lVq9RK7var/IekkVaTWfeNcCQU3F99Df/fOHj+AdHDeoMTnppJOwffv25tmgzpkzJ/L9rrvuwu9+9zvMnj0bDkfd4A6FQvjDH/7QqBdhCSGEEEIIIeSwhI/4xuSmm27CLbfcgkmTJqFPnz5RIkknnHBC0mk26h3Ul156CcuXL49sTgHA4XBg4sSJOPXUUzF9+vTGJEsIIYQQQgghhxX0gxqbiy++GABwzTXXRH6z2Wy/vEhSMBjExo0bo27lbty4EeFwC+0dQgghhBBCyNEH76DGZMuWLU2eZqM2qFdffTXGjRuH7777DieffDIAYMWKFXjkkUdw9dVXN2kBCSGEEEIIIaS5sBl1n3hxWiKdOnVq8jQbtUF9/PHHkZeXhyeeeAI7d+4EALRv3x6TJk3C7bff3qQFJIQQQgghhJBmgyJJGu+88w5GjBgR9b5pLBYuXIghQ4YgJSUlofiNkpaz2+2488478dNPP6GsrAxlZWX46aefcOedd2rvpRJCCCGEEELIEU39I77xPi2E0aNHo6ysLOH4l1xySeSmZiI06g6qytGo2msYdgsXCLHfsY0+x4wrpdIPhMx/EKTsv5RuT0qiXpFOrxXuaqR7GCv3FmoZpOy8dA+jhYX1PKqDwh2DxfMPVukmI0NvKd1uj+OiQpWpF/VW3YjEc7+gSfyLMngMXQo/aDPTlfLxEmv3Oom7fFGl8WuEGwE5jtW0ZP+q7RfPfUXYwnFzlJuZGGmFmugd93o3M/HcpKh1l24JEOV+yTz2R7l1UF0AxXbFIonXproLIL1v/OJYbeOgxZzjFq4arJCuTqxsUdp3lM0k+NdztHuq2POGHHNW84/dwn2NHPdR+VjYgZUrK6cou3SToZXPYpxYuacBdDcoVm4wAGsXFVbZSLcYTsSey2LNY8m477LCH3Yk5GZGoved9VxTrayfVi60gORc1qhItyRBizUoah7RXLrp41fOFSpy7qpV1sF4a21j3cwEbbHnBmlP0k61uHJuCOtx1bEv7cnKxmWY6o5IuuySNhy1bjQSdS3yiLZU3Q8B1uuNvDawimtFY9etYDh5sZzDhjDiTQvxwwXLli3D9OnTsWrVKuzcuRNvvfUWRo0aFQmfMmUKFixYgO3bt8PtdmPAgAF4+OGHMXDgwEic0tJS3HTTTXj33Xdht9sxZswYzJw5E+np6ZE4a9euxfjx4/H555+jTZs2uOmmm3DnnXdqZXnttdfwpz/9CVu3bsVxxx2HRx99FOeee27MshuGgauuugoeT2yXZyq1tbUJtkodjdqgdunSBTaLi83vv/++MckSQgghhBBCyOHFIXjEt6qqCn379sU111yDCy+8MCr8+OOPxzPPPINjjjkGNTU1mDFjBs455xxs3rwZbdq0AQCMHTsWO3fuRFFREQKBAK6++mpcf/31mD9/PgCgvLwc55xzDoYOHYrZs2fjq6++wjXXXIPs7Gxcf/31AIBPP/0Ul156KaZNm4bf/OY3mD9/PkaNGoUvvvgCvXv3brDsV155ZVJ1HTt2bFI3NRu1Qb311lu140AggNWrV2PRokWYNGlSY5JsUmbNmoXp06ejpKQEffv2xV/+8peImBMhhBBCCCGEJMwhUPEdMWIERowYETP8sssu046ffPJJvPjii1i7di3OOussbNiwAYsWLcLnn3+Ok046CQDwl7/8Beeeey4ef/xx5OfnY968efD7/XjppZfgdrvRq1cvrFmzBk8++WRkgzpz5kwMHz48sod78MEHUVRUhGeeeQazZ89usGxz5sxJqq7J0qgN6i233NLg77NmzcLKlSsPqkAHyyuvvIKJEydi9uzZGDhwIJ566ikMGzYMmzZtQtu2bZu1bIQQQgghhJAji+ZW8fX7/Xj++eeRlZWFvn37AgCKi4uRnZ0d2ZwCwNChQ2G327FixQqMHj0axcXFGDRoENxu81HwYcOG4dFHH8X+/fuRk5OD4uJiTJw4Uctv2LBhePvttw9dheLQKJGkWIwYMQJvvPFGUyaZNE8++SSuu+46XH311ejZsydmz56N1NRUvPTSS81aLkIIIYQQQsgRiJHgB3WP1aofn0+qkSTOe++9h/T0dHi9XsyYMQNFRUVo3bo1AKCkpCTq5pvT6URubi5KSkoicdq1a6fFqT+OF6c+vDlo0g3q66+/jtzc3KZMMin8fj9WrVqFoUOHRn6z2+0YOnQoiouLo+L7fL6oQUQIOXqgjRNy9EL7JoT8Uthg3kWN+fk5bkFBAbKysiKfadOmNTrfIUOGYM2aNfj0008xfPhw/O53v8Pu3bubpE6HM416xLd///6aSJJhGCgpKcGePXvw7LPPNlnhkmXv3r0IhUIN/guwcePGqPjTpk3D1KlTo34PwRZROrNSR5SqdK4k1C81Zd6DUHmLVtEz1eakcl+1UGu1UqILqcpucRRhw5paoPV/Hmq4lRJulLKxhWJhVDpJ9JlUB05UbdFKtRfQVXLjoarqxTPIRFX25LiVSqKhRqplynqq4y3eOFFVJeMpG8ZSIY6nTiyJZeNhw/bzJ/H/6KJsRI6BkNX4bdx/gXHbVCGeuq3dQmnUSsnRZ6GGGlfVUx3bcfrcSjU3nrp1ouVLNH9Ar4vMP0qJ2WK+jIqrlEmGyTlbRariqnXzOKRyqFRINs+VirMOOQcaSvmkoryVwq9ArYtdSFtKxd/6+ShgJLcWxlzDDVuDc5ycl2Uctd2kvVsh1XbjtXHMdCzGlUSOlSi1W4s81bB4CtV2bbw2XmU5KbV9C5V+K/Vv2b9W83DYUpFaelJIvN4BOe9azOFynFitE6o6sLQn2GKPGzl3BeKo9ieKZZuIIDWubJ8jiiTeQd2+fbsmCJSo0m1DpKWloWvXrujatStOOeUUHHfccXjxxRdx9913Iy8vL2qzGgwGUVpairy8PABAXl4edu3apcWpP44Xpz68OWjUBvWCCy7QNqh2ux1t2rTB4MGD0b179yYr3KHm7rvv1p65Li8vR0FBQTOWiBDSlNDGCTl6oX0TQn4xklDxzczMPGRuOMPhcOSR4cLCQpSVlWHVqlUYMGAAAGDJkiUIh8MRVzSFhYW49957EQgE4HLV/UFRVFSEbt26IScnJxJn8eLFmghuUVERCgsLD0kdEqFRG9QpU6Y0cTGahtatW8PhcCT8L4DH4zmofzUIIYc3tHFCjl5o34SQXwpbOP4Dj8k+EFlZWYnNmzdHjrds2YI1a9YgNzcXrVq1wsMPP4zzzz8f7du3x969ezFr1iz89NNPuOiiiwAAPXr0wPDhw3Hddddh9uzZCAQCmDBhAi655BLk5+cDqFMCnjp1KsaNG4e77roL69atw8yZMzFjxoxIvrfccgvOOOMMPPHEExg5ciQWLFiAlStX4vnnn49Z9qeffjrhet58883JNQwauUF1OBzYuXNn1Iu5+/btQ9u2bREKNY8j3nontosXL444ug2Hw1i8eDEmTJjQLGUihBBCCCGEHMEcAj+oK1euxJAhQyLH9U+EXHnllZg9ezY2btyIl19+GXv37kWrVq3w61//Gp988gl69eoVOWfevHmYMGECzjrrLNjtdowZM0bbPGZlZeHDDz/E+PHjMWDAALRu3RqTJ0+OuJgBgFNPPRXz58/Hfffdh3vuuQfHHXcc3n777Zg+UAFoG1wrbDbbL7dBNYyGe8Dn82kyxs3BxIkTceWVV+Kkk07CySefjKeeegpVVVW4+uqrm7VchBBCCCGEkCOQQ7BBHTx4cMw9FQC8+eabcdPIzc3F/PnzLeOccMIJ+OSTTyzjXHTRRZE7s4mwZcuWhOM2hqQ2qPU7cpvNhhdeeAHp6emRsFAohGXLljX7O6gXX3wx9uzZg8mTJ6OkpAT9+vXDokWLooSTCCGEEEIIISQeze0HtaWR1Aa1/nauYRiYPXs2HA5T/c3tdqNz586YPXt205awEUyYMIGP9BJCCCGEEEIOniRUfFsiP/74I9555x1s27YNfr9fC3vyySeTTi+pDWr97dwhQ4bgzTffjKg/HW2EDVOmW8qNC4Fu7Sha4twMT8bdQXR5zDJIOXuJKj3vC+ndWyPkxWuV41qRjuoSQsrBS1l63T2EXr7qoJ6nKqMvpffdDvPd5ShJesgyJOauBgC8igsG6eoi1ak7T1ZdC0h5dlUSvqn6M15aMm7Iwr2OFdJFhVX+0h2JOoqiym7xaMrBoLrJSda1TCIEDQfshiNuX1i5mbJ0k2ShlCDdQyTjwsDa9vSwKJdPSpGi3QWZcf2i6HZb7DmnOqi/0iHtX7VpryOgp5tE26r5yD5yC/deTgsbjs5HcbWVhCumZNzMSNTyxXO31FgcYm3S3adYu0BRwwNirHpgtrWsZ21Yuq9IfFxH1tsmurgLG/ZIH2lpxhkP6niRfSPbQnW/5BFjULZNwDDbxqpvZB7Rx+a4k+u7xGpdUecGOW/UinQrA6btBURcaTNeR2xXe3JuUNtIriNWLuekvasullLs+hwjsbI3K3crVmuQ1Roh84yeN2LnaeW6LsrFIfR6e5RukmMobI/tBivanZYeVx3zurXrJOMe7UjiUIgkHS0sXrwY559/Po455hhs3LgRvXv3xtatW2EYBk488cRGpdkoh0RLly49ajenhBBCCCGEEBLBSPDTArn77rtxxx134KuvvoLX68Ubb7yB7du344wzzkjqvVaVhO+gTpw4EQ8++CDS0tI0v2MN0ZhbuYQQQgghhBBy2JHAO6gtdYO6YcMG/POf/wQAOJ1O1NTUID09HQ888AAuuOAC3HjjjUmnmfAGdfXq1QgE6h4j+OKLL2CzHZ238AkhhBBCCCEkwiFQ8T1aSEtLi7x32r59e3z33XcRVzh79+5tVJoJb1CXLl0a+f7RRx81KjNCCCGEEEIIOZLgO6ixOeWUU7B8+XL06NED5557Lm6//XZ89dVXePPNN3HKKac0Ks1GvYN6zTXXoKKiIur3qqoqXHPNNY0qCCGEEEIIIYSQI4cnn3wSAwcOBABMnToVZ511Fl555RV07twZL774YqPSTErFt56XX34ZjzzyCDIyMrTfa2pq8Le//Q0vvfRSowpzuGC3mSpp/rDeRFaqa2FDV5dLUxRipXKfqpwYslCEBHQVtmiVUaHGqSrjRakziriKYptU/FTrLcNqg3qb6IqAetxyn1c/129qv6V5dBnqgFNR43PqqnROu5X6nvXj5mr5pJJoukMvQ4pyLNUuVaVGqXwpUftUKtpZ9bdUaY6qm5JtALo6n9V5PjGO27rNP5gqQ3ofSfVSh4UCqEspkNNmrQCohYl6WuWpqlXGU0xMFAcMOGBEKeoGZbspeXscUi1Wr2+KGEsq1vOGHqYqY8o8JHJ+skKzY8s5R28TqXztV5Q899akaWGBkH5uhsfUB093CYVfoRjptlAA1VRyRR85hcpwijLvSnVVOSeq86lUYVfHpFQ6DVj0p8Sq7yVWKqNRyuZK+aqFQnuOp0o7rg6ZSqxh8XqOV4wxtQwuI7aSuVQHlWqrVkqeUg0W9rryhy3m+WSw28KRevgVdeFgyLov1DHgsAul1Kh2MsPlfBYQ05QWLprFZTPXpGRUjK3GA6DbqRy/ftn+FmFltSmR74GgHibXcBW5Zst5xEr52krhO0Ws4WkW9m6lmCxJah1OAm2ciHTkuFEJiGspdS0K2WOvl4C1BwnZfipyjMvyqu0bpQ6sxJVh6vgzjuRbjHzENybHHHNM5HtaWlqTuBxNaoNaXl4OwzBgGAYqKirg9ZoXtqFQCAsXLkTbtm0PulCEEEIIIYQQcjhgS0Ak6SA8EBJBUhvU7Oxs2Gw22Gw2HH/88VHhNpsNU6dObbLCEUIIIYQQQkizYgCIdwO4BW1Qc3Nz8c0336B169bIycmxFM8tLS1NOv2kNqhLly6FYRg488wz8cYbbyA3NzcS5na70alTJ+Tn5yddCEIIIYQQQgg5HOEdVJ0ZM2ZEXvWcMWNGk3t3SWqDesYZZwAAtmzZgoKCAtjtjdJYIoQQQgghhJAjA76DqnHllVdGvl911VVNnn6jRJI6deoEAKiursa2bdsivm/qOeGEEw6+ZIQQQgghhBDSzPAOamwcDgd27twZpUO0b98+tG3bFqGQteBjQzRqg7pnzx5cffXV+OCDDxoMb0xBDicynLXwOOvqUBX0aGGVihqiVE5zClVKr91US5OqdKqqqs/QFRjtkOq7Zrouu3XbuqDElYqrQlVPVYWTKq8VhlnvYMh6mGjqfOKmeopLV4wzFKU3QxhySFGtk2qgUYqAyrEMk22thku1QKm82tpVGfme7qjVwty22CqjfkNvI1XFLlrtTijYwhY7TBynKuWVSpiq8qBUp5Uqn7v9pgJ3plOv5w9VbbTj/JSyyPcUh1CyVMZbql1vS3X8x0O2kRbmMMN87sTTtCLLVQ2Py4XKkG7fZYEU7VhTxYa1GqI6H8j2rlHVgIXSZLarWju2UpqU56rtJhV9pTKyqqRYK8qnKvzK/KWKtxruFWrbcn5S40qFb6kQqcaVc6l2nrBhGVdVoVUVPgEgQ9i0nCNVVLv0hfX2qg3L9jPb1kqRuqFwq7hWapxqnnK8/eTL1o4LvOb7P99UtdPCOnjLtOMspzkeo1WPzeN0u1RE19vWWhVVqt7W1aXWFXuOTYYMpw8eZ11Z1TatCrq1eFYKy1Eq+GKdUVVWpUquHHepdrNtotWAzXQ9ok3tIaHarymq6+WpEWMyrIwJK0VliVTXzlSUuGsd4lpFjEl1TQoJe3e6xPqgqHZbzXnSvuUcmO4w2zrVobd71DWQciz7vtZQr4f0eh4M6roh1f/lGAsoc3i1TR+rNUp/1oSsy6dez7Xz6C4h5bqsXmPI9pJeD6xQ58uAWIu0690mWsObhTDiv4N6BIsUHwyGvKD/GZ/PB7fb3WBYPBq1Qb311ltRVlaGFStWYPDgwXjrrbewa9cuPPTQQ3jiiScaVRBCCCGEEEIIOdzgHdRonn76aQB1IrkvvPAC0tPTI2GhUAjLli1D9+7dG5V2ozaoS5Yswb/+9S+cdNJJsNvt6NSpE84++2xkZmZi2rRpGDlyZKMKQwghhBBCCCGHFXwHNYoZM2YAqLuDOnv2bDiUJ97cbjc6d+7caJ+ojdqgVlVVRZ4zzsnJwZ49e3D88cejT58++OKLLxpVEEIIIYQQQgg57OAGNYotW7YAAIYMGYI333wTOTk5TZZ2o2R4u3Xrhk2bNgEA+vbti7/+9a/46aefMHv2bLRv377JCkcIIYQQQgghzUn9I77xPi2RpUuXNunmFGjkHdRbbrkFO3fuBADcf//9GD58OP7xj3/A7Xbj5ZdfbtICEkIIIYQQQkhzYQvXfeLFaYmEQiHMnTsXixcvxu7duxEO6w2xZMmSpNNs1Ab18ssvj3wfMGAAfvjhB2zcuBEdO3ZE69atG5MkIYQQQgghhBx+8BHfmNxyyy2YO3cuRo4cid69e8NmS1w5PBYJb1AnTpyYcKJPPvlkowpzuNDKVQmvq65ppOy2KqUtpeWlmw31XOkuRJXdDwg5dlfUg9exXcdIWXo1XLruiHKVYHfFjKtKuZeJv4Ss3E5IWnurtONqRea/zOfVwlQXNB6nLiUvpe/VPGX+0h1IreLio8ynuxHJEC5W2rsPmGH2Gi1MlWcPCLcyUlpcc6Eh7NRhiy2zXh3W3Z5YyeTbnXqmqmx+rSifHWnacXnQbPtSvx5WKVwxqHGtxomUr0/GTY9EtRc1zxpn07ihaOMqR4rLCZctXftdultSbVy6joh2F6G6gNBtRG0n6TZBuq9IUeYRmYd0U6C2jZXrE0B3KxUQdalR3GdZuX+pK69ZpjaeSi1Mtp9q73LecFq4XJBhTkdsV1FyHt6vjGfpkqK1S3e5kKG4/5Btq7ZnlEsKxHYN5rQL1yBicggpY0O2dapwe6XakBwLat/vDwgbFu6TDgRTI9+lOyLVvgG9D2WeOS5zPs926O6RvBbzmsQvxmb9fNpk9u2ugNdd10f7g2b7S9dcfjFvq2uH7HOnqF9IuwCzvm2ipiuvE9Q1XI4Vr5gzq8NmXOmGxGPocdU85ZoYdsS+eHQLm8l0mWNQjp3qoIW7KpGnW7goU9f0KFdRyrly3pCuwNR5Wbatat+AbuMVIX3cV4fN9pRzqZWdWrmqAvR5LcoVm7QZZXjWCveDlUp59wb0datC2LDqjkiW/UBQbz+VdOGmJ9euz+9WrhNV5BxdpVzX1LqbxsabhUOwQV22bBmmT5+OVatWYefOnXjrrbcwatQoAEAgEMB9992HhQsX4vvvv0dWVhaGDh2KRx55BPn5+ZE0SktLcdNNN+Hdd9+F3W7HmDFjMHPmTE1Rd+3atRg/fjw+//xztGnTBjfddBPuvPNOrSyvvfYa/vSnP2Hr1q047rjj8Oijj+Lcc89NqB4LFizAq6++mnD8REh4g7p69eqE4jXFrpkQQgghhBBCDgdsiLrf0GCcZKiqqkLfvn1xzTXX4MILL9TCqqur8cUXX+BPf/oT+vbti/379+OWW27B+eefj5UrV0bijR07Fjt37kRRURECgQCuvvpqXH/99Zg/fz4AoLy8HOeccw6GDh2K2bNn46uvvsI111yD7OxsXH/99QCATz/9FJdeeimmTZuG3/zmN5g/fz5GjRqFL774Ar17945bD7fbja5duyZZe2sS3qAuXbq0STMmhBBCCCGEkMOdQ/EO6ogRIzBixIgGw7KyslBUVKT99swzz+Dkk0/Gtm3b0LFjR2zYsAGLFi3C559/jpNOOgkA8Je//AXnnnsuHn/8ceTn52PevHnw+/146aWX4Ha70atXL6xZswZPPvlkZIM6c+ZMDB8+HJMmTQIAPPjggygqKsIzzzyTkJuY22+/HTNnzsQzzzzTZDcqG/UOKiGEEEIIIYS0CJJ4xLe8vFz72ePxwOPxNHBCchw4cAA2mw3Z2dkAgOLiYmRnZ0c2pwAwdOhQ2O12rFixAqNHj0ZxcTEGDRoEt9t8jH3YsGF49NFHsX//fuTk5KC4uDjqVc5hw4bh7bffTqhcy5cvx9KlS/HBBx+gV69ecLn0R9TffPPNpOvKDSohhBBCCCGEWJHgO6YFBQXa8f33348pU6YcVNa1tbW46667cOmllyIzMxMAUFJSgrZt22rxnE4ncnNzUVJSEonTpUsXLU67du0iYTk5OSgpKYn8psapTyMe2dnZGD16dKPqFQtuUAkhhBBCCCEkBon4Oa0P3759e2QTCeCg754GAgH87ne/g2EYeO655w4qrUPBnDlzmjxNblAboDrkRjjkajBMVTkL2KUSoX6sKsFJpbcMRZ1Rqp9KBTlVXS4eYVvD6qcNpSvDVTKdpoJtilCWlOepinF2oUIoVT3LbKaapFSXqwwkXk8rBUCp6qnmUyXykOp3qrJfhkNX8VWrVhHWlfB2+rO1Y1VFs7VLV8LLcerKxqq6rVRMteojiaYWaNP7TIiOaul+X2ntGqoy4G3wOwC4HWbZHaLsWaL9HIparRzzsp7qsapsXBtOvD2sqAx7EAy7otQGUx2xlUjlWIZQ2063K2qSLmEzilq0VFhV1XUBwGmhCinLq9q0VO0NCftS7SRFjI90pxgvFuVR5zJpw+UWCpGVQb3esi6qcq/HEVuRtCqk23BtKLayqFQkzXHpyrNqXbwQ87Ciornbn6GF7fbpx15l3LRxC+VLoV4aZZsWOJR6Rym8KjbkcgsV1IBevhplDclyiXlNsMefHjNMVZ+PUiQVtqOWT45FqeJbv8bVhKMk7BtF0HBE5hA1b6nqLBViVRtX1WuBBtZwJVyq9FvNZ1JhPRQ2y+eQCvQibrUy9kOQKsN6+dTyyzVcVSiWtibTUW1czl1uu74elCvrg99iHa47N7ayubqGy/Vcqk6ra2aUJwWXnq5q47L99gdNJeyfarJE2fW4+Sllke85TqFmLdY2u8VLiVI5XB1jqdAVdaUisYpsIzXPGjFfVopj9dwqh96/si4um6mCnipU+tX5qUp4I1DbT7blkUQy76BmZmZqG9SDoX5z+sMPP2DJkiVaunl5edi9e7cWPxgMorS0FHl5eZE4u3bt0uLUH8eLUx+eCMFgEB999BG+++47XHbZZcjIyMCOHTuQmZmpKQonypE7UgghhBBCCCHkUGMk+GlC6jen3377Lf7zn/+gVatWWnhhYSHKysqwatWqyG9LlixBOBzGwIEDI3GWLVuGQMD8w6GoqAjdunVDTk5OJM7ixYu1tIuKilBYWJhQOX/44Qf06dMHF1xwAcaPH489e/YAAB599FHccccdyVcc3KASQgghhBBCSEzqH/GN90mGyspKrFmzBmvWrAEAbNmyBWvWrMG2bdsQCATw29/+FitXrsS8efMQCoVQUlKCkpIS+P11Twv06NEDw4cPx3XXXYf//ve/+L//+z9MmDABl1xyScRX6mWXXQa3241x48Zh/fr1eOWVVzBz5kxNFOmWW27BokWL8MQTT2Djxo2YMmUKVq5ciQkTJiRUj1tuuQUnnXQS9u/fj5QU80mq0aNHR218E4WP+BJCCCGEEEJILJJQ8U2UlStXYsiQIZHj+k3jlVdeiSlTpuCdd94BAPTr1087b+nSpRg8eDAAYN68eZgwYQLOOuss2O12jBkzBk8//XQkblZWFj788EOMHz8eAwYMQOvWrTF58uSIixkAOPXUUzF//nzcd999uOeee3Dcccfh7bffTsgHKgB88skn+PTTTzWlYADo3Lkzfvrpp4TbQ4UbVEIIIYQQQgiJwaHwgzp48GAYRuxdrVVYPbm5uZg/f75lnBNOOAGffPKJZZyLLroIF110Udz8GiIcDiMUitbP+PHHH5GRkdHAGfHhI76EEEIIIYQQEotmeAf1SOGcc87BU089FTm22WyorKzE/fffj3PPPbdRafIOKiGEEEIIIYTEwGYYsMW5oxkv/GjliSeewLBhw9CzZ0/U1tbisssuw7fffovWrVvjn//8Z6PS5Aa1Ab6uyIfrZ9l7t5BgV6XRXeJevpRKVyXrU4QEf5YiTZ4lpNGlew7V9Yl0dbE3oEs3q+E1wlWOdBFSHjClwN2i7AVp+yPfVdc6QLRUv5TfVwlb3KRX3UEAQLXiAka6W/HZ9XqXK+Fep+wjvTxuxc1DtueAFiZdLqiy71GuAxRzORDS3Wn8WJutHe+uMR9pKHHrUuM90nXHx61dpnR7lOudUGw3OFFuTxSkyxfp/kcl2623QakvVTuuDJr9UhsULlEU1zGy7DJP1d3O3qAuiy/HcanflPyvVvIPVCXuosOKr8oL4Aq5o1wAOMWx6oJBuiyR9VVdSUh5fvU4VdiTT7h/Ul3HSJcK8rhacd0i3a0EhcsO1a1LXkq5Fqa6RpH2He1qwLSnEGK3AQCUBsyxVO7XXQ/I8lU6zH72SjczqisrMbZlP2S6fTHjBizcFEm3Ez6LfthemR0znXCmnk4H7349ghIsy+Mz9LGwO2zOI7IuqksN2WcS1Rb9Yt6Qc5lq//6QcPERMONWCbdBBd5S7TjdobpW0ttP2nu9axt/ZdPY96bKPLiMuvEk7UJFrhVOxd1StVg/o9wtGYpLEGHTEtW1hrSRA4rrFunGRbpBO+A321+6yJGkKnVpLVwfpTnN8kr79ohjtexyrZfXGGpbS5duEjWu7AcVWc8o11bKdc3+oL52yX5RXZ3JflDdfck1cH+NfqyWyZGW+IZEutbaa+iPPqrXH7IfvLbYNi7dCKmuZdQ5GADKfLq9VwRi++fcp6zDANAhxZzL8sS1lEqlGLf7AmY6/uqmsfFm4RC8g3q00KFDB3z55Zd45ZVX8OWXX6KyshLjxo3D2LFjNdGkZOAGlRBCCCGEEEJikIhKb7IqvkcLy5Ytw6mnnoqxY8di7Nixkd+DwSCWLVuGQYMGJZ0m30ElhBBCCCGEkBjUiyTF+7REhgwZgtLS0qjfDxw4oKkUJwPvoBJCCCGEEEJILPiIb0wMw4DNZov6fd++fUhLS2vgjPhwg0oIIYQQQgghMeAjvtFceOGFAOpUe6+66ip4POY7zaFQCGvXrsWpp57aqLS5QSWEEEIIIYSQWPAOahRZWVkA6u6gZmRkaIJIbrcbp5xyCq677rpGpc0NagN88VUX2FPqVMgcuboKXFqqon7nEmqXLl11TVVkU9VOAV1pspW7Ss/DqecZVJQed/t01bed1frxgRpTPS0Yiq1YCQChkPkKsl2Ub2+NeUs+1aWrrqU6AzGPpdKpRFXcO1CrK3uVV5thbtG2hlDuq/WZ6oHhkP4qtSHeAfCmmuX/VbauPCfLeyBolqk6pKsQqqp/9aqT9WyrzNGOf9yfHfmenqL3Z4ZTqriaZihVPH+oytWO1f6uqNXV98KKKmqaR++zVin6GMt0mwqbUrFwb7X+OEaN0taBgD5l2JS/C/ek6G2yVzzWoY75SqHwuKtSjOP9Spn2m3HDNbVoClatPhb2FC8Ml76aeNtUa8fZaabCcZpb7zdVHRrQFYClvXsVFe80p943Uh1UVe4sEfa9u0I/rq6JrZTpcMR+GWZfut43bVJNlU91bDRUXl3JXKp66uUp95t12SfGlVTjVBU2Q0Lh1x8wbU/Oaw7R1rnpZh/mC4XN8qA+56jKvbI8pYry5I9V2VrYnnJ9rAeV8rmEIqlUitby8OltsqtK798qn9meNvHXvGrjeWkVWlgrj27vVYoSthxTUqG0utaMGwrobW1XxtS29GwtbHNaa+1YVWKW9r67Um+/8gN1ZQhXN419r/yuU2QNR6VSB2nvrXQF89aZph2kxVn3VHuXCstS0V9V8Q9FqdCaY7JE9P/eCn18BGrN+dcmFERswg5SvGaeHbLLtLDWyviQ1xtSEVpXIBbK28IzgKrcK9cn+fSfDFdR1/tav74met16P7RJN/us1KW3l5yf9tvMcKmYvKM2y0ynWijfVurHah9K5fdUp7AnRe16d41evnKf3n5qvTM9ui20TzOV13Pc+jpVIfqhUsnzp4osLay0XCgSK2MKYmz+6Nava77LbBX53ipVn2PUNa9SKLbvU8ZxqIlsvFkwDNjCcXagLczNzJw5cwAAnTt3xh133NHox3kbghtUQgghhBBCCIkBH/GNzf333w8A2LNnDzZt2gQA6NatG9q0adPoNKniSwghhBBCCCGxMBL8tECqq6txzTXXoH379hg0aBAGDRqE/Px8jBs3DtXV1fETaABuUAkhhBBCCCEkBnQzE5vbbrsNH3/8Md59912UlZWhrKwM//rXv/Dxxx/j9ttvb1SafMSXEEIIIYQQQmKQyAa0pW5Q33jjDbz++usYPHhw5Ldzzz0XKSkp+N3vfofnnnsu6TS5QSWEEEIIIYSQWBhGfBGkFiaSVE91dTXatWsX9Xvbtm35iC8hhBBCCCGENDX1IknxPi2RwsJC3H///aitNVWaa2pqMHXqVBQWFjYqTd5BbYDctQ443HXS9FX5uiR3rds8rhHb+1Cqfm9fKHbrYQ5lFKfrsu6edF3eXk2m9oAuJ+7eqUuwe0rN70J1Hn5dMRyBLDNC2KNbVbVSTzj0MClnb3eZxy6XLuvuEZLwDruZlk+4LFFzkW4mwmG9MQPVZr1dO3UXBk7xZ03QY8r4f9tBdzNxoJ1+nKFIu0vXAb6QWd5Kny6jXlGl94taPukGY2dNpn6uIgm/t1aX6N5Wqneab4/ZL44KvY3sAbONKtP1PHfl6nl6Usx+8dcK1zE79Lp495rpSqcmqteB8jZ6e5W10uvicCtuRHzCfcV+fRyn7DHzzNhuphvy27ANB0/7Tww4XQZqc/Q2LD9GuHVJ1d1hqIS9wsCUsR1l/GrTePTzHCnCpZISHN6vj7OUXXp501WvSWJh9LUSx7lmwrvThRsAxUWQy62Xx+UUblOU8ewRYW6nfq7qEsbKrQwAOBR78wvXUTWVZnld2/TxGRL13pFl1mVfvj4G92br87lXKW9QzDmqq4RS4Waidr9eBrW/96frca3mkb3CXU1NqT4fOcvM9rOF9ParTDHbb2d2thaWka27T1HbvkqsId4tYoztV84TnspUzxylrfR67mmtu7OwOZX1Rdi7s1Sfc9J21ZUvpHs8aTS5xW443HWzVcY2cz2tbqfPM/u76/b+Y5ZeJxXDLdZBZV2Urs1sYr1Sh77No9uMGmg7oLeLtHev6WkEhrh6q9W9/KCilZnPN9V6H/+oucvT12jpDkZF2qwc27VBpxJXut7Rz1VdtfjFtUDFPtNuvT/ofVYjTG9zW9OG9rbV7b1tur7uuRX3P34xuMtqTNvbV6bbZXi/vvKV+s1zvxcTr1O496pU3OlUHNDt21am183uU+YRr57u1kyzg9OydFctsl/U9qzdpY/pjM16vb2lyrybpXd+ULR1VbZZ/v1tddtR7R3Ven969ph5GrV6nY8o6Ac1JjNnzsSwYcPQoUMH9O3bFwDw5Zdfwuv14t///nej0jxi7qB27twZNptN+zzyyCNanLVr1+L000+H1+tFQUEBHnvssWYqLSGEEEIIIeRowBY2Evq0RHr37o1vv/0W06ZNQ79+/dCvXz888sgj+Pbbb9GrV69GpXlE3UF94IEHcN1110WOMzLMf3DKy8txzjnnYOjQoZg9eza++uorXHPNNcjOzsb111/fHMUlhBBCCCGEHOHQD6o1qamp2h7tYDmiNqgZGRnIy8trMGzevHnw+/146aWX4Ha70atXL6xZswZPPvkkN6iEEEIIIYSQxsFHfC3ZtGkT/vKXv2DDhg0AgB49emDChAno3r17o9I7Yh7xBYBHHnkErVq1Qv/+/TF9+nQEg+b7Q8XFxRg0aBDcbvNdgWHDhmHTpk3Yv39/Q8kRQgghhBBCiCUUSYrNG2+8gd69e2PVqlXo27cv+vbtiy+++AJ9+vTBG2+80ag0j5g7qDfffDNOPPFE5Obm4tNPP8Xdd9+NnTt34sknnwQAlJSUoEuXLto59ZLHJSUlyMnJiUrT5/PB5zPFAsrLy6PiEEKOXGjjhBy90L4JIb8YYaPuEy9OC+TOO+/E3XffjQceeED7/f7778edd96JMWPGJJ1ms25Q//jHP+LRRx+1jLNhwwZ0794dEydOjPx2wgknwO124/e//z2mTZsGj8djkUJspk2bhqlTp0b97i0NwfmzGq2zVr/JrKrxuaqFelu1UOezm5GDXj0d9diXrZe/trV+rIrNpVXqWaTsNcSxWQa7Xw/zZ+nqbb4sswwhKc9qV9Q3xSgJCxG2oCIS588Qqn5uIW/oUsK9enu5vIoCqFDCs4m/pVTFuJBQu3Pv15XonFXm97BbL/yuULZ2vFtVZgzq6dirzTZxVsUeFwBgV1SRa5x6XXZ4dGVBVUk0nlqoe79ZBs8+PU+HooAZyNTL5xOqwz6P2eE2UU/3AXFcoeaht3Ug1Ywb8urnhfx6nqoDa7dQWnaL60pVWdBTbo6TYEDYWBxi2bgtZMBmN+DUxRCR/oN+7FAELt0VYuGRh3azzaWNGA6lndxCobaVHjmkCD06RPmkvafuNtvD4dPHWW2ubrg1rcx8g6l6GUIeswxhMRfUiOk1pKjHhlNFfwg7sCkK3+5UXS001aurldvtsfvWUBV2xZSS/qOIu8OMW16rq3FuEXOrprwslIOh2LtLKGZ79aogmGqmU56qK3UGgvq8GwiYx75yvTyqai8AePeZDerUhXkRSFPWEL/eaRVVYtJWqukQa5ocY54yM7KrUm/smlZq+YS9V8tFxEQqq0fbe10+wUByXu5jruH7zDXccJn1tcmxs10/dnxnxpX2rtowAITVYynaLe1ASUrapV8RQ7XrJoGUfXoZ0naZNmILCuX9dnq6Ve3Mvgpk6mOy2muuK5VuWU9xrKiO2xxy0tMranOb5fOm6pWR9m4o50pFf9VFgktc82R/q3eiL8ucuyq66Dcivm2tK81CXYuF0jKqFHs/oNuhW9iIT1HULnXoc4xDKJv7FUV/2wHhdWGfbosuZa0Npejl81eZc0VVhVhgpKcFZU13Vep5SBvw7jfL6xFrfyBdP7fab4Y7fLHVeNV6AIBnv6rEf+Ru4GxGdPs1FCcZli1bhunTp2PVqlXYuXMn3nrrLYwaNSoS/uabb2L27NlYtWoVSktLsXr1avTr109Lo7a2FrfffjsWLFgAn8+HYcOG4dlnn9X8km7btg033ngjli5divT0dFx55ZWYNm0anE7T9j766CNMnDgR69evR0FBAe677z5cddVVCdVj586d+N///d+o3y+//HJMnz49qTapp1kf8b399tuxYcMGy88xxxzT4LkDBw5EMBjE1q1bAQB5eXnYtWuXFqf+ONZ7q3fffTcOHDgQ+Wzfvr3BeISQIxPaOCFHL7RvQsgvhmEk9kmCqqoq9O3bF7NmzYoZftppp1nezLvtttvw7rvv4rXXXsPHH3+MHTt24MILL4yEh0IhjBw5En6/H59++ilefvllzJ07F5MnT47E2bJlC0aOHIkhQ4ZgzZo1uPXWW3Httdcm7CJm8ODB+OSTT6J+X758OU4//fSE0pA06x3UNm3aoE2bNo06d82aNbDb7Wjbti2AOiex9957LwKBAFyuun92ioqK0K1btwYf7wUAj8fT6LuvhJDDH9o4IUcvtG9CyC/FoVDxHTFiBEaMGBEz/IorrgCAyM04yYEDB/Diiy9i/vz5OPPMMwEAc+bMQY8ePfDZZ5/hlFNOwYcffoivv/4a//nPf9CuXTv069cPDz74IO666y5MmTIFbrcbs2fPRpcuXfDEE08AqBM4Wr58OWbMmIFhw4bFrcf555+Pu+66C6tWrcIpp5wCAPjss8/w2muvYerUqXjnnXe0uIlwRLyDWlxcjBUrVmDIkCHIyMhAcXExbrvtNlx++eWRzedll12GqVOnYty4cbjrrruwbt06zJw5EzNmzGjm0hNCCCGEEEKOWJJQ8ZXvwx+qP9NWrVqFQCCAoUOHRn7r3r07OnbsiOLiYpxyyikoLi5Gnz59tEd+hw0bhhtvvBHr169H//79UVxcrKVRH+fWW29NqBx/+MMfAADPPvssnn322QbDAMBmsyEUSuxVrSNig+rxeLBgwQJMmTIFPp8PXbp0wW233aa9l5qVlYUPP/wQ48ePx4ABA9C6dWtMnjyZLmYIIYQQQgghjcYWMqL0UBqKAwAFBQXa7/fffz+mTJnS5GUqKSmB2+1Gdna29nu7du1QUlISiaNuTuvD68Os4pSXl6OmpgYpKfp77JJwODn9gEQ4IjaoJ554Ij777LO48U444YQGn4EmhBBCCCGEkMZgMwzY4rxjWh++fft2ZGaagph8FSF5jig/qIQQQgghhBDyi2Ik+AGQmZmpfQ7VBjUvLw9+vx9lZWXa77t27YoIxCYiIhsrTmZmZty7p/V8/PHHOO+889C1a1d07doV559//kHdNDwi7qD+0nj3+eF01u3dpSsPm+LjyFnu08MqhR8AxaVJKFN3F+LPUY5tejfYQkK+XxnXUuLasAsp8gzFFUqtcINTo5/s2W+6N3FV6H4T7H7zGXHDqf+P4RducWramOWvzREy5Rm6XLvqziaUItwvZJjpBFKs3VcYAfMHu1Ovp6+1HtfuU1w1VOoJefbpUumqqxaHkPx31hhKPL0tZT9UtzGPq2x6e+0Xj4g4FFccQb/eJja/3vZhpa6BTOH2QB+OGtJ1jC0c20WCdCtUo7SnTUjzq1WR7ircZfqxSzEPtS0bOnZVmv2vum+yBYNoChy+MByhcJTbnJQ9olxVZn7OPUI7X/yTanjNsWS49H4MZphjoLaNdCMl7F1pR1ucVzVUNwDSDYb7gH5y6i5lQAtfbWG3WV5/pnBHlW2PeRzIkONTL5/qbsefptuaP113S2JTXEsZFi5fpFupqny93qoNe/eK8bpbz9OuDCe7cB2juvxwBPQ8Q2493drW5nG1V+/fKlkXJSk514c9ej5+xcZD+hKipeMS85qrQu9DtW6G6KOQuG6q7GCmZRMuctTxKF00Sdcx6vzpEK4lnMJFm+vntcmepJuZWNiDBuw/T06qJxSPsAnptsm9z6yUo1KvoLQvzd2RtOEMvbN8rcxGDjtFmyouQeT6Lu1fdU8n16CUPfrc6FXcrQU9+hgMpJthqruiujz0PNU1XLrPkk87hrzm4KoR9l6TIhJWz63R28RZqdq7fprqLgvQXYGl/STsaVdsVyjSXZU6F8i1P2peU9rTlyLchAk3Yqo7G0NcqwSEW76wM/ZYUO3NWa3nETV3KXWR7RdM04/LupqVk+nIMqjt4tT3Mnr7iXVVdckYFHPpEUUiKr1JqvgeLAMGDIDL5cLixYsjvkY3bdqEbdu2obCwEECdiOzDDz+M3bt3R4Rli4qKkJmZiZ49e0biLFy4UEu7qKgokkY8/vGPf+Dqq6/GhRdeiJtvvhkA8H//938466yzMHfuXFx22WVJ140bVEIIIYQQQgiJgS1saDepYsVJhsrKSmzevDlyvGXLFqxZswa5ubno2LEjSktLsW3bNuzYsQNA3eYTqLvjmZeXh6ysLIwbNw4TJ05Ebm4uMjMzcdNNN6GwsDCipnvOOeegZ8+euOKKK/DYY4+hpKQE9913H8aPHx+5s3vDDTfgmWeewZ133olrrrkGS5Yswauvvor3338/oXo8/PDDeOyxx3DbbbdFfrv55pvx5JNP4sEHH2zUBpWP+BJCCCGEEEJIDGzhxD7JsHLlSvTv3x/9+/cHAEycOBH9+/eP+Ch955130L9/f4wcORIAcMkll6B///6YPXt2JI0ZM2bgN7/5DcaMGYNBgwYhLy8Pb775ZiTc4XDgvffeg8PhQGFhIS6//HL87//+Lx544IFInC5duuD9999HUVER+vbtiyeeeAIvvPBCQi5mAOD777/HeeedF/X7+eefjy1btiTXKD/DO6iEEEIIIYQQEotD8Ijv4MGDYVicc9VVV+Gqq66yTMPr9WLWrFmYNWtWzDidOnWKeoS3obKsXr3aMk4sCgoKsHjxYnTt2lX7/T//+U+UonGicINKCCGEEEIIIbFIwg9qS+P222/HzTffjDVr1uDUU08FUPcO6ty5czFz5sxGpckNKiGEEEIIIYTEIBk3My2NG2+8EXl5eXjiiSfw6quvAgB69OiBV155BRdccEGj0uQGNQ7yhWf1+fJgplDjbJWqHYcUpbewUNFTVSAN8SZwPCU1q/Kpiqwy3ShFNkUFUFXtBQB7lSKF6dcL5KnV6wlDOTZ0RTupUhlU1KrtQT3M7lOU/Gyx1SMBvY1kmFQWdCrqsZ79QrW1VD/ZVW4mbLNQlLTX6G0SFkp+ht1sk0CGXk+fXR83/tTYUq1CN1JT+RTNp6lM2oWir8NC4dfQm1pT44uKG1UgJQ+h6ukSotYORVU6SsWzKiTiKgmrE34TTf424+dPSO/jeifb9YQVRUZfx2wtTCo3q8dhl1TiNtMJesW4D4o5pkY1Yr3cUXODqkLr1+virNY70llpSjDaxPhVVUjtQubRsOvKt4ZNUZoUQ9dKxddZIxR/9+vpqoNdjkFVUVfmKRU3XYrYsrdMbxN3uWgTRaU5aiz4lbg2vc+qO+htpKqXOquEKqpDbxTDreRjFx3s1o+D6WbcsE8vg6PWPJb2LceJis0iDNDXjai1SW0S2UciXVWZ21Wlt61m3zDXMVuwaVR8bSEDtp/bVl335Hop5zN/rjk324RavbzwVO1AVV8FgJBXjIFUtVH1PNV2kuPeJeZJpzJPOmvFmu2Xc5l5HErRx6A96FLi6WWNUmpXspEK0BJ1DQodkAuLOFbzEPW2UtN3VQnl5Qp1nFmsIwDsgdhrrWrD0vtATSuhiq2UyS7nNWHTNuVYs30AIdHW6hyo2jcA2JX11S7axOoayFmth0XN0eqxVDaW64+q4i2V95Wx6oyyb+WgiZS6m4WwAYTiXIMkKZJ0NDF69GiMHj26ydKjSBIhhBBCCCGExKD+Dmq8T0ulrKwML7zwAu655x6UlpYCAL744gv89NNPjUqPd1AJIYQQQgghJBYGEhBJ+kVKctixdu1aDB06FFlZWdi6dSuuvfZa5Obm4s0338S2bdvwt7/9Lek0eQeVEEIIIYQQQmJRr+Ib79MCmThxIq666ip8++238Hq9kd/PPfdcLFu2rFFp8g4qIYQQQgghhMTAFjJgi3OLVOpYtBQ+//xz/PWvf436/Ve/+hVKSkoalSY3qIQQQgghhBASi0PgB/VowePxoLy8POr3b775Bm3atGlUmnzElxBCCCGEEEJiwUd8Y3L++efjgQceQCBQJ+dus9mwbds23HXXXRgzZkyj0uQd1AbwZbsQctXJsIddwj2MR5WW188LCxV1TXreHjtuPOl2zZWHkPKPcgmi2IZfuDepaa1nFHaax4bdq4VJVy2x8gD0uoRS9LCQVxyryv0iE4fiXkNKo0tZdbuFUrmMq7qa8OzX9didVXqD2i0k0FUXCFKpTXVHAgAOvxnuLRVy8ULWP5iiuCPSvdVEtZHqtke6dVDrLV2+yHGj9aF0HWPR93KMa/mLppMuKlR3NmG3cMsQtPivTHFPELRwE5AM/gwnwi5nVHuHHcJ1jGqnsj7yWHE7YVX3eKiS/FLKX9qlauO1rfTKhJ3C9ZHNNE6ZjupuQ5Y1JLzBqDYd1X5R49f8Kl2hOKPcECmnibGklleOe88BvTKe/eakqLqRqSuDPn5UVzL2clEgn2lQ4TZZsEItu/uAHmYP6A2quhyStifdcmk2LV1H1cYOi3JNpiYr7VuUQV3XpBsWtR+i+siizySGcMMUtte1SSiQhKFYEEh3wHDVpaXVJ8o1VOPzUM+VbmakDanH0iWI5kpGtJkvS0+3qp1pYIaw77Csi1o+2axqWBwbtpobJA6rNUiOUdVlkXRnooS5y/WB5SkTruEqFRuuEfZeIWy6tCzyNVylX2S4crLNdI5tp4X5M/QLGfVaxVUhrhH9sV3HRLnLE66jnKpNi2sgtW0t7RuwXN8t1yaLfqgrn9HgdwCwB8xjuY6qO42QTRb2CIJ3UGPyxBNP4Le//S3atm2LmpoanHHGGSgpKUFhYSEefvjhRqXJDSohhBBCCCGExIDvoMYmKysLRUVFWL58OdauXYvKykqceOKJGDp0aKPT5AaVEEIIIYQQQmLBO6hxOe2003Daaac1SVrcoBJCCCGEEEJILMJGnPfffo7TgqipqcHixYvxm9/8BgBw9913w+czn+d3OBx48MEHNdczicINKiGEEEIIIYTEgndQo3j55Zfx/vvvRzaozzzzDHr16oWUlDrNi40bNyI/Px+33XZb0mlTxZcQQgghhBBCYmGEgXCcj2Gh4HkUMm/ePFx//fXab/Pnz8fSpUuxdOlSTJ8+Ha+++mqj0uYd1AbYf5wTDk9d04SFgqWquGuljAdEKyCqRKmwWYSpx1LB0hYU6oGqWppHjytVh1V1t2iF0tj/AkU94aDJ/Im4oi6aKlw4dgNFqQXKv1IUNbyoPKRirZqlVI8VjRJMVeJ6hDqfO7babkikG/Qqiq6iLg4L9dKo9+/FINKOZFtbtEnUsRo3Kk/ExEqdUp6nKhnLPKUybCBFTzjsVpR7lXEc8jXNlFVRYIfDY48qR5SCZWOzk31jxA6zUk60sm9An5+kfVsplCajXmo1PqLUN6XIssU8Z6WKLNUj1bHj8MlxpR8bioJkyKuPq2CaU8Q1Hzuy5afrYUrTS/sOpOuFV9te2rdN1MVliz1fWrVflHJ5Mv1gMf6izlXmz6h5WIkr7Vv2mWpbUfYt58+fbTzkaxoV36r2dfYtyxFl3xbKt1brtyTeU39aXNFOPsXGY7VLpEyqqriFwjIg6mbR51HXIlb2Hmdd0U6Ta4Voa/USQ44dh6IQ6xCq/JKgMrZswt5DaXqD2nPSzPIIDw216aYR+7PEvOHRG1u1EWelXh5V4VcSpeJrMc9FCfMqc4xNXgda9aHse1kotRlEOo6AmGuVcPUaBwACqeo4FtdZig2G/E1j481C2IDlBVIkTsth8+bN6NOnT+TY6/XCbjcH1cknn4zx48c3Km1uUAkhhBBCCCEkFkYCd0hb2B3UsrIy7Z3TPXv2aOHhcFgLTwY+4ksIIYQQQgghsah/BzXepwXRoUMHrFu3Lmb42rVr0aFDh0alzQ0qIYQQQgghhMQibCT2aUGce+65mDx5Mmpra6PCampqMHXqVIwcObJRafMRX0IIIYQQQgiJRdiApbBCJE7L4Z577sGrr76Kbt26YcKECTj++OMBAJs2bcIzzzyDYDCIe+65p1Fp8w4qIYQQQgghhMTiEDziu2zZMpx33nnIz8+HzWbD22+/LbI0MHnyZLRv3x4pKSkYOnQovv32Wy1OaWkpxo4di8zMTGRnZ2PcuHGorNTVu9auXYvTTz8dXq8XBQUFeOyxx6LK8tprr6F79+7wer3o06cPFi5cGLf87dq1w6effooePXrgj3/8I0aPHo3Ro0fj7rvvRs+ePbF8+XK0a9cuqTaphxtUQgghhBBCCIlFPBcz9Z8kqKqqQt++fTFr1qwGwx977DE8/fTTmD17NlasWIG0tDQMGzZMe6R27NixWL9+PYqKivDee+9h2bJlmuuX8vJynHPOOejUqRNWrVqF6dOnY8qUKXj++ecjcT799FNceumlGDduHFavXo1Ro0Zh1KhRlu+X1tOlSxcsWrQIe/bswWeffYbPPvsMe/bswaJFi3DMMcck1R4qfMS3AYJpgPGz94Eo1w2qzLtDujcQCak66lIT3srtRDLuaaTsu5aucFGSjPsa1QWMVR6Apep2VFwlLUvXJ0KO3UrGXzatlOb3Ocz/YVQp9Lp89E6zdAdi5ZZHSv6rbjGkW5kk3BHJ8ae5IbBIR7qZsHIHEEUy7hUs0pWuOdQ2k7YSVU9Vlj7G94PBnwk4vNb2XXdsDgIrlxR1EWJ8TxKtTaPcNlnMI4KoMWDlhkiNG8cNiVX+VvNTvDFpVT6V6HEV292BPSQ7NHa6ctxr41X0ddgRe251iLk0yuWLOo+IPKPGo2LvsknUOTtqKFqMzSh3JDKqzSJQISRcbwRTRDpK00uXbNKdSr29N6l9/7wOqG0aZd/O2Gt4Mq6YksLKvuLN00qT20JyLdOjamu6lZ3GsfeE540k46r5yrYOKS5Map3CxUt6bNuL5+5HG9sW9i7tWxqY5h5GvHoXdR1oix0m3Rhq86VwQaP2p7Qnm7z+SOb6Up0bRD2lKxmrNVyzd4vrllDjBF0PDxK5Q5rkHdQRI0ZgxIgRMZIy8NRTT+G+++7DBRdcAAD429/+hnbt2uHtt9/GJZdcgg0bNmDRokX4/PPPcdJJJwEA/vKXv+Dcc8/F448/jvz8fMybNw9+vx8vvfQS3G43evXqhTVr1uDJJ5+MbGRnzpyJ4cOHY9KkSQCABx98EEVFRXjmmWcwe/bshOqSm5uLk08+Oan6W8E7qIQQQgghhBASi1A4sU8TsWXLFpSUlGDo0KGR37KysjBw4EAUFxcDAIqLi5GdnR3ZnALA0KFDYbfbsWLFikicQYMGwe02/xEZNmwYNm3ahP3790fiqPnUx6nPpzngHVRCCCGEEEIIiYFhhGHE8XNaH15eXq797vF44PF4GjolJiUlJQAQ9Q5nu3btImElJSVo27atFu50OpGbm6vF6dKlS1Qa9WE5OTkoKSmxzKc54B1UQgghhBBCCImFkYCLmZ8f8S0oKEBWVlbkM23atGYu/JEH76ASQgghhBBCSCwMA3EFJn7eoG7fvh2ZmZmRn5O9ewoAeXl5AIBdu3ahffv2kd937dqFfv36ReLs3r1bOy8YDKK0tDRyfl5eHnbt2qXFqT+OF6c+vDngHVRCCCGEEEIIiUUolNgHQGZmpvZpzAa1S5cuyMvLw+LFiyO/lZeXY8WKFSgsLAQAFBYWoqysDKtWrYrEWbJkCcLhMAYOHBiJs2zZMgQCptJWUVERunXrhpycnEgcNZ/6OPX5NAe8g9oAYQ+An8eSYRf/lqgqZlINLUodLQk5VO08iyCp1iaVXFVFNuEw2IiSelO+W/1VYaH61uBxjPIAorziUX5VIc4mR6ZFnsmpCsfpkwSVWOP1rHZqnHFipRYaFddChVDNNMpXdDwl5lh5iHwsy2dRL3kct54x1AKliG1jCXsNwGtYljGqXFHtkoT8dhJo6ogyCzkfafauB4VFeVTzj1LYTOavSos8rdRC5as7ludaKYvG+QPb0saTmSusoiVhI1FqlxZ2YKUcK4ebqgAarx8ssbLbJOYfK9uJV8/6Y6lO2liCaUadjQP6mh1n3lEbOWqttVSzjmP7Ficb6rmy/pbjVQ+MmhsVJdooe7eyJwvbi+tFwEKlPxmb1uaNqH5I3L7jqfrGTCbB8QpY2zcA6/EnUOstFX6TUV62HI5NZdMyjwTntbBQPT6SMMJhGHFcIsR7R1VSWVmJzZs3R463bNmCNWvWIDc3Fx07dsStt96Khx56CMcddxy6dOmCP/3pT8jPz8eoUaMAAD169MDw4cNx3XXXYfbs2QgEApgwYQIuueQS5OfnAwAuu+wyTJ06FePGjcNdd92FdevWYebMmZgxY0Yk31tuuQVnnHEGnnjiCYwcORILFizAypUrNVc0vzTcoBJCCCGEEEJILJJ4xDdRVq5ciSFDhkSOJ06cCAC48sorMXfuXNx5552oqqrC9ddfj7KyMpx22mlYtGgRvF5v5Jx58+ZhwoQJOOuss2C32zFmzBg8/fTTkfCsrCx8+OGHGD9+PAYMGIDWrVtj8uTJmq/UU089FfPnz8d9992He+65B8cddxzefvtt9O7dO6n6NCXcoBJCCCGEEEJILMJGAs52k9ugDh48GIbFOTabDQ888AAeeOCBmHFyc3Mxf/58y3xOOOEEfPLJJ5ZxLrroIlx00UXWBf4F4QaVEEIIIYQQQmJghMIwbCHrOEk+4ktiww0qIYQQQgghhMTCCCPqxesG45CmgBtUQgghhBBCCImBETZgxHnE1+pxXZIc3KAq1A+scK0pM5aUim8jlTCTUlwUWCnYRivuCVVPNdxKYfNglPEaqQgYV5m30Sq+scOizj2CVXyj6nm4qfgm0SaqsmXYV2ebjV0EpI03qYqvWqmmWqPi2d6hsPckyhTP9qxUPQ+diq9F4FGk4puMmrIlTaXim8y8EUvFt7Zp7VvmlZSKb5yoesaNV/G1PDeJPrey/2RsLak1Owl7bzoVX8TmcFTxtbIDGdViHm4WFV8rm7a6/rVU8T04G29OgoYv7h3SIAKW4SRxbMaROEoOET/++CMKCgqauxiEkDhs374dHTp0SPo82jghhz+0b0KObhpr481BbW0tunTpgpKSkoTi5+XlYcuWLZrSLkkeblAVwuEwduzYAcMw0LFjR2zfvh2ZmZnNXaxmoby8HAUFBS22DVp6/YHDsw0Mw0BFRQXy8/NhtyfzyEIdtPE6Dse+/aVp6W1wONaf9t10HI79+0vS0usPHJ5tcLA23lzU1tbC7/cnFNftdnNz2gTwEV8Fu92ODh06oLy8HACQmZl52Bh1c9HS26Cl1x84/NogKyur0efSxnVaev0BtsHhVn/ad9PS0tugpdcfOPza4GBsvLnwer3cdP7CHDl/XxBCCCGEEEIIOarhBpUQQgghhBBCyGEBN6gN4PF4cP/998Pj8TR3UZqNlt4GLb3+wNHdBkdz3RKhpdcfYBsczfU/muuWKC29DVp6/QG2ATmyoUgSIYQQQgghhJDDAt5BJYQQQgghhBByWMANKiGEEEIIIYSQwwJuUAkhhBBCCCGEHBZwg9oAs2bNQufOneH1ejFw4ED897//be4iNQnLli3Deeedh/z8fNhsNrz99ttauGEYmDx5Mtq3b4+UlBQMHToU3377rRantLQUY8eORWZmJrKzszFu3DhUVlb+grVoPNOmTcOvf/1rZGRkoG3bthg1ahQ2bdqkxamtrcX48ePRqlUrpKenY8yYMdi1a5cWZ9u2bRg5ciRSU1PRtm1bTJo0CcFg8JesSqN57rnncMIJJ0T8ohUWFuKDDz6IhB/t9QeOXvsGaOMt3cZp37Rv2vfRPcZp46TFYBCNBQsWGG6323jppZeM9evXG9ddd52RnZ1t7Nq1q7mLdtAsXLjQuPfee40333zTAGC89dZbWvgjjzxiZGVlGW+//bbx5ZdfGueff77RpUsXo6amJhJn+PDhRt++fY3PPvvM+OSTT4yuXbsal1566S9ck8YxbNgwY86cOca6deuMNWvWGOeee67RsWNHo7KyMhLnhhtuMAoKCozFixcbK1euNE455RTj1FNPjYQHg0Gjd+/extChQ43Vq1cbCxcuNFq3bm3cfffdzVGlpHnnnXeM999/3/jmm2+MTZs2Gffcc4/hcrmMdevWGYZx9Nf/aLZvw6CNt3Qbp33TvmnfR/cYb+k2TloO3KAKTj75ZGP8+PGR41AoZOTn5xvTpk1rxlI1PXJxC4fDRl5enjF9+vTIb2VlZYbH4zH++c9/GoZhGF9//bUBwPj8888jcT744APDZrMZP/300y9W9qZi9+7dBgDj448/Ngyjrr4ul8t47bXXInE2bNhgADCKi4sNw6i7QLDb7UZJSUkkznPPPWdkZmYaPp/vl61AE5GTk2O88MILLaL+LcW+DYM2bhi0ccOgfdO+ad9H0xhviJZk46TlwEd8Ffx+P1atWoWhQ4dGfrPb7Rg6dCiKi4ubsWSHni1btqCkpESre1ZWFgYOHBipe3FxMbKzs3HSSSdF4gwdOhR2ux0rVqz4xct8sBw4cAAAkJubCwBYtWoVAoGA1gbdu3dHx44dtTbo06cP2rVrF4kzbNgwlJeXY/369b9g6Q+eUCiEBQsWoKqqCoWFhUd9/VuyfQO0caBl2Tjtm/ZN+z66xrikpdk4aVk4m7sAhxN79+5FKBTSDBcA2rVrh40bNzZTqX4ZSkpKAKDButeHlZSUoG3btlq40+lEbm5uJM6RQjgcxq233or/+Z//Qe/evQHU1c/tdiM7O1uLK9ugoTaqDzsS+Oqrr1BYWIja2lqkp6fjrbfeQs+ePbFmzZqjuv4t2b4B2jjQMmyc9k37VqF9Hz1jvJ6WauOkZcENKmmRjB8/HuvWrcPy5cubuyi/ON26dcOaNWtw4MABvP7667jyyivx8ccfN3exCGlSWqqN075JS6Cl2jdAGyctAz7iq9C6dWs4HI4oxbNdu3YhLy+vmUr1y1BfP6u65+XlYffu3Vp4MBhEaWnpEdU+EyZMwHvvvYelS5eiQ4cOkd/z8vLg9/tRVlamxZdt0FAb1YcdCbjdbnTt2hUDBgzAtGnT0LdvX8ycOfOor39Ltm+ANg60DBunfdO+VWjfR88Yr6el2jhpWXCDquB2uzFgwAAsXrw48ls4HMbixYtRWFjYjCU79HTp0gV5eXla3cvLy7FixYpI3QsLC1FWVoZVq1ZF4ixZsgThcBgDBw78xcucLIZhYMKECXjrrbewZMkSdOnSRQsfMGAAXC6X1gabNm3Ctm3btDb46quvtEW+qKgImZmZ6Nmz5y9TkSYmHA7D5/Md9fVvyfYN0MaBlmnjtG/aN+376BjjsWgpNk5aGM0s0nTYsWDBAsPj8Rhz5841vv76a+P66683srOzNcWzI5WKigpj9erVxurVqw0AxpNPPmmsXr3a+OGHHwzDqJOoz87ONv71r38Za9euNS644IIGJer79+9vrFixwli+fLlx3HHHHTES9TfeeKORlZVlfPTRR8bOnTsjn+rq6kicG264wejYsaOxZMkSY+XKlUZhYaFRWFgYCa+XaD/n/7dzbyFRrX8Yx58x0xQ1TQcRLZWUGm8s7IAUKES7jMCCiIzSDnQTlJqS3kRRF5YdDMqom0aKbiIsAjsRhJKdCylCrCD1ZjqZWWEHdd59sfkvmn/tau+t47j8fmAu3nV417sWPix+rnetP/4wLS0t5tKlS8bpdI6YT7RXVlaaxsZG8/z5c/Pw4UNTWVlpHA6HuXLlijHG/udv53wbQ8ZHe8bJN/km3/b+Gx/tGcfoQYH6A4cOHTKTJk0yISEhZtasWebWrVvDPaRBce3aNSPpu19RUZEx5q/P1G/bts3Ex8eb0NBQM2/ePNPW1ubTR1dXlykoKDAREREmKirKrF271nz48GEYzuaf+9G5SzJut9va5tOnT2bjxo0mJibGhIeHm6VLlxqPx+PTT3t7u8nLyzNhYWEmLi7OlJWVmb6+Pj+fzb+zbt06k5ycbEJCQozT6TTz5s2zbmzG2P/8jbFvvo0h46M94+SbfJNve/+Nk3GMFg5jjBnaZ7QAAAAAAPwa76ACAAAAAAICBSoAAAAAICBQoAIAAAAAAgIFKgAAAAAgIFCgAgAAAAACAgUqAAAAACAgUKACAAAAAAICBSoAAAAAICBQoGLI5ebmqqSkxDbHXLNmjZYsWTIkfQMjERkH7It8A/C34OEeADAU6uvrNXbsWKudkpKikpISv99kAQwNMg7YF/kGRjcKVNjShAkThnsIAIYQGQfsi3wDoxtTfOFX3d3dKiwsVExMjMLDw5WXl6enT59a6+vq6hQdHa3Lly/L5XIpIiJCCxculMfjsbbp7+/X5s2bFR0drdjYWFVUVKioqMhnys6304Nyc3PV0dGh0tJSORwOORwOSdKOHTs0bdo0n/EdPHhQKSkpVntgYEBbtmyxjrV161YZY3z28Xq9qqqqUmpqqsLCwpSZmakzZ84MzgUDRhgyDtgX+QbgDxSo8Ks1a9bo3r17On/+vG7evCljjBYtWqS+vj5rm97eXu3bt08nT55UU1OTOjs7VV5ebq3fs2ePTp06JbfbrebmZr1//17nzp3722PW19crKSlJO3fulMfj8blR/sr+/ftVV1en48eP6/r163r79q3Onj3rs01VVZVOnDiho0eP6vHjxyotLdWqVavU2Nj4+xcGsAkyDtgX+QbgFwYYYjk5Oaa4uNg8efLESDLNzc3Wujdv3piwsDBz+vRpY4wxbrfbSDLPnj2ztqmtrTXx8fFWOz4+3uzdu9dq9/f3m0mTJpn8/Pzvjvk/ycnJpqamxmdc27dvN5mZmT7LampqTHJystVOSEgw1dXVVruvr88kJSVZx/r8+bMJDw83N27c8Oln/fr1pqCg4KfXBbALMg7YF/kG4G+8gwq/aW1tVXBwsGbPnm0ti42N1ZQpU9Ta2motCw8P1+TJk612QkKCXr16JUnq6enRy5cvNWvWLGv9mDFjlJWVJa/XO6jj7enpkcfj8RlvcHCwZsyYYU0RevbsmXp7ezV//nyffb9+/arp06cP6niAQEfGAfsi3wD8hQIVAefbL/dJksPh+O6dkcEQFBT0Xb/fTlP6HR8/fpQkNTQ0KDEx0WddaGjofxsgYFNkHLAv8g3gv+IdVPiNy+VSf3+/bt++bS3r6upSW1ubMjIyfquP8ePHKz4+Xnfv3rWWDQwM6MGDBz/dLyQkRAMDAz7LnE6nXrx44XODa2lp8TlWQkKCz3j7+/t1//59q52RkaHQ0FB1dnYqLS3N5zdx4sTfOifALsg4YF/kG4C/8AQVfpOenq78/Hxt2LBBx44dU2RkpCorK5WYmKj8/Pzf7mfTpk2qqqpSWlqapk6dqkOHDqm7u9v6st+PpKSkqKmpSStWrFBoaKji4uKUm5ur169fq7q6WsuWLdOlS5d08eJFRUVFWfsVFxdr9+7dSk9P19SpU3XgwAG9e/fOWh8ZGany8nKVlpbK6/Vq7ty56unpUXNzs6KiolRUVPSvrhUwEpFxwL7INwB/4Qkq/MrtdisrK0uLFy9Wdna2jDG6cOHCd1OCfqaiokIFBQUqLCxUdna2IiIitGDBAo0bN+5v99m5c6fa29s1efJkOZ1OSX/9N/jIkSOqra1VZmam7ty54/OlQUkqKyvT6tWrVVRUpOzsbEVGRmrp0qU+2+zatUvbtm1TVVWVXC6XFi5cqIaGBqWmpv6DKwPYAxkH7It8A/AHhxmKFwMAP/J6vXK5XFq+fLl27do13MMBMMjIOGBf5BvA/2OKL0acjo4OXblyRTk5Ofry5YsOHz6s58+fa+XKlcM9NACDgIwD9kW+AfwKU3wx4gQFBamurk4zZ87UnDlz9OjRI129elUul2u4hwZgEJBxwL7IN4BfYYovAAAAACAg8AQVAAAAABAQKFABAAAAAAGBAhUAAAAAEBAoUAEAAAAAAYECFQAAAAAQEChQAQAAAAABgQIVAAAAABAQKFABAAAAAAGBAhUAAAAAEBD+BIzYP8yzFRNiAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -7182,7 +5413,7 @@
}
],
"source": [
- "grid = y_true.isel(time=slice(3))[\"z850\"].plot(col=\"time\")\n",
+ "grid = y_true.isel(time=slice(3))[\"geopotential850\"].plot(x=\"longitude\", y=\"latitude\", col=\"time\")\n",
"grid.fig.suptitle(\"Ground truth\", y=1.05)"
]
},
@@ -7196,7 +5427,7 @@
},
{
"cell_type": "code",
- "execution_count": 35,
+ "execution_count": 33,
"id": "8c923d43-c76b-478c-a6c2-280aa7cb50df",
"metadata": {
"tags": []
@@ -7210,7 +5441,7 @@
},
{
"cell_type": "code",
- "execution_count": 36,
+ "execution_count": 34,
"id": "0697141f-d144-47e5-922a-5f292b6a5bd8",
"metadata": {
"tags": []
@@ -7239,28 +5470,76 @@
" */\n",
"\n",
":root {\n",
- " --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
- " --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
- " --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
- " --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
- " --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
- " --xr-background-color: var(--jp-layout-color0, white);\n",
- " --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
- " --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
+ " --xr-font-color0: var(\n",
+ " --jp-content-font-color0,\n",
+ " var(--pst-color-text-base rgba(0, 0, 0, 1))\n",
+ " );\n",
+ " --xr-font-color2: var(\n",
+ " --jp-content-font-color2,\n",
+ " var(--pst-color-text-base, rgba(0, 0, 0, 0.54))\n",
+ " );\n",
+ " --xr-font-color3: var(\n",
+ " --jp-content-font-color3,\n",
+ " var(--pst-color-text-base, rgba(0, 0, 0, 0.38))\n",
+ " );\n",
+ " --xr-border-color: var(\n",
+ " --jp-border-color2,\n",
+ " hsl(from var(--pst-color-on-background, white) h s calc(l - 10))\n",
+ " );\n",
+ " --xr-disabled-color: var(\n",
+ " --jp-layout-color3,\n",
+ " hsl(from var(--pst-color-on-background, white) h s calc(l - 40))\n",
+ " );\n",
+ " --xr-background-color: var(\n",
+ " --jp-layout-color0,\n",
+ " var(--pst-color-on-background, white)\n",
+ " );\n",
+ " --xr-background-color-row-even: var(\n",
+ " --jp-layout-color1,\n",
+ " hsl(from var(--pst-color-on-background, white) h s calc(l - 5))\n",
+ " );\n",
+ " --xr-background-color-row-odd: var(\n",
+ " --jp-layout-color2,\n",
+ " hsl(from var(--pst-color-on-background, white) h s calc(l - 15))\n",
+ " );\n",
"}\n",
"\n",
"html[theme=\"dark\"],\n",
"html[data-theme=\"dark\"],\n",
"body[data-theme=\"dark\"],\n",
"body.vscode-dark {\n",
- " --xr-font-color0: rgba(255, 255, 255, 1);\n",
- " --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
- " --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
- " --xr-border-color: #1f1f1f;\n",
- " --xr-disabled-color: #515151;\n",
- " --xr-background-color: #111111;\n",
- " --xr-background-color-row-even: #111111;\n",
- " --xr-background-color-row-odd: #313131;\n",
+ " --xr-font-color0: var(\n",
+ " --jp-content-font-color0,\n",
+ " var(--pst-color-text-base, rgba(255, 255, 255, 1))\n",
+ " );\n",
+ " --xr-font-color2: var(\n",
+ " --jp-content-font-color2,\n",
+ " var(--pst-color-text-base, rgba(255, 255, 255, 0.54))\n",
+ " );\n",
+ " --xr-font-color3: var(\n",
+ " --jp-content-font-color3,\n",
+ " var(--pst-color-text-base, rgba(255, 255, 255, 0.38))\n",
+ " );\n",
+ " --xr-border-color: var(\n",
+ " --jp-border-color2,\n",
+ " hsl(from var(--pst-color-on-background, #111111) h s calc(l + 10))\n",
+ " );\n",
+ " --xr-disabled-color: var(\n",
+ " --jp-layout-color3,\n",
+ " hsl(from var(--pst-color-on-background, #111111) h s calc(l + 40))\n",
+ " );\n",
+ " --xr-background-color: var(\n",
+ " --jp-layout-color0,\n",
+ " var(--pst-color-on-background, #111111)\n",
+ " );\n",
+ " --xr-background-color-row-even: var(\n",
+ " --jp-layout-color1,\n",
+ " hsl(from var(--pst-color-on-background, #111111) h s calc(l + 5))\n",
+ " );\n",
+ " --xr-background-color-row-odd: var(\n",
+ " --jp-layout-color2,\n",
+ " hsl(from var(--pst-color-on-background, #111111) h s calc(l + 15))\n",
+ " );\n",
"}\n",
"\n",
".xr-wrap {\n",
@@ -7316,6 +5595,7 @@
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
+ " border: 2px solid transparent !important;\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
@@ -7324,7 +5604,7 @@
"}\n",
"\n",
".xr-section-item input:focus + label {\n",
- " border: 2px solid var(--xr-font-color0);\n",
+ " border: 2px solid var(--xr-font-color0) !important;\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
@@ -7456,7 +5736,9 @@
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
+ " border-color: var(--xr-background-color-row-odd);\n",
" margin-bottom: 0;\n",
+ " padding-top: 2px;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
@@ -7467,6 +5749,7 @@
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
+ " border-color: var(--xr-background-color-row-even);\n",
"}\n",
"\n",
".xr-var-name {\n",
@@ -7516,8 +5799,15 @@
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
- " background-color: var(--xr-background-color) !important;\n",
- " padding-bottom: 5px !important;\n",
+ " border-top: 2px dotted var(--xr-background-color);\n",
+ " padding-bottom: 20px !important;\n",
+ " padding-top: 10px !important;\n",
+ "}\n",
+ "\n",
+ ".xr-var-attrs-in + label,\n",
+ ".xr-var-data-in + label,\n",
+ ".xr-index-data-in + label {\n",
+ " padding: 0 1px;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
@@ -7530,6 +5820,12 @@
" float: right;\n",
"}\n",
"\n",
+ ".xr-var-data > pre,\n",
+ ".xr-index-data > pre,\n",
+ ".xr-var-data > table > tbody > tr {\n",
+ " background-color: transparent !important;\n",
+ "}\n",
+ "\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
@@ -7589,715 +5885,149 @@
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
- "<xarray.Dataset> Size: 435kB\n",
- "Dimensions: (latitude: 32, longitude: 64)\n",
+ "\n",
+ ".xr-var-attrs-in:checked + label > .xr-icon-file-text2,\n",
+ ".xr-var-data-in:checked + label > .xr-icon-database,\n",
+ ".xr-index-data-in:checked + label > .xr-icon-database {\n",
+ " color: var(--xr-font-color0);\n",
+ " filter: drop-shadow(1px 1px 5px var(--xr-font-color2));\n",
+ " stroke-width: 0.8px;\n",
+ "}\n",
+ "<xarray.Dataset> Size: 42kB\n",
+ "Dimensions: (longitude: 64, latitude: 32)\n",
"Coordinates:\n",
- " * latitude (latitude) float64 256B -87.19 -81.56 -75.94 ... 81.56 87.19\n",
- " * longitude (longitude) float64 512B 0.0 5.625 11.25 ... 343.1 348.8 354.4\n",
- "Data variables: (12/53)\n",
- " u50 (latitude, longitude) float32 8kB 1.133 1.178 ... 11.24 13.31\n",
- " u100 (latitude, longitude) float32 8kB 1.086 1.166 ... 5.481 5.843\n",
- " u150 (latitude, longitude) float32 8kB 1.702 1.628 ... 3.452 3.287\n",
- " u200 (latitude, longitude) float32 8kB 1.687 1.597 ... 1.659 1.818\n",
- " u250 (latitude, longitude) float32 8kB 1.986 1.623 ... 2.243 3.913\n",
- " u300 (latitude, longitude) float32 8kB 3.648 3.353 ... 3.681 5.765\n",
- " ... ...\n",
- " vo500 (latitude, longitude) float32 8kB 1.949e-05 ... 2.765e-05\n",
- " vo600 (latitude, longitude) float32 8kB 1.826e-05 ... 3.03e-05\n",
- " vo700 (latitude, longitude) float32 8kB 2.584e-05 ... 3.02e-05\n",
- " vo850 (latitude, longitude) float32 8kB 9.394e-06 ... 2.363e-05\n",
- " vo925 (latitude, longitude) float32 8kB 9.061e-06 ... 2.945e-05\n",
- " vo1000 (latitude, longitude) float32 8kB 9.061e-06 ... 1.884e-05\n",
+ " * longitude (longitude) float64 512B 0.0 5.625 ... 348.8 354.4\n",
+ " * latitude (latitude) float64 256B -87.19 -81.56 ... 87.19\n",
+ "Data variables:\n",
+ " 2m_temperature (longitude, latitude) float32 8kB 11.67 ... 5.455\n",
+ " u_component_of_wind850 (longitude, latitude) float32 8kB 0.8308 ... 3.061\n",
+ " v_component_of_wind850 (longitude, latitude) float32 8kB 0.5541 ... 5.419\n",
+ " vorticity850 (longitude, latitude) float32 8kB 4.153e-06 ... 1...\n",
+ " geopotential850 (longitude, latitude) float32 8kB 525.4 ... 472.6\n",
"Attributes:\n",
- " level-dtype: int32 Indexes: (2)
PandasIndex
PandasIndex(Index([ 0.0, 5.625, 11.25,\n",
+ " 16.875, 22.5, 28.125,\n",
+ " 33.75, 39.375, 45.0,\n",
+ " 50.625, 56.25, 61.87499999999999,\n",
+ " 67.5, 73.125, 78.75,\n",
+ " 84.375, 90.0, 95.625,\n",
+ " 101.25, 106.875, 112.5,\n",
+ " 118.125, 123.74999999999999, 129.375,\n",
+ " 135.0, 140.625, 146.25,\n",
+ " 151.875, 157.5, 163.125,\n",
+ " 168.75, 174.375, 180.0,\n",
+ " 185.625, 191.25, 196.875,\n",
+ " 202.5, 208.125, 213.75,\n",
+ " 219.375, 225.0, 230.62499999999997,\n",
+ " 236.25, 241.875, 247.49999999999997,\n",
+ " 253.125, 258.75, 264.375,\n",
+ " 270.0, 275.625, 281.25,\n",
+ " 286.875, 292.5, 298.125,\n",
+ " 303.75, 309.375, 315.0,\n",
+ " 320.625, 326.25, 331.875,\n",
+ " 337.5, 343.125, 348.75,\n",
+ " 354.375],\n",
+ " dtype='float64', name='longitude')) PandasIndex
PandasIndex(Index([ -87.18750000000003, -81.56250000000001, -75.9375,\n",
+ " -70.31249999999999, -64.68750000000001, -59.0625,\n",
+ " -53.4375, -47.8125, -42.1875,\n",
+ " -36.5625, -30.937499999999996, -25.312500000000004,\n",
+ " -19.687499999999996, -14.062499999999991, -8.437499999999996,\n",
+ " -2.812500000000003, 2.812500000000003, 8.437500000000009,\n",
+ " 14.062500000000004, 19.687499999999996, 25.312500000000004,\n",
+ " 30.93750000000001, 36.562499999999986, 42.1875,\n",
+ " 47.8125, 53.4375, 59.062500000000014,\n",
+ " 64.68750000000001, 70.3125, 75.9375,\n",
+ " 81.56249999999997, 87.18750000000003],\n",
+ " dtype='float64', name='latitude')) Attributes: (1)
"
],
"text/plain": [
- " Size: 435kB\n",
- "Dimensions: (latitude: 32, longitude: 64)\n",
+ " Size: 42kB\n",
+ "Dimensions: (longitude: 64, latitude: 32)\n",
"Coordinates:\n",
- " * latitude (latitude) float64 256B -87.19 -81.56 -75.94 ... 81.56 87.19\n",
- " * longitude (longitude) float64 512B 0.0 5.625 11.25 ... 343.1 348.8 354.4\n",
- "Data variables: (12/53)\n",
- " u50 (latitude, longitude) float32 8kB 1.133 1.178 ... 11.24 13.31\n",
- " u100 (latitude, longitude) float32 8kB 1.086 1.166 ... 5.481 5.843\n",
- " u150 (latitude, longitude) float32 8kB 1.702 1.628 ... 3.452 3.287\n",
- " u200 (latitude, longitude) float32 8kB 1.687 1.597 ... 1.659 1.818\n",
- " u250 (latitude, longitude) float32 8kB 1.986 1.623 ... 2.243 3.913\n",
- " u300 (latitude, longitude) float32 8kB 3.648 3.353 ... 3.681 5.765\n",
- " ... ...\n",
- " vo500 (latitude, longitude) float32 8kB 1.949e-05 ... 2.765e-05\n",
- " vo600 (latitude, longitude) float32 8kB 1.826e-05 ... 3.03e-05\n",
- " vo700 (latitude, longitude) float32 8kB 2.584e-05 ... 3.02e-05\n",
- " vo850 (latitude, longitude) float32 8kB 9.394e-06 ... 2.363e-05\n",
- " vo925 (latitude, longitude) float32 8kB 9.061e-06 ... 2.945e-05\n",
- " vo1000 (latitude, longitude) float32 8kB 9.061e-06 ... 1.884e-05\n",
+ " * longitude (longitude) float64 512B 0.0 5.625 ... 348.8 354.4\n",
+ " * latitude (latitude) float64 256B -87.19 -81.56 ... 87.19\n",
+ "Data variables:\n",
+ " 2m_temperature (longitude, latitude) float32 8kB 11.67 ... 5.455\n",
+ " u_component_of_wind850 (longitude, latitude) float32 8kB 0.8308 ... 3.061\n",
+ " v_component_of_wind850 (longitude, latitude) float32 8kB 0.5541 ... 5.419\n",
+ " vorticity850 (longitude, latitude) float32 8kB 4.153e-06 ... 1...\n",
+ " geopotential850 (longitude, latitude) float32 8kB 525.4 ... 472.6\n",
"Attributes:\n",
- " level-dtype: int32"
+ " level-dtype: int64"
]
},
- "execution_count": 36,
+ "execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
@@ -8308,7 +6038,7 @@
},
{
"cell_type": "code",
- "execution_count": 37,
+ "execution_count": 35,
"id": "5e43f0ff-97f2-4a86-9bc9-f419dce1c588",
"metadata": {
"tags": []
@@ -8317,18 +6047,18 @@
{
"data": {
"text/plain": [
- ""
+ ""
]
},
- "execution_count": 37,
+ "execution_count": 35,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4wAAAEiCAYAAACyQ1wVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAkXdJREFUeJztvXmcXUWZ//85d7+9b0kvZAUDBBIxBoVEx4QBgowBHWYmCgJBGMQvgkSIgOIMLUICUUNmgog6SBgQ47wGcHDU/AiKMBgQCImSEMMWs3ans/TefddTvz+a3FPPc/ve7k6adLr78369+tW3btWpU9tTdeqecz6PY4wxIIQQQgghhBBCFL6hLgAhhBBCCCGEkGMTbhgJIYQQQgghhPQKN4yEEEIIIYQQQnqFG0ZCCCGEEEIIIb3CDSMhhBBCCCGEkF7hhpEQQgghhBBCSK9ww0gIIYQQQgghpFe4YSSEEEIIIYQQ0ivcMBJCCCGEEEII6RVuGMkRYYzBF7/4RVRUVMBxHGzcuBFz587FokWL+p3HqlWrUFZWljdNfX09PvShDx1RWQkhA4P2TcjIgfZMCDlcuGEkR8SaNWuwatUq/O///i8aGhowbdo0PPHEE/j2t7891EUbVOrr6+E4jvirqakRaYwxqK+vR11dHaLRKObOnYvNmzeLNPF4HNdffz2qqqpQWFiICy+8ELt27TqaVSGk34wW+06lUvjmN7+JyZMnIxqN4vjjj8cdd9wB13Uzaa644oqsOeDMM88U+dC+ybHMaLHn559/HhdccAHq6urgOA5+8YtfZKUZrPW6ubkZl112GUpLS1FaWorLLrsMLS0t72PtCBkauGEkR8Q777yD2tpazJ49GzU1NQgEAqioqEBxcfFQF23QOfXUU9HQ0JD5e/3110X8smXLsHz5ctx333145ZVXUFNTg3PPPRft7e2ZNIsWLcKTTz6J1atX44UXXkBHRwfmz5+PdDp9tKtDSJ+MFvu+55578MADD+C+++7Dli1bsGzZMnznO9/BypUrRbpPfvKTYg749a9/LeJp3+RYZrTYc2dnJ0477TTcd999OdMM1np9ySWXYOPGjVizZg3WrFmDjRs34rLLLntf60fIkGAIOUwWLlxoAGT+Jk6caIwxZs6cOeaGG27IpIvH4+ZrX/uaqaurMwUFBeajH/2oefbZZzPxDz30kCktLRV5L1261IwdO9YUFRWZK6+80txyyy3mtNNOe9/qcvvtt4u6HPp76KGHMvH5zu+6rqmpqTF333135rtYLGZKS0vNAw88YIwxpqWlxQSDQbN69epMmt27dxufz2fWrFnzvtSLkMNlNNn3pz71KXPllVeKYy666CJz6aWXZsILFy40n/70p3Oeg/ZNjmVGkz3bADBPPvmk+G6w1us33njDADAvvfRSJs2LL75oAJi//OUvg1hjQoYe3mEkh82//du/4Y477sC4cePQ0NCAV155pdd0X/jCF/CHP/wBq1evxp///Gf80z/9Ez75yU/irbfe6jX9f/3Xf+H222/HXXfdhVdffRW1tbW4//77+yxPUVFR3r/zzz8/57GLFy8Wdw6++93voqCgAKeffnomzVtvvYW6ujpMnjwZn/vc5/Duu+9m4rZt24bGxkbMmzcv8104HMacOXOwbt06AMD69euRTCZFmrq6OkybNi2ThpBjhdFk3x//+Mfx29/+Fm+++SYA4E9/+hNeeOEF/N3f/Z3I5/e//z3Gjh2LE088EVdffTWampoycbRvciwzmuy5LwZrvX7xxRdRWlqKM844I5PmzDPPRGlpKW2ejDgCQ10AMnwpLS1FcXEx/H5/1vt8h3jnnXfws5/9DLt27UJdXR2Ansl+zZo1eOihh7BkyZKsY1asWIErr7wS//zP/wwAuPPOO/HMM88gFovlLc/GjRvzxkej0ZxxhxYpAHjppZfwzW9+Ew8//DCmTZsGADjjjDPwn//5nzjxxBOxd+9e3HnnnZg9ezY2b96MyspKNDY2AgCqq6tFvtXV1di+fTsAoLGxEaFQCOXl5VlpDh1PyLHCaLLvW265Ba2trTj55JPh9/uRTqdx11134eKLL87kcf755+Of/umfMHHiRGzbtg3/8i//gr/927/F+vXrEQ6Had/kmGY02XNfDNZ63djYiLFjx2blP3bsWNo8GXFww0jeV1577TUYY3DiiSeK7+PxOCorK3s9ZsuWLfjSl74kvps1axaeffbZvOf6wAc+cGSFBbBjxw585jOfweLFi7FgwYLM9/avndOnT8esWbNwwgkn4OGHH8aNN96YiXMcR+RnjMn6TtOfNIQci4wU+/75z3+ORx99FI899hhOPfVUbNy4EYsWLUJdXR0WLlwIAPjsZz+bST9t2jScfvrpmDhxIn71q1/hoosuynlO2jcZLowUe+4vg7Fe95aeNk9GItwwkvcV13Xh9/uxfv16+P1+EXfoF8LBoq/8/uZv/ga/+c1vcsZ3dnbiwgsvxKxZs3DHHXfkzauwsBDTp0/PPKZz6BfbxsZG1NbWZtI1NTVlfsWsqalBIpFAc3Oz+NWyqakJs2fPzl85Qo5BRop9f+1rX8Ott96Kz33ucwB6fhTavn07li5dmtkwamprazFx4kQxB9C+yXBmpNhzXwzWel1TU4O9e/dm5b9v376su5eEDHe4YSTvKzNmzEA6nUZTUxP+5m/+pl/HTJ06FS+99BIuv/zyzHcvvfRSn8cdySMuxhhceumlcF0XjzzySJ+/DsbjcWzZsiVTp8mTJ6OmpgZr167FjBkzAACJRALPPfcc7rnnHgDAzJkzEQwGsXbt2syvoQ0NDdi0aROWLVvWZ/0IOdYYKfbd1dUFn0++0u/3+4VbDc2BAwewc+fOzAUn7ZsMd0aKPffFYK3Xs2bNQmtrK15++WV89KMfBQD88Y9/RGtrK38kIiMObhjJ+8qJJ56Iz3/+87j88svxve99DzNmzMD+/fvxu9/9DtOnT88SlQCAG264AQsXLsTpp5+Oj3/84/jpT3+KzZs34/jjj897riN5xKW+vh7PPPMMnn76aXR0dKCjowNAz3sf0WgUixcvxgUXXIAJEyagqakJd955J9ra2jJ3HxzHwaJFi7BkyRJMmTIFU6ZMwZIlS1BQUIBLLrkkk9dVV12Fm266CZWVlaioqMDixYsxffp0nHPOOYdddkKGipFi3xdccAHuuusuTJgwAaeeeio2bNiA5cuX48orrwQAdHR0oL6+Hv/wD/+A2tpa/PWvf8U3vvENVFVV4e///u8zedG+yXBmpNhzR0cH3n777Uz6bdu2YePGjaioqMCECRMGbb2eOnUqPvnJT+Lqq6/GD3/4QwDAF7/4RcyfPx8nnXTSYdePkGOSoRFnJSOFe++9NyPPfQgt051IJMy//uu/mkmTJplgMGhqamrM3//935s///nPxpjeZbrvuusuU1VVZYqKiszChQvNzTff/L7KdM+ZMyevTPdnP/tZU1tba4LBoKmrqzMXXXSR2bx5s8jDdV1z++23m5qaGhMOh80nPvEJ8/rrr4s03d3d5rrrrjMVFRUmGo2a+fPnmx07drxv9SLkSBgt9t3W1mZuuOEGM2HCBBOJRMzxxx9vbrvtNhOPx40xxnR1dZl58+aZMWPGmGAwaCZMmGAWLlyYZbu0b3IsM1rs+dlnn+01fuHChZk8Bmu9PnDggPn85z9viouLTXFxsfn85z9vmpub37e6EzJUOMYYc3S3qIQQQgghhBBChgP0w0gIIYQQQgghpFe4YSSEEEIIIYQQ0ivcMBJCCCGEEEII6RVuGAkhhBBCCCGE9Ao3jIQQQgghhBBCeoUbRkIIIYQQQgghvRIY6gIca7iuiz179qC4uBiO4wx1cQghFsYYtLe3o66uDj7fwH/von0TcuxC+yZkZHOkNj5UxGIxJBKJfqUNhUKIRCLvc4mOPtwwKvbs2YPx48cPdTEIIXnYuXMnxo0bN+DjaN+EHPvQvgkZ2RyujQ8FsVgMkycWobEp3a/0NTU12LZt24jbNHLDqCguLgYAnPXfX0CgIIS/bJaLT/hA7l9EjPpB0/itgF/F+XTYeJ9Vr7gBI9OG3cxnJ+SKOMdnxfnUca6TO6zjUrKATtqKT8m0jiwCRGxWo9h5quN0vqnc58jCrqr+YdkgJ46OM/2LA2QfGtW/bkiFw1b/+lW/2P3U1w9udvlUe/lSeX5RV2XP1566y9yQfdIBlE9llNXfdlilTZZ7nX/W9C2Zz4nOJH4+/78zdjpQDh037XP/Cn+oZzIv2u39auiP6UKqCltBo+IcY1U+a+zkGYQ+mY8b9OUMp0Mqrd8L6zGo+0o0sSq7no/E2M8aO9oQrDjdfCIfeVzWvJEvbZ7myyqfHU7LSJ8qu5Pywk5azaV5+rDP+Sgfrp2PyihfPfVQ1HWJJb3PqTwF1H2vx3hgAL/6W8dm5ePXY8wLu2E5WDvremwxnYxhw1N3HrF9z/r4rQgEwj1FTMq2SBYHM599Ks6fsNZP1YZZfW6PUV133Td57N/4lb0HnJxxxmpTnWdW+4u5Sp3U0XOOdU5f/rlBnlNla7WRtp+sMuQhr+1pe0/lidP2b/V3lv2kdYFz95k4NisfNVAGMlfYba2P0/bkzz1OxDzSV39aY8FVtp8OqbFprT86zh5vui0jB7w1NpWKY90flx22jQ8FiUQCjU1pbFs/ESXF+efHtnYXk2duRyKR4IZxpHPoMZZAQQjBwhB8Udnh/nCeDaO2WX/vn3tNm2fDiOAANoz+AWwY7U3gYG4YxYXf4W8YfUOxYcyz4OXdMOo+UxtG2BtG/QPAYG0Yk+/PhtEu+4A2jGpMDWTD6It6nR8q0o2Jw37c7NBx/lAks2EMWIukP3AMbBgDuTeMTlClPcwNY18Xhfk2jL6sCyvruLz5DMGGUc2BuuyOdbDjHAMbxnz56rbVdbEuGh1zBBtGffGZjwFtGL183YAcrIGgXGeP1L4DgTACgZ48dVuYoLVhVHF+qz8ccMPYE+612L3mOyQbRie3XToqsd3fWRvGrAL3c8OYNafoNSRnNtnYba2P0/ZkrRPv14bRyfrx0skZJzaMat4N9PIj1HB8ZLywqOcvH3p5HElww0gIIYQQQgghOXBh4OZ9DAR9xg9nuGEkhBBCCCGEkBwkTRrJfE8LAUjme7pjmMMNIyGEEEIIIYTkgHcYCSGEEEIIIYT0iguDNDeMRLP19fHwRSOY/MuU+D7YLv2wpIq8F+iThfJF/mSRF05G1UvmSsfDftE830vJOkH2i/jeR59WAM4nMqFPqd7c9SetzzEZF+yWGfsSuW/J2yIdrhIQcrOEgay0Sh1St2cqauUTFFHZgh528VTT2kI7PuVyx5eUYVtkJFGi4spkOG0po2qVVFu8JtAmCxttkvlE93vHhltlBwfb5Vi1Vf5sJTkA8CVkWvsFfxPU6ilWMi3QoNQO01Y4HdZiLrnFkvRYjJd6+TwTPtnLozuWs2wDIVkIuD0iith5jjdgUuWqjAlZ39BBr1zhAzLPYKf3ubtaxsXGKpso8wZXMKr6QpHo8CYLX6ucsv2dXvn0+NRhm3zzBiDtwK+a3K4nAAS7vIMDcT0X2IIU8iSuEnFIFXh1iZfJcZUoUWktjZQswSl7DlRN6+Rpap1PllCZUAGUcfnaKHpAJo4c8Dom2KwmmbTK2BKKSVQViqhksSygL13glTXPnJclVJJHnCQVyS1sAQApax5OFubuI0DOy3r8HWqvdGIAgjt52H1FCr6Cns6eNEYa6gmFLZnP77RVibjtjRWZz769UREXPiDrZ/d5WtU1VSDD6ajXyK4WsQtp47MFVbSYDnKjOtYf98K+uIrLs7Y5at6w1369JvrjMhyI5xb+0utyssAaO0pIJKv9wnZhcw/YLNEbbf/5tKC0TVt1C3TLuOh+1/qsrhFbZaM4cS9jNyobIVEmLwS7qr1JKB2RfZZW7We3Z77+DMT0vCvTxsvsiU3GJUplOFnk5ZUukfUOl3n1LiuUDdaZtq4LuuLAHzAs4R1GQgghhBBCCCG9kjSmH+8wcsNICCGEEEIIIaOOdD8eSe0rfjjDDSMhhBBCCCGE5CBt+vazSD+MhBBCCCGEEDIKcZH/NWL0I344ww0jIYQQQgghhOQgZRwktWpYL2lGKtww5qD6RSAQBAJdUgnKDUmJKWMpmAaUWmiw01PHshU/gWyFQFjhdEgrgOZWE/Vp9Utb3VApFga6ZNhvqXclC+VQ0Kqk+fLxJaS8mK2GaAKy7Kmod57uShkXL819Tq34qJX9hAKbitMKZ4Hu/j0z4Aa1nKAM+i0FyOh+fQ6l6trq1dUotTNbnS3YLuOK9iiFxf2eEplWPnX0y9bWsxH54gDAsVRTnZiSlrO7ya+UGbtkPe3udsOyoiYo+9u2CSctx1So2YtLrfPUCtMJg504cjomufBF3ztnhScxN7ZCdkDAL8t1YIynVNn1V6laWbbVK3PZ2/K4ji5Z92ShJ6uoVUfDzbJvbJXNUKuUwwu0eVKNut+MUuRLlXhSg+mQVr/UCraW8mmnzNffIVUA3ZCl7Fckz5ks9uJi5XKOiSvl065a67hx8hw1Y1tFeExBh3dcSp6zuduTWOzoCou4RJeSp45bitNxNT79eiLJrXQMV9Yl2OzZSUqpZ9vrRKBFTSoRWb7uWq8unTWy/bQKqa2KrRUfg53GSpdfrTZy0OvvULvMSF8L+S1VU39CRnbUyvaMVdkKi6qA77Wf262lvQ+PuooWBAp7+r4gIBePxm5P0rq5U8px+mw1a2UiWeuIZbdJpZKdqJD1CHR4mUUPyIwLG2R/RJq98RE+oGRILVylZp0ukGFblVqrnuv10x/zyhsrl/YUL/PKq9VMtTpszBpLiXIZlyyTbRIa4zXoxMqDIm5ykQwnrc7oSMqTHox760NbTMa1d8twIubZkJvScqGqwy31clvJHAC6x3ppCxqkzZa9o+xplzd3maCcj2JV0qa7xlrrnmrr+Dg5joNF3lqQTqprxE6vD52YjAsfVPXMc0vMzbNDKBkjF67rTvp95vP4kFQm/k3zaZnPiY4kNuXO9pgmDQdpfSHYS5qRCjeMhBBCCCGEEJIDbhgJIYQQQgghhPSKaxy4fTxy2lf8cIYbRkIIIYQQQgjJAe8wEkIIIYQQQgjplZTxi/dpe08zcjeM+WtOCCGEEEIIIaOYQ3cY+/obCM8//zwuuOAC1NXVwXEc/OIXv8jEJZNJ3HLLLZg+fToKCwtRV1eHyy+/HHv27BF5xONxXH/99aiqqkJhYSEuvPBC7Nq1S6Rpbm7GZZddhtLSUpSWluKyyy5DS0vLgMrKDSMhhBBCCCGE5CBtfP36GwidnZ047bTTcN9992XFdXV14bXXXsO//Mu/4LXXXsMTTzyBN998ExdeeKFIt2jRIjz55JNYvXo1XnjhBXR0dGD+/PlIpz1l4ksuuQQbN27EmjVrsGbNGmzcuBGXXXbZgMrKR1Jz0HSmA1/EwdhXouJ7X0LqUfuTlusCJV0dyCMR7oaVhLv1o4SjZY6VS4RUgSVzXSh/zbDdTzhpeQ6drz/u5etXbiv0XXVbXjlQKPMNdCtXI1Z0skimTRR5GXeOk+dI1kiXAb6Q136RAhnn98k2ad/p6ZqPeVUWvmC/7AfbbUmWexOLQFweF2yT7gVsVxDJYilFnihR7idKfVacPI8tTe4q1X+jymePMceVHeokVT2LPAnvzuOknHfzScqlSaUt5S7jSt/xzhnZL9sg2KH9nXjljVfIynRWyzbpHut9TkoPFUgXeuUxJZ60vNsdB36CI6Z4Uiv8BT0uKVoavQ7Zt1NqwQea5RTpt4Zh8V6ZZ9ByNxNql31T8YbsG9vVgrbhVFiGbXcKndXK/U3QGzxa4j5ehpxEpGo9inbJ8kYOeP1qy/MDQLJW6r3HKry6pFXZE5brjK5qec7kcdKmx9V5UuwnlEhZds3WZm/wNG6rFHHhfV55CprkcYXam4M1RLUrCr/yaGC77kkUyzjtbsBGz6Upy/2BdndjUsoVkrWGhFulXfqU1H+o3bZT2bapIm/c2C4UAMCn5rm05fpIu+5pmyRtOh3xymCfv6fsUGHLdVSBLHu0tkeiP90Vw2BwRuV2hN9z8fL07pNF3IFmq7P2y3kxaLVxRLlKCrXJ+tmuSkKdyu1Cs3JxYXWdX3ZN1rps21v3WFm+zlov3846eVygS4ZtG9duqcq3ys6JW6402icoFw3WuNduFvR6FR/jjaWS49pEXFVYVrws4pWhLCTLcyAhF4QdrWWZzwfb1GKx07tGC7Yr92XKhZXtFSqo2kTXJWWtQT7lMsbuM+2iROOkbDc6sp4FEXWdkPIaOF4q+6Foh6oMvHC4TV0LWMGO47Q7K5lL5zhr3jhB9llBUK73Xa94c23Hdnkhs2Tfp7zzB2V5JhznzeepztyuYo51XDhw+7jP5mq/bn1w/vnn4/zzz+81rrS0FGvXrhXfrVy5Eh/96EexY8cOTJgwAa2trXjwwQfxyCOP4JxzzgEAPProoxg/fjyeeeYZnHfeediyZQvWrFmDl156CWeccQYA4Mc//jFmzZqFrVu34qSTTupXWXmHkRBCCCGEEEJykDD+fv29n7S2tsJxHJSVlQEA1q9fj2QyiXnz5mXS1NXVYdq0aVi3bh0A4MUXX0RpaWlmswgAZ555JkpLSzNp+gPvMBJCCCGEEEJIDnruMPbhVuO9+LY2ebc2HA4jHA73dki/icViuPXWW3HJJZegpKTnDm9jYyNCoRDKy+XTUdXV1WhsbMykGTt2bFZ+Y8eOzaTpD7zDSAghhBBCCCE5cOFDuo+/Q4+sjh8/PiMwU1paiqVLlx7RuZPJJD73uc/BdV3cf//9faY3xsCxXhGyP+dK0xe8w0gIIYQQQgghOeiPqE36vffSd+7cmbkLCOCI7i4mk0ksWLAA27Ztw+9+9zuRb01NDRKJBJqbm8VdxqamJsyePTuTZu/evVn57tu3D9XV1Vnf54J3GAkhhBBCCCEkB0nj79cfAJSUlIi/w90wHtosvvXWW3jmmWdQWSlF3mbOnIlgMCjEcRoaGrBp06bMhnHWrFlobW3Fyy+/nEnzxz/+Ea2trZk0/YF3GHNw4gd3IFgYwo4dk8X3ttIbAERaLGXEFqkMlbSUEH1KgS+yTypF+eKeGpVWxgwWS/muAuuR4yyVPev2cjoifw+wywMo1T+lZpqlsGhFR5XyoFboipV75zkwTaYdP2N35vMXjtso4moCrSK8qduTUT2gZDQbuktFeEODJ1vouLL97PIAQNcYLz5RJsuXLPLa040qFcKDUoYy2G7FyaJnKQba6B+oksXWOYOq79t1HxZkPsfKlbqmFPRFbKyX7+fP/j8Rd1X5SzL81sWZz+/uGSPiWnxevZMzlEqnUvuNWAqVdvsAQFw+Yg9fqvfPAJAq9STs/u1jqzOfu9rTuARHzvSqBoSKeuzqxT9XZL7XyojFO+XYthUvtZqgHe6KybhwqxwP9vjwJ/KrqqWscahV/2yz0EqdRisaBr3zxCrk2EmrfoyVe4tbqEO2QddYNSat82a9729VzT4/APjDstN9ltxgShnJwXiBCDfu8Pqsep1M64955Y2X5VcIdKwiJJXyaUqpzoZbvM+l22SbaHXYWJk1D6vrhO5KrxDBDtlp4cZOEQ62eOuEViyN+OQ5wzubM5/j46WxxUu9juk+QQ4Mrf5pq2eHm+XC1T0mt1pkvEzFqTUvav3ArdemurKeCTQVjOMtHDkTI/sRjfTU80Dz6SLOHPA6RCtCRy377zxO5tk+SYadtFffaJOqu5rPbLtNq3m6c5w8VtqQUv0MeH2TLpEnSQZkP3YnvLoFWqRhxipkIey52Q3nno+ylYSVSnu3d872v8o1ukNl+7E53sVreUCO+42t40W4+XVvTTruD7LeCWvN1orTWq3attOkUuot2iPz7a7MrWRtt5dWPW+bJCdpN2itL41SJTXQKc8ZsBSUXdWfgS61Fvlz18VWL45ViKgsNV17TasrlRcydQXyPbw3Z3nlbWgsE3FFmz276q6VZa88wTtpMq1kgocRhx47zZ9mYCqpHR0dePvttzPhbdu2YePGjaioqEBdXR3+8R//Ea+99hr+93//F+l0OvPOYUVFBUKhEEpLS3HVVVfhpptuQmVlJSoqKrB48WJMnz49o5o6depUfPKTn8TVV1+NH/7whwCAL37xi5g/f36/FVIBbhgJIYQQQgghJCeu8cHt45FU1wxsw/jqq6/irLPOyoRvvPFGAMDChQtRX1+Pp556CgDwoQ99SBz37LPPYu7cuQCAe++9F4FAAAsWLEB3dzfOPvtsrFq1Cn7Lj8xPf/pTfOUrX8moqV544YW9+n7MBzeMhBBCCCGEEJKD9+MO49y5c2HybDLzxR0iEolg5cqVWLlyZc40FRUVePTRRwdUNg03jIQQQgghhBCSgxR8mXcUc6cZ2IZxOMENIyGEEEIIIYTkoH8qqSNXS5QbRkIIIYQQQgjJgQsHrhKi6i3NSIUbRkIIIYQQQgjJAe8wkl7Z21kMvwlnSdXHqmQ4WegNjohyw2C70tBy1IB0leGLe11xcKqMK3s7KdNa8upG/5phPT4d6JInDXZICedU1HsWO3JQlf1dKeHst+SfnZRyH1IudePTQcudSEq5frCM6cORv8pzODLfF9pOzHxuTUoZ8F1tUrLblvPurFNy8y0iCL+l6lzQIONap3ifF8z6o4jbG5f62c/9xStfcpfsM/876pxx242CamsrnCpUz787SibccmES6JJxnbVyogpu8+L/+78+IeKeSMhwwPLyUiirgrTlXiDYLs8Z2Cuf5w92eJ+13HiqQLmAsWTDfUmZ76Q6T9/+ggJPkrstnWVIh8UbB2vgj/WM28rXrTaNyTL6lCsDuF64ZLuM6q7y2l+7UkgUKVl2ywVBQrlz8CvVcZ/VN2HlAqF4l2ulk/bjuDJtqsCWiVeuKOLKZUOzN+ekQ8o1hV+PSausyp2AkLFvU+4DGqWrjCbLZczu0lpZvpg8tthyf2AcNa6sIemkZZyeh22XJcpzD4JS6V+4UNJtW7g7JsIFBd58no5q1zi+Xj8DgDtBLjjGcp2R5RJE1S09xfPP1XGclPbvtjzldE1SUv6lysXT215DlLwj2z26T7WnNeS0SyBXXV3YY6x4m0z7zpge59Fut2zHw2XtgVMRjPVMZL5dcu3wW9XVryN11nmfk8XKjUFEhgvHegMkMUlmFG+RPlmckDV2WmXD6HxhuesI7Zf5hlq8z26r7ONEhcrH8pcQ6NBuF2RS24a1q6lUiTU/Kvccxz0nJytfwksbq5ILScsJcgA/+dszrHNIw4w0yDaqfCv3e2FuwKubtsv2cfKcKWvKCTeLqKx5ruxtbywGDsrJ4MDpnq1plzp6zUiU2BOSHIs+5VIpUWy5JRmv3a3ItrfdcaXGyGvE4447mPk8Z4xcqJ5vOEGEw9Y4ifjl3NCSkOUtCHr9XVYp26R5ilc+R13jNMe8fFKx4buh6p/ozfCtX19ww0gIIYQQQgghOUgZf9+iNwN0qzGc4IaREEIIIYQQQnLQPz+MvMNICCGEEEIIIaOONByk+xC16St+OMMNIyGEEEIIIYTkgHcYCSGEEEIIIYT0StL44O/jHcakcfPGD2e4YcxB+pkKIBxBUYdSsSpVylVWMFap1bK8z5EDMp/9p8qm75jiqVyNrdsn4na8XSnCRdu8XzC0amLkoDdYIwek8ligVSrQ+S3VwnSJlHVMFiklN5+nyKaVyJJF0oBsxc2x66XxpP9cnfl8XdWXRZxWWLRV9jqPU3FhWYaCPV5dXKXymVBKt7YiXLBL5hO01OTW7Zss4j437lURPjjZk1zb5KsTce0pKUNXuclrh2CnPGfZO15cskCpukmRMsRLvfhYhVK+U8qcthpgxRY5FkJtMuyGvXzjpbI/2yZ451EiaogclGG7PUu3ycRdY+WYssdJ+KBUeWvb6nX4SZP+n1fOWAzAN3CkpH/bY98AULDXs4t0WNY9pfrDbpt0SLa/rQKpFTbTUtAQ3VXescF2GRdS4YCtsKvUTG2FwIAaV/54bpXkYIHsC0e9qB9o9dTwQp1SRbNgq5JxTXn5mlJpbF2TPKlcR6+jSuWzs84rU+qgblt5qK1erddvW7XQVX2kba9kh9dGhY0y7b4Zsu8bPu7FRxtlXNcYqfgabrXsvUtWPHLAay+7/3rKnluRNlYm42IVIoiucd553Ki0PSfuHevrkA3mb5DysCXbvDYq2K/mCdXWiWJLGVGtC8U7pE0H27xwslRN0k5POJ1wsRNHzlu/PAH+9+y7rFmpBVvKuPFyeVx3paU6rBS+nS6lhLrVU+q21aEBoFiJvfqsptDjNdySe4wGumU/2vav2zvQKdN2jPfWIK2oW/IXKRHqdFgF7lSTV7FnbG6pHOdtJ0kp7OYTrWsTrUKq1qdgq1fvou3qekO1kX2d1VGj5y7vc6Bbq1zLfFyrDO3Hy7Stp+g50Ft8Q61yIS7ZYSmUyiZBtFHajK2EapS9p5SCsr1O+NQ023Gq/KJirLdQaIX5fW1en63pmCriggFZvrTrlWFfl5y/D7bLyiX2e+0QbpKdVGkpzgfVdXPzm956no4PjhLyUEC3GoQQQgghhBBCesXAgdvHO4pZru5GENwwEkIIIYQQQkgORvsdxmFTs/r6ejiOI/5qamoy8cYY1NfXo66uDtFoFHPnzsXmzZuHsMSEEEIIIYSQ4U7yPT+Mff2NVIbNhhEATj31VDQ0NGT+Xn/99UzcsmXLsHz5ctx333145ZVXUFNTg3PPPRft7e15ciSEEEIIIYSQ3LjG6dffSGVYPZIaCATEXcVDGGOwYsUK3HbbbbjooosAAA8//DCqq6vx2GOP4ZprrjnaRSWEEEIIIYSMAFz44PZxn62v+OHMsKrZW2+9hbq6OkyePBmf+9zn8O677wIAtm3bhsbGRsybNy+TNhwOY86cOVi3bl3ePOPxONra2sQfIWRkQPsmZORC+yaEHC3SxunX30hl2NxhPOOMM/Cf//mfOPHEE7F3717ceeedmD17NjZv3ozGxkYAQHV1tTimuroa27dvz5vv0qVL8a1vfSvr+1QBYMJA2weUVL1SBHYs6e0ipQce3e9JHYdbpL6zT+ns224r9qWkXrqjxl/CkgL3J5Use8QLayltJy5lzp1urzK+VvncdTAsy5cu9eSUjV/+zhBW50mHPcn0VETLSFtuAFRbKk8U4ueMunVKMlxJa/usMuhzajcb8TLrc3lu4+74Ra0I/2fHfBFum+QdWz2rScQlKqQ0+cR5Xvwr/3eyiKv9g/e5cLdsFN2HsIImKPshWSL7LGlJdjsqm2Sxkogv8dJmy757nwMxNaaUqwRb6t0NyrZNFspwZ60XNifITrLLYL9DPtD3yXPZd+SAi0Cwp/Ad4zyt9XCrlBwv2NklwkV/8fw7uIVSJ94X82TPnW4pge6WSFn2VLF1rKPHq3KtUuA1hnbDEOj0yhtsl+f079ov8x1blvkcikt7st03AIAJWOMhpJaJgCyfq+YKG9vtgu2eBQAC3TJtuMUbO0V7ZD/4u9VAs8qrXdG0TfTCripaskCWoeKA5f5CScEXb5djst0qf1K56gnIYYLuSqtMaoo5eKLXnrZtAUBQuQUIWPWONMs2cVxZb3te1nO0LdHvk8uAcG8DSBvXbjT0OLHnlWRUxsXL5bjxx6yx2ibHaqitJ206oSaqPshl30V7PPvWLoRs1wa+t9X6brmxSBWq8ifkGExFc7+rFD4o6xc4aK0HSWl7bpl0a2ICuSe5VJE3oMPbDoi4xHh53VDQ4HVsOirrkqyU54QVDh6QC7FjzRUmqNaNUj0Gvc8x6Q1MuLMCpM0U7pV9pLFdyrQdL+NMwOvDsHLHo9cye+z7EmreVW4/bLvV61zXGOs6Sw3Zgq/uFuG310/IfC7cqV2oqFNa66dfudUI75DzUetBr7/Tys0Yirw+84dl23a3yLUo+q517Vmq3JKo68uIdXlS0ChPWbzTa9xws5xUAjHPPUcqOXz9FPbnkdOR/EjqsLnDeP755+Mf/uEfMH36dJxzzjn41a9+BaDn0dNDOOrCyxiT9Z3m61//OlpbWzN/O3cOhhcoQsixAO2bkJEL7ZsQcrRI9UPwJjWCRW+GzR1GTWFhIaZPn4633noLn/nMZwAAjY2NqK317go1NTVl3XXUhMNhhMP6pyVCyEiA9k3IyIX2TQg5Wrim7zuI7sAekhhWDJs7jJp4PI4tW7agtrYWkydPRk1NDdauXZuJTyQSeO655zB79uwhLCUhhBBCCCFkOOMaX7/+RirD5g7j4sWLccEFF2DChAloamrCnXfeiba2NixcuBCO42DRokVYsmQJpkyZgilTpmDJkiUoKCjAJZdcMtRFJ4QQQgghhAxTXDhw9UvpvaQZqQybrfCuXbtw8cUX46STTsJFF12EUCiEl156CRMnTgQA3HzzzVi0aBGuvfZanH766di9ezeefvppFBcXD3HJCSGEEEIIIcOVpOvv199AeP7553HBBRegrq4OjuPgF7/4hYg3xqC+vh51dXWIRqOYO3cuNm/eLNLE43Fcf/31qKqqQmFhIS688ELs2rVLpGlubsZll12G0tJSlJaW4rLLLkNLS8uAyjps7jCuXr06b7zjOKivr0d9ff2gnC82xsAXMTAlUtGs5IR2ET6439uQFqyXAyXcah2rhKEKd0k1zMI93q8S/t8pNdOUPNiNeKpWPqXGaJ/HSciyZxG11NCUgqpWcvN1eqpXRqki+pTiYsRWWNQ/SVgiROmw/CUmoZQ77WNDLbJ8xSmlzBrxEmflWygLkTgOObGV2yo3yz7yKXWvaJPXDvvjY0XcmHOkUtoPJvwm83nOVPlebddbntpZqFW2ZaBVyi8mKz21MX+HbJN0lVRRi1vKco56sD7UrtQBLXXCpGovf9xSoWuRbaBVE+3yx8vk9NJ2gjynW+mVP9Agy24r6KZqvDHu6vF+mLRM8cH/3pix31EvaJBlbjlB/uBU9ranMKeVEJ39VqGDSsV3X6sIh7q9fkS7lMozJVKCM2wpE2qbtpVatbqiKZdld5KeWp4Tk2PbRJWUsOv1s9Mo1RhRLMvnWOXrGq/KbqnOVvwlt8ImAAQ7cs+XepylwpYSqlrFIgetsaxUUbXaYcpSEi56R87tY5SSZ2Gj1/daiXnfh2U4utcLB3fIk9a87M2lnXXy/bvOGtmHgZjXtsW71Dy7TSoRFuz3GiJeIudSu418almIHFRzTqcXDrTKc6TKpIJmusYbN8ki2QaxSlmXrmqv/ZRIOLqre/rMjQH4LxwxB0/x7DvaJMtR9o5XPz0v2sqoRikSO10ybWSfpTLeKdup7eRyES7da9l/e4fMt0C9g2mp3ybLpKKla6+tymZ1eUP7LBliR+bTeZw8Z/G73jrjRmS+Pp93zthYmU+wU7ZJybveZ62oHexS1zF2edVcoNVX7Zs2oXaV1hKHTRXIuOg+GS7abakit+dXik5bQ72rStpT+Vte33fWyvba97OJIuxYqq5tJyv153ZZz2C7V4bSbWq8HRRBdFV7aROlSpE84RmYv1OWr0DlU73eGydaab1zrKx3iyXwfvBM2X6tUzzbCXQrLwBW8dIxH/A/GJa46IdK6gDvMHZ2duK0007DF77wBfzDP/xDVvyyZcuwfPlyrFq1CieeeCLuvPNOnHvuudi6dWvmhtiiRYvwy1/+EqtXr0ZlZSVuuukmzJ8/H+vXr4ff39OHl1xyCXbt2oU1a9YAAL74xS/isssuwy9/+ct+l3XYbBgJIYQQQggh5Ghj+vFIqhnghvH888/H+eef33texmDFihW47bbbcNFFFwHo8QxRXV2Nxx57DNdccw1aW1vx4IMP4pFHHsE555wDAHj00Ucxfvx4PPPMMzjvvPOwZcsWrFmzBi+99BLOOOMMAMCPf/xjzJo1C1u3bsVJJ53Ur7IOm0dSCSGEEEIIIeRoc8gPY19/ANDW1ib+4vF4H7lns23bNjQ2NmLevHmZ78LhMObMmYN169YBANavX49kMinS1NXVYdq0aZk0L774IkpLSzObRQA488wzUVpamknTH7hhJIQQQgghhJAcpFx/v/4AYPz48Zn3BUtLS7F06dIBn6+xsREAstwDVldXZ+IaGxsRCoVQXl6eN83YsfK1KQAYO3ZsJk1/4COphBBCCCGEEJKDgaik7ty5EyUlJZnvj8RfrOPIcxpjsr7T6DS9pe9PPja8w0gIIYQQQgghORjII6klJSXi73A2jDU1NQCQdRewqakpc9expqYGiUQCzc3NedPs3bs3K/99+/Zl3b3MBzeMhBBCCCGEEJKDgWwYB4PJkyejpqYGa9euzXyXSCTw3HPPYfbs2QCAmTNnIhgMijQNDQ3YtGlTJs2sWbPQ2tqKl19+OZPmj3/8I1pbWzNp+gMfSc2BL9XzV/F/Sv8bFSJUasm2BzuVO4y0J4ucDiuXEQEZ9iU8uedUhZQud8NyXx9p8iSdOyZL6fxQuyfbHFSS6FC3nt2QVQYjJZx9CSn/7ItZUuTKzYcJKncijZ7utZbojld5ddMy1j7lKsOxiqDbz5Z+B4DwPi+sJc5NRA7zsre8X3qSpbJ/C/7ahlw0nyafEe+s8cpf+wfp/mJfp/TdceYLN2Y+H/dst4hLR71xEy+X5XGD0k1BsM2rmxuRbRJtlK4SIvssFyZR2QZB5TLA7n8xLgD42720jhonHSeUiPDBqV5/x2VzZflRCO300lb9WY6pcLPXn7v9Xrp0TPlFOEwc13OxYLtSceSwR9l2Oc6iezwXGL522d7pKq8tUsVy3Id3yl//0GWNgQIlnV8sf4m0+8MNSt34jvHeeUrfluOq+TQ5V0UOeHWJ7JWuPHzdyq3OPk973aRkGziuaiRrXonulnZgrLIni/XYVm4LLPvXLmy0ex5/3CtDSDVt2rILX1Lp9SvsfPTYbpglba/0Xa8div8q+z7YJefsovWeD6x0jewH+2da7fIhclA9euSzHilKy/IZNZ8HW60+1NW2kmrXIjpsu9Lwdcgx1TG9VIZrvYxTsrmQiuo1xUurXXsEunri0rHBudhyQwYI9Zxfu/tor/PmwsK9siC2+6ZQg1wLXOX+IjHWs8XIAekqo3Tddlmg4kLvuKnjRVTHeJlvZL9Xpn0fkjZT/ao3F+85p0rEhVtkexfYdpCQnVz+cvbdhgwpad/Gct0T3SnrGT4gyxev8tKmInJs63Hm7/a+cEPKJUiHGsCWbQZiMl/fW15cqE3NVcpmAtY12juflfNu4V9lvjUve3NZZL+ytXe99gu0S/vurpVzdMhynbFvpip7Ul8DeZ/TytORXy3Z9loVVq4yyrdaZe2U/RltkHO0/6C3FrRPlHebWk5U14zHefNBICA7NNXljbdws5rbrSL4Bq79csyQcn1w3Pz32VJ9xGs6Ojrw9ttvZ8Lbtm3Dxo0bUVFRgQkTJmDRokVYsmQJpkyZgilTpmDJkiUoKCjAJZdcAgAoLS3FVVddhZtuugmVlZWoqKjA4sWLMX369Ixq6tSpU/HJT34SV199NX74wx8C6HGrMX/+/H4rpALcMBJCCCGEEEJITgz69rOY/yfKbF599VWcddZZmfCNN/bcXFi4cCFWrVqFm2++Gd3d3bj22mvR3NyMM844A08//XTGByMA3HvvvQgEAliwYAG6u7tx9tlnY9WqVRkfjADw05/+FF/5ylcyaqoXXngh7rvvvgGVlRtGQgghhBBCCMlBfx45HegjqXPnzoUxubeZjuOgvr4e9fX1OdNEIhGsXLkSK1euzJmmoqICjz766IDKpuGGkRBCCCGEEEJy8H5sGIcT3DASQgghhBBCSA64YSSEEEIIIYQQ0ivpfojepAcoejOc4IYxB4F2B/6EA/0Ka9FuqcLVVe01YapADpRAl6VKuKNVxDlaiSziqY2li6XiXuCgVDRMjvHk6KL7pHSWrW7qb5ZqWIk6qXBnqwkG25MqTg6NdNRSQ1PPW2epasa8YwNtUhIrss9T2UoVKgVan1LkCnrtabclAPg6Zb2dhK3iKtvW6ZbltV8EDnSofDo99cNUtWwvW2USACL7vc+6vQobpYJYqMNSEyyUaRMllpJkoVZJFEGEDnr5On4Zqdsz0OH1abBZSZMphVonaanr7pGSa6bCU/+M1UopRK18FznotXW8Qp4j0CHDhQ3W511SjTFglaG8Zlzmczox0FfKeyfY7qnO2eKtgVj+/N2Q13e+Lllmf6dnb/5CqZSXZTP7Dnj51NXIfJTioq+5JfPZcWSfhzd74YPnfkDExcple3eN8cZHUZlUty19Xfa5Y8dHlVxft5pzWq15Rqk/G6u99HwEpa4M1xrbXWq8JpSKa9qycb/KJ2opMau5SSs8Y78lsTpGqh0et2afTGvPK0lZniKlpmti3jzib1Wq10WekmSsUtqsUVWx1QX9Sa06KusS7PDC4QOy/RzXO9aeKwHA1yzXFxgvn8SkMSIqXiLHVGysl2/BFLnGxQ9KG3AavXFU0CTLnizqGcdGqaceLqEWB/5wT1n9UtAWrjWcjVpz/JYaODrleNX2HolbY0CNe7dFtoXPUkI2AXnOit/vkAWMe3038S2pgt7wydrM55QU+URXnQw7m7wylb6l7EmN31SdN/b1OmIrc9tq6QDgpGU/Rvd4baZVfB1XphXjUKmZZjl883lf2GuVPk/WdZU1zwJAatqkzOeJv1JK60o52rEVgl2lUNzmKcH7EnI+LOiS80jjxZ6abbpctntwh2xr+5oiFZXtl1RLSvSAV6ZIs6x3qNkrk553nTa5vqTGezYeK1PXYBFZ77IyL6/OmFoXurxjQ0psvssSX00P412HC6dP0Zu+4oczw7jrCCGEEEIIIeT9hY+kEkIIIYQQQgjpFWMcmD42hH3FD2e4YSSEEEIIIYSQHPAdRkIIIYQQQgghvWL68Ugq7zASQgghhBBCyCjEIEu/rtc0IxVuGAkhhBBCCCEkBy4cOFRJJZqS7Qb+kMmS2XeDylVAlxfvU7LnwSZPetns2Svz0TLxlouEQFTpZYeUzHVHV844pDypaFNSKMvaJvXFg/stVxQxWR7bzQcAOO3WOZVcNiJhETQBSwI7oVxcdHrS2qFW5UKiIF8+Ss67uV2mbfV0nPUvPE5Y5utvt8JFSqvaku8O7JaS3IGDUh4/XeYdq+XZg+1SatvfYrVfXLZ1pNzrJ1+Hkj9X0u6iqEFpvoGAMmdb8jyl9OpVeYXLgBLpOqNrgiftHuyQ+fjjsn/jpV7bBqWyPEJSzRtVr7RkPuv+tX/GC9huUZKD8/tdwT6DQLDvvLS9py2XKIFiaV+m0XPDYPbLseOEpAS5Y/WV2a9cWiibdmy3EVre3ZpHyp/aJAuvxocT8cavO6ZcplXeJtDtzRVOTI1Jbf/2T65KYl64v1BoFyH2HGj0eFXy/bYLDttmAQBdls2o44wqj1NsjfV25V5C19uf590UdR4naPWhcsdg51K0U9p345nS9op2W64yDqo5Rc0VwrWQcn0i6qLbtkiOY7fUs/dksZpjlIuikne9sWD+WibiavfLNil5syXzOV2k5npfz9gcLLc5JdtdBII9508UyX6zXZe4ysVFssQrl1MtbcTXrdZsq1+NcqPj0251mr3JMKzGg3ZxIYjLfqz52RYvoMdcWM4x6Umeu55UsYzzlUl3HbZrrHiZ7HNjuWAKtsnyBLSrHPu6Jo/t9xTKilduSbKwxq/bLhcSew50lIsd35hKEQ7u9a4bgh3K3jWWe56sec2ac4yaJ7Rrj0n/651zx3my3bXLl3Cb5VpINV+wW7nqOuidN7BPXg/Z4y2rbYvlHGOvaZEW5brnTWUfO732LFBdH271yhfo1i5/vPYaLBsfCtKuD+A7jIQQQgghhBBCNMb045HU4bsf7hNuGAkhhBBCCCEkB3SrQQghhBBCCCGkV7hhJIQQQgghhBDSK2nXAdz8G8J0H/HDGW4YCSGEEEIIISQHPe8w9nWH8SgVZgjghjEHxX/tQiDgCqVOAPB3SrUsX5uleKYULY2toqYVw5TinmOrbmklPyXQhbA1YLVioU1aKSpGpFqWA0stTyuutSsJLFudMS6lvYxSLRNKZbp89nmUUqfTpsJ2PkrZz3SrMuRRZDPdUpXOiXvqYo62blsZTamdoU3W02+rKmolsiyFRS/elJWIqO7jPNUyx0gFs+i7Kt+9nhInulTZdXtq1VQbVW+TtNo3Jtu2YHdjzuOcmrGyvFFLRa1Rpo3skUpuzl6pJCoo9JQbCxq88qRSsd5SD5iind0IBHrK5++ylf1U/ZR6qwlZbarVDvOsFFk2LZRPlZKnUlAW/aj7GNa4UucUSp0KX4tS1cu3yuVTBwWAmDdBZdmhPW+oshujlE9TVli1gXG1jKuFblvXattg/iXO2EqJfaz0jjU35K0nIOcrNYHb/eJTytUVf5HqoemI1/a+bjkWxdoDCGVbra4pyqvrqdraZ4Wjqtkj+5Tybswrk++AkkXWc7TV38GxVSKuMNRTz1RKL3aHR7DTU0n1K6VzX8pWYJb9mCz0xk6gU9pPqlj2TegvLZnPjlYvzqcOnE8VVaOvE+x5Q8/vSiHUf8Barxypzoms6xqvTEUxpUhu2aUTU/2j1kRb8VWsKchWMBXzQSx/+xlbpVRfq1iq0lnn0G1t5aOvIZwCpU5vzQ1G2ZOeswWWYjsA+K3wmD/Jc7SPk30Y6vDyjTRIFVdfu1r77DZR1xtCZTquVFyV/Yd3e20WbFHqxX51/WZdzxk1Nn3WtbE+R3Cst56nUgMY/8cYfCSVEEIIIYQQQkivGGT/MNtbmpEKN4yEEEIIIYQQkoPRfofxsD1M/t///R8uvfRSzJo1C7t37wYAPPLII3jhhRcGrXCEEEIIIYQQMqS4Dkwff32J4gxnDmvD+Pjjj+O8885DNBrFhg0bEH/vGen29nYsWbJkUAtICCGEEEIIIUNFj+hN338jlcPaMN5555144IEH8OMf/xhB6wX+2bNn47XXXhu0whFCCCGEEELIUHLokdS+/vpLKpXCN7/5TUyePBnRaBTHH3887rjjDriWqJIxBvX19airq0M0GsXcuXOxefNmkU88Hsf111+PqqoqFBYW4sILL8SuXbsGrd6HOKwN49atW/GJT3wi6/uSkhK0tLQcaZkIIYQQQggh5NjAOP376yf33HMPHnjgAdx3333YsmULli1bhu985ztYuXJlJs2yZcuwfPly3HfffXjllVdQU1ODc889F+3tntL5okWL8OSTT2L16tV44YUX0NHRgfnz5yOdR635cDgs0Zva2lq8/fbbmDRpkvj+hRdewPHHHz8Y5Rpy/G/uhN8JwdGy7D61x7ZcLxjl+sGWXnbUcVpyWuSrXUiosjlCMlnJPVtS1U67lGX2d8dzptWS90ips1rSzFll1zjesUZLKNty1LotB4KSz87nekDLcAtpaOVCwsmRricfZXy22wItcR6RQbsMjuqHwq2We4m+yh62ZK/1ONGuCJJW3XRbq7rZcuRZkvCWDWTJliuXKgV/sqT+laS5Lp+bR17esWTCA12Wixd3kGT3dx1AwPdeW9ruU3SfazcidtjNLe+eNVZUu9ky8VltqstgjwkdZ8meO+GQjNPPxtiuX/S40uW1z5PHfnrK4OXrqLQGVr7a9YQmnysC3UZ2WLsayefWR694oj/7KF+++Cy7tdJqFzYtnvsJp13WK9okXc0I1yO6H5QbAKPk83OSz1UDIOzWt69Zxum6WK4J3IRyH6LnaNtlUYd02xTe8Z4LjHQ/69AH/pgL/3vuIALavVTA6ivVpIFu74t0RA4W28UJAASt+VdfIhrtVkkcqNzd5OuPfGutWnNMqXSd4VjH+vdJVw96PrL71URk+ZykZZfKjUbWmLPHqHYXpK+PxEnyX2SLNsl33aDHp3Z9ZJN1TZZnPdJtbc9Vat5yO+R1l33tV/jsFhFXFJFuLARRdRGRb0zlm6PzudcCAOs60afdpqjrXxNS48Y+ZcxqP+VmLGC5bcFwdqvh9vz1laa/vPjii/j0pz+NT33qUwCASZMm4Wc/+xleffXVnryMwYoVK3DbbbfhoosuAgA8/PDDqK6uxmOPPYZrrrkGra2tePDBB/HII4/gnHPOAQA8+uijGD9+PJ555hmcd955A69oDg7riv2aa67BDTfcgD/+8Y9wHAd79uzBT3/6UyxevBjXXnvtoBWOEEIIIYQQQoaSwX4k9eMf/zh++9vf4s033wQA/OlPf8ILL7yAv/u7vwMAbNu2DY2NjZg3b17mmHA4jDlz5mDdunUAgPXr1yOZTIo0dXV1mDZtWibNYHFYdxhvvvlmtLa24qyzzkIsFsMnPvEJhMNhLF68GNddd92gFpAQQgghhBBChpR+itq0tcm7+uFwGOGwvKN8yy23oLW1FSeffDL8fj/S6TTuuusuXHzxxQCAxsZGAEB1dbU4rrq6Gtu3b8+kCYVCKC8vz0pz6PjB4rD9MN5111247bbb8MYbb8B1XZxyyikoKioazLIRQgghhBBCyJAyED+M48ePF9/ffvvtqK+vF9/9/Oc/x6OPPorHHnsMp556KjZu3IhFixahrq4OCxcuzKRz1CPbxpis77LL0XeagXLYG0YAKCgowOmnnz5YZSGEEEIIIYSQY4v+iNq8F79z506UlJRkvtZ3FwHga1/7Gm699VZ87nOfAwBMnz4d27dvx9KlS7Fw4ULU1NQA6LmLWFtbmzmuqakpc9expqYGiUQCzc3N4i5jU1MTZs+efXj1zEG/N4yHXrjsD0888cRhFYYQQgghhBBCjikM+n4k9b34kpISsWHsja6uLviU+JLf78+41Zg8eTJqamqwdu1azJgxAwCQSCTw3HPP4Z577gEAzJw5E8FgEGvXrsWCBQsAAA0NDdi0aROWLVs2sPr1Qb83jKWlpZnPxhg8+eSTKC0tzdxhXL9+PVpaWga0sTyWMYlEzw8F+ZS9INWytCqcrSaq1VaFoiIwIMVQW23M0UqITh5FxXxKiIUFMi4pVexs1TetoumElDpjPlXHfOXJp3yq8edX/RQEc0dpJTehOquVD3V57DLo/vMpNTFbYVEryyXyKH/qNrLLq5VO+1JDy4NQY9T1tspuXGUPevxZ5TVaRVT3r1bqy1U2S+nOmMFRSUU86dXTroNuw4E80mH3sbZvpRCbV8kzX75+lTbfsTrOtlPdby3yfQsxr2n1VR32WW2m6pnXi7Eunz1H9qVYao9RlVaMUa2g6mg7teJ1n+nxaStQa1VCvU74LT9aWTZscsdp7HPq8qlz9tv+tZKtLoOtzKn7T8+X9vmz5kClQplv3ToUdgdHJTXYGkfgPVtxVJndsNdORtmTv8WbX5IVUoU21KxUYCOWiqVWUz4SBXChUKz6xs5Xz//5VJHbpRq4VrCGpdap20vYlx7n2g7ykW+uyncdo+Kz1pU8baLHYF419QHM/aKts9okt71noePsa4qUykdfZ9llCKmxYF9T5LK1Q9hjQV+L6DGmFX5zpU0qu+r0jjPp4auSOpANY3+44IILcNddd2HChAk49dRTsWHDBixfvhxXXnklgJ5HURctWoQlS5ZgypQpmDJlCpYsWYKCggJccsklAHr2ZldddRVuuukmVFZWoqKiAosXL8b06dMzqqmDRb+vMB966KHM51tuuQULFizAAw88AP97i2o6nca1117b546aEEIIIYQQQoYNA3gktT+sXLkS//Iv/4Jrr70WTU1NqKurwzXXXIN//dd/zaS5+eab0d3djWuvvRbNzc0444wz8PTTT6O42HOjc++99yIQCGDBggXo7u7G2WefjVWrVmX2Z4PFYd2S+MlPfoIXXnhBFMbv9+PGG2/E7Nmz8Z3vfGfQCkgIIYQQQgghQ8Vg+2EsLi7GihUrsGLFipxpHMdBfX19lmCOTSQSwcqVK7Fy5cr+n/wwOKznJlKpFLZs2ZL1/ZYtWzLP3hJCCCGEEELIsOfQHca+/kYoh3WH8Qtf+AKuvPJKvP322zjzzDMBAC+99BLuvvtufOELXxjUAhJCCCGEEELIUOGYnr++0oxUDmvD+N3vfhc1NTW499570dDQAACora3FzTffjJtuumlQC0gIIYQQQgghQ8Ygi94MNw5rw+jz+XDzzTfj5ptvRltbj7oexW4IIYQQQgghI45BFr0Zbhy+Dv97jNSNouPz9Uiw9yV5b8VruWdbtrkvFwMC7TIi65R54gfixsJO26pk9ftwJyJQaU0+KX2bgbiBGIgbjSNxjWCj3AeYqHYnYJVJuxrRY6G/baLJJ8+u8xxIG2m5cbu8Ss7b+Kw4LQM+EJn9fNLpOm1f7gaOFGMOr0/sMkeUI1673dra5em0/dvy5Fq6PI87h7z05QLBLpM6p9Fv6tsy9kqC39Fy7/nyGYDt2fU26KP/bTn/vO/NK1dHPtUPji2zn8flRl/kmc/zulg4EvcL+lh7TLmq/ez28qs20PO3dp0jIgdgM3lsWOeSKYMu92Hi74h7XZKU9fHZbRHO7SYgqMaur61bJrDj+3ILYY8P7epFj53+trFeow+2yHDUcvuh3Wjoc9jupLqVCw67LvncQEBem2RdQ+Rz89WHOwyRjW4vsY700bZ22iO5TrDT2u0MwMnrRmMA86Nez7VLC3sc67a20+o4vb6nB2Dvea4LRVurtnU6vTHlDJLrnCHBfe+vrzQjlMPaME6ePBlOnoH+7rvvHnaBCCGEEEIIIeSYgY+kDpxFixaJcDKZxIYNG7BmzRp87WtfG4xyHRH3338/vvOd76ChoQGnnnoqVqxYgb/5m78Z6mIRQgghhBBChht8JHXg3HDDDb1+//3vfx+vvvrqERXoSPn5z3+ORYsW4f7778fHPvYx/PCHP8T555+PN954AxMmTBjSshFCCCGEEEKGF6NdJfUIXqDI5vzzz8fjjz8+mFkOmOXLl+Oqq67CP//zP2Pq1KlYsWIFxo8fjx/84AdDWi5CCCGEEELIMMT082+EcsSiNzb//d//jYqKisHMckAkEgmsX78et956q/h+3rx5WLduXa/HxONxxOPeS7iHVF8JIcMf2jchIxfaNyHkaOGgH3cYj0pJhobD2jDOmDFDiN4YY9DY2Ih9+/bh/vvvH7TCDZT9+/cjnU6jurpafF9dXY3GxsZej1m6dCm+9a1vZX1vXBfGcfOrmSK/Al6WaqqIzK2qlqWCmk+tL58SZZZqogr78qifaay8suo8EPWzfGqCOi6fWmw+VbosxTUnd1ql5mVCnrqYieQ3Dyfl9a+T7msWyaMImkflLW+/5FWH7OU8NlrB0G5PXYZ0jnR9kDX+8/WZVpk9EvVIi1z2baukGuvcWZamlfTylUur2FnkV8rsY4mxx4B/ACrIfdm/hZ5zjC31plQms3Kx69aX7dmk5fgQ/aDLk099dSCKigEdtvpXl12rwQ5EuTdfmwxkrsqHPjZhKV0G1bjNN5fmU4dV81reNU0XbyDKx4eUWweQP5DHvlNpwLx3Pq0QatuBHg8Wvk6p5ugWSzVMX8yLN+0d8mDdN7Yt6mlRKQLnveaw89H2o2zE6ejyAn0or9tjPZ+6qaPGleMqO7X7WPdl1vqe/9oqJ3lsJK+CPCDbLJ2QcQO5zhInVfN+llp5nmO1KrA956j+RVqpi9oq7nqdEvmqOL0u5LNLPY4t28k7TvON/8NVjD8W4DuMA+fTn/602DD6fD6MGTMGc+fOxcknnzxohTtctIKrMSanquvXv/513HjjjZlwW1sbxo8f/76WjxBydKB9EzJyoX0TQo4aVEkdOPX19YNcjMGhqqoKfr8/625iU1NT1l3HQ4TDYYTD4V7jCCHDG9o3ISMX2jch5GjhuD1/faUZqRzWc19+vx9NTU1Z3x84cAD+w33MYBAIhUKYOXMm1q5dK75fu3YtZs+ePUSlIoQQQgghhAxbKHozcEyOZ5Dj8ThCoVCvcUeLG2+8EZdddhlOP/10zJo1Cz/60Y+wY8cOfOlLXxrSchFCCCGEEEKGIXwktf/8+7//O4CedwT/4z/+A0VFRZm4dDqN559/fsjfYfzsZz+LAwcO4I477kBDQwOmTZuGX//615g4ceKQlosQQgghhBAy/BjtfhgHtGG89957AfTcYXzggQfE46ehUAiTJk3CAw88MLglPAyuvfZaXHvttUNdDEIIIYQQQshwhyqp/Wfbtm0AgLPOOgtPPPEEysvL35dCHVNoOeUByn5nMPnlyR1Lylr/QOFAvhcqpKuVFLQtdWy0qwIt75zPZYOW7LbLm889Qh/YstxZ5dFy1Foq2kZJpdtS4I6Ww8/nVkPVxbEEFJyEerxaS7DbbZQlj6/qErGEGbJkrfOMKf0Gtd0PfcnWJ5ScvChfbrlsPW5Evn1IYmcdmzexlVe+MSTiBmcyNskkzKF8rTIb1ReOrq89JvPNBapvjBqvQrXZn0eaHhB95WjPGfnaW88NdtkjUijEdHTKsO2iIZ87HgCO9RqCE5IS88Yeg3o+UmUQbkm0K4R8wyqfawo9zgfi0ka/4j8QOfg8c4xoB12eZB5XNH25KBJuao5AeSGf+xU9ri0b6NMVTj53IoNNLAb43quHHku2HSSUawV7DKp28HXJtKbLc1uRtZ7na4ssdzcq3urWLBcXeXC0+E/UcgPSHZNFUG5AjO06R9u3nW++NRmAA8stVVy6gchyw2CvOdptTr7xqz3s2PnmcZPSc2z/3IcAkPNuvjlQte1Arjf0GLPboc/rI9uthm4/G1VPXW+nIOoF1BxturpzZpv1appVvizrttvATejYYcNoF705rHcYn3322cEuByGEEEIIIYQce/Adxv5x44034tvf/jYKCwuF36PeWL58+REXjBBCCCGEEEKGnH68w8gNI4ANGzYg+d6jHa+99pp8pIoQQgghhBBCRiK8w9g/7MdQf//7378fZSGEEEIIIYSQY4rR/g5jH2+p986VV16J9vb2rO87Oztx5ZVXHnGhCCGEEEIIIWSksnv3blx66aWorKxEQUEBPvShD2H9+vWZeGMM6uvrUVdXh2g0irlz52Lz5s0ij3g8juuvvx5VVVUoLCzEhRdeiF27dg16WQ9L9Obhhx/G3XffjeLiYvF9d3c3/vM//xM/+clPBqVwxyT51M+0CqCdVqkHasUwoXaYVOpdQdVNcStePxpsKWv1qbJln78PxTDHVo/TSlpaIc6qm2MrtQF5lQaz1LtspbQ8qp49xbXqppXStDqbTT4V3Cz1szx9r5X48iloZvWZrSCmJeD6qx6K/CqOuu+z8rVVcFVcqv/PWIhxnaWKl1sBUo8hYQ9WWY0ZgAprHpxgEI6vZ0ybmHVurTrqKttL5bY9oQiq2ttJq7ClEGq0vWtVuzzKuHlVKnX5LHvKUn/VirpWOzjRqIhytFKirXaaVW+r7HoeKyyUYduG1DmyrCCfGKI9V/VlI2Le7eOnYXs8ZymWasViKy+t6Gz3d1+qw9axffWvXT4zsU5E+ZrbrPKoMa5VpQ+TLMVevYbY7afrfUhpN59y90CIJTI/h2u1TnstdgoKZJw95+vxmkd1WveNc1yNTNDc6n3WCqB6vbL7Q6uV22NJx8VkPX12+fWcouYcp9Cz8Sw1U0sFWShzAoBWV457CphOqbw+RFypY7q565m1Vljtm3XtZCuLumrO03NrXlVpfS1g5ePTKq725z7Knu+aJ1/afNctAMy4sZnPvoNS9RYpa5zosRnJfU2m1byz1P3tdSHP+p6lNi7S5VFvP9YZ5EdSm5ub8bGPfQxnnXUWfvOb32Ds2LF45513UFZWlkmzbNkyLF++HKtWrcKJJ56IO++8E+eeey62bt2a2YMtWrQIv/zlL7F69WpUVlbipptuwvz587F+/Xrh/vBIGdCGsa2tDcYYGGPQ3t6OiDXw0uk0fv3rX2Ps2LF5ciCEEEIIIYSQ4YPTD9GbPkVxLO655x6MHz8eDz30UOa7SZMmZT4bY7BixQrcdtttuOiiiwD03LCrrq7GY489hmuuuQatra148MEH8cgjj+Ccc84BADz66KMYP348nnnmGZx33nn9L1AfDOiR1LKyMlRUVMBxHJx44okoLy/P/FVVVeHKK6/El7/85UErHCGEEEIIIYQMKQY9d57z/Q1gw/jUU0/h9NNPxz/90z9h7NixmDFjBn784x9n4rdt24bGxkbMmzcv8104HMacOXOwbt06AMD69euRTCZFmrq6OkybNi2TZrAY0B3GZ599FsYY/O3f/i0ef/xxVFRUZOJCoRAmTpyIurq6PDkQQgghhBBCyPBhIHcY29raxPfhcBjhcFh89+677+IHP/gBbrzxRnzjG9/Ayy+/jK985SsIh8O4/PLL0djYCACorq4Wx1VXV2P79u0AgMbGRoRCIZSXl2elOXT8YDGgDeOcOXMA9Ox6x48fD1++d7oIIYQQQgghZLgzgHcYx48fL76+/fbbUV9fL75zXRenn346lixZAgCYMWMGNm/ejB/84Ae4/PLLM+m0G0NjTJ+uDfuTZqAclujNxIkTAQBdXV3YsWMHEgn5MvMHP/jBIy8ZIYQQQgghhAwxA7nDuHPnTpSUlGS+13cXAaC2thannHKK+G7q1Kl4/PHHAQA1NT3iWY2Njaitrc2kaWpqytx1rKmpQSKRQHNzs7jL2NTUhNmzZ/e/cv3gsDaM+/btwxe+8AX85je/6TU+nU+JapjghMNwfKGs77OUyGqtW8VqN+/u8W4HO0qty1UKnEJNNEt9So1Q+zz5FJCUcl+WCqmtZqoHs1Y31YpxNvsOyHxt5Tn1Y0I+pVGhxApIVbWsX0pUm1gqb6ZEqi8araoWtsJajC1mqbyltDKaDlvjXKuJtcrHEbIUBC2E6uSEWhm3v0WE3XZPDS1LNVFj5etoFUd9bCqPSm+e8ZallGafR6tp6jFkn1O1l30eu318rh/owpHjOF697HPp+mh13kpvQjaN+0SUsWzaVykfD4G1cACAKfLsy4krBcMDB+Wx1pyjVf/EuFJlzbJpS8XO7ZSNmKXyaCkjOloZsbxUlkHZv8jHtmlt351KYVGrEouMVN1s5UalxmgKrbbtVvOPmo+MpfKo5/YsdUOrDFlzlbYve87WqtL51sc8Kq6uVoZW/e2rqvTi9jTJbCZ684qvW9bT2decO191TlcrvuZVDs3+VTwTF1Jj6lC+rpp7DhOTTsG4OeZH24b0OmerfurxqJUf7flNjYdUuVIAtsL+DrX2q7CtaOqoMthj1KS0srGsb3rPXi+tGnP+UjkfCSVkrdra1d1r2XoOVHZZZNVbld3Va6I1trLmXaOVZK221rZmjUE32S3jdD658gSy6maXKUvNVF8LDBZWeV01V/m0WvU7ntsE9wPybpYb9uoW2LVfnkPPc3YfZqnyqv62bDqrTWzyKCYbMzg2PiQcek+xrzQASkpKxIaxNz72sY9h69at4rs333wzc1Nu8uTJqKmpwdq1azFjxgwAQCKRwHPPPYd77rkHADBz5kwEg0GsXbsWCxYsAAA0NDRg06ZNWLZs2cDq1weH9UzpokWL0NzcjJdeegnRaBRr1qzBww8/jClTpuCpp54a1AISQgghhBBCyFBx6A5jX3/95atf/SpeeuklLFmyBG+//TYee+wx/OhHP8qIhzqOg0WLFmHJkiV48sknsWnTJlxxxRUoKCjAJZdcAgAoLS3FVVddhZtuugm//e1vsWHDBlx66aWYPn16RjV1sDisO4y/+93v8D//8z/4yEc+Ap/Ph4kTJ+Lcc89FSUkJli5dik996lODWkhCCCGEEEIIGRIG2Q/jRz7yETz55JP4+te/jjvuuAOTJ0/GihUr8PnPfz6T5uabb0Z3dzeuvfZaNDc344wzzsDTTz+d8cEIAPfeey8CgQAWLFiA7u5unH322Vi1atWg+mAEDnPD2NnZmfG3WFFRgX379uHEE0/E9OnT8dprrw1qAQkhhBBCCCFkyBjkDSMAzJ8/H/Pnz88Z7zgO6uvrswRzbCKRCFauXImVK1cO7OQD5LAeST3ppJMyz91+6EMfwg9/+EPs3r0bDzzwgHgxkxBCCCGEEEKGM4P9SOpw47DuMC5atAgNDQ0AeqRizzvvPDz66KMIhUJ4+OGHB7WAhBBCCCGEEDJUOG7PX19pRiqHtWG0n6+dMWMG/vrXv+Ivf/kLJkyYgKqqqkErHCGEEEIIIYQMKe/DI6nDiX5vGG+88cZ+Z7p8+fLDKsyxhJlQA+MPw9cspd+dcvUUry1JnFJSwpZEsVFy6b7qsSLsNngS2E5EyuFrdxi29LpR0svuAGTObZl2nzonLPcNgJRXdpQUuVNYIMK2dL2Jy/IJ2e18sswAYMv5a5lm7e7Akop21DmTU8eJsPF7x4aaVP/GLInuEilj7etSkvxNnly1E5Ky6lkuDeKWlLV+EdmqW9fxZSIqUCNdBvh/t8E7R18uLuw+K5B1cVta5bF2/ysXC8LdgE+NRS2Pb7xjHS09rvNta/c+K/lu4XDWLtsg/XpnkkmYXpzaavl5B7JN3R27vThdH0vmPt0kpcz92s2G5VbDRNTYUVLcTsBzgZHleiKeR4YdCsf7Jque2qbtsO5jna0lT6/t3e32+thXJt1x6Hztc5oyOe6z3GNYbkGMamt7TkyrceVT5/RZLjmcqOpPLclvza2mW8r3Z9UtnbtfslwTWLhaxt4iy02FXm6sdvCp/uyc4M3RxW+pNULPG6ncbicc7ZYEudcbo92AWM9qZbkwOfS9SfT6/UCx7TvLZYw9n3QpNwz2PJnS7m6k+5F0h7dGapcHgX3SrYZbZMXreSMq1wrHteaDQrUGWS4lUtqdjVF9Ydl71lqhXRzZbkFcNbDsMaDdkOS55tHru69Y2jSK1HWDjXYfZLsBynON46sZI8KJifIGhmONyWCDXAOz+sVuXz23lllztGoDtyu33yd9vZY1D9v95MjyuNqlmzWO2z5QJOICMa+eRXuVC6A8c0xWefV1l3Y1ZmOPt6y5yr4WHhwbHxK4YewfGzZs6DsR1IUeIYQQQgghhAxjnPf++kozUun3hvHZZ599P8tBCCGEEEIIIcccfIeREEIIIYQQQkjv8JFUQgghhBBCCCE5GcEbwr7ghpEQQgghhBBCctAfP4v0wzgK8bV0wudLAQGlIJdP2VMpYAnlTK3A1dySM61W3ESxVMCyVe2yXrC1y6eVTpXCoq0eZysdAr2oY9nKp1qpMUvB1KqrX2k12mqx+jgtmGTVJUtFUyv72adR6pyhd5tUWutYpYTX8eHjMp8j+5Uy2oE2WQZbKU2p4LqVUunSDXt9Gjgg+8Vuo8JXd8g4Nd6MpUjrlEjVOaEkhx6lwAyqnr5SWT6p9qtU1Kx+0v0gzgHAFk3UysDQ6nFu7pnVWKqyTtJS5nP7r/CWl3QacNLZ3ys71Wq8tsKio5QRHatt3Li0EVfZolAl1sqDWsHQIksx2T6/tglH217uuctub10GPTdAK1xayqOmQ6oOiz7WZVfzmltuhbU9lUpFRVPppXVcqYSYjlpzqZoLkmHZRm0TvLKnorKvfWpoF+z3xkvxa3tkZB4lWV9b7jVEq4VmKdvac73u3zxpNQV7vPFoK0H3fKHnXUvNVNussg9bjTVrzVB9KMaRnhsOtUmeMToQfCUl8Pne6xPdLtb6ZcrU2mrXzygVX60Ias23WmVYr70+WyXywME8Je/jBoZVPr9SJzf62sSyN61Ym3UtYNmi0dcbtiq7aktfuxof9twVUTahVbPt8RLPr5zpjKn0ylCgVGXbLMXkQhmXKJdlSBZaKrMnyvk7FZF2UP6mp2wdeWO3iEOxpYKr2tKnrt/sOTFrnCjFV7G+KlvQyuv2WlSwV7afv8vKV68nJap/bYV5ZcM+NaZcu666fNZ5fAVKAddSvPe5CaABwxK+w0gIIYQQQgghpHf4DiMhhBBCCCGEkN7gI6mEEEIIIYQQQnqHdxgJIYQQQgghhPQG32EkhBBCCCGEENI7vMNICCGEEEIIIaQ3HGPgaIXnXtKMVLhhzEUi2SOp36kkyLUrANtthB4odlhJlzul0iWCkKZXrjyyBqAl723CsgudmHU/XMnhazcMCHryz25poYhKlUv5Zzdg1VOpsAc6lcuGbk/i2XewXcSZVi+c7RpDZWxL1VdXiqj4GCkNnSry8koUSen3cJt8RiD6wlbvuA8eL9Me9Moeq5KS3IUd8pzOQcvNhm7rhGyTQIcln6/cX9huFdxaWc90oSyDL2HJXqeVVHpA1tu1XAgED8pzOp15XKNoOXxLZj3L5UtESn3rMoh8tJy/LbOu3a9YEt1ugdcGbjoO7Mt5in5jjh8H4+8pu6/ZcgWhXOOYmJKf1y4mLHyWmxUnGc2ZDgDQYfVHV7c8p5I2tyXwTZbrHq9t/OVl8hxKdl+4DFD5CFczgJDET5equqjx4Yt5Y11LysN2sxFUcXouTXnjIe/8A8Cxxn68XPaJ7UIi0KJsTZXdXzsm87n5FBmXLpTzRsdBr426K8eLuKr1LfI8Vlv7VP8KNwXjq0WUG5J1EeVvU26StNskWx5fyff737Tc9Sh5/ixXUbYtppR0fpFcJ+x1LWud0jZt244aJ4ds3KTjwEYcMYkpNXADPW0QaFc2E/fmIadZrk8o8MZ6ulzaj8/I+T/g1HoB7VJEtb8ptMIl42R5OtT4sPs13/WGXnNU+wvXROn8/Wi7tEkVyzXHbj83qNds1Ub7Wr3zq2sKbf/pIuXewcLfKfusc5J37WKv0QAQsNrejcqxrdN2VXn92zFBnjOgporOWss9j6kTccYa9+G9yk2WXj+taz17LQMAJ6ncWNhrpHJRpF0WJaZ6c1BoV4ssgz2/a3vPslOrT7W7rTHlMql1bZflJslqE1Mg14z4cV6+qVRs2LrV4B1GQgghhBBCCCG9QpVUQgghhBBCCCG9QtEbQgghhBBCCCG9w0dSCSGEEEIIIYT0Bh9JJYQQQgghhBDSO7zDSHpjx8UT4Q9HEDkovw91yNEQ6PYeWA50yYeXQwcsdUOl8pcqUoqBlkCo61dqoTpsKQT64/KcgS5LAS4lVcq666SiWazcU8cyStDOH9f19MLhZql2mSiVdTEVnhJYsFgqdPljZZnPvva4iMtSebMU2bS6mFZGbJ1sKRjWynyCbTJtdfrEzOfwfqmC6ev0yhSrkmVvOlMphiXKMp/t9gGAQEyFOz01tFCzVBCzx4avW7ZtcE+LCO8921PmK2qQKmVOSp4zXua1SXqS6oeETCuUZJX6qj/pxfmVIq7us7SlzKqVgU1AjWP7lBE5ANsmeWOq3VKzc2OxQVFR7JhYhECwR7mwIOqNLV9cKb9plci4Unq1cKOWHfiUQWllOksdz2mXKomOVkIN5snXUkJ1C6UyI1RSocin1JXdQjk+HKveRqlduqof01a9/RGZry9s2a2ex7SaoKUsnA7Jc8YrZL6piMrLzsf12qFAq6Iq1dTSNz2Fw2RUqkinCqUiZKjVyyvUrhVVlfqhZYtOhVQejNd46pCRrY0izqdsRqhtKkViR40FcaRWnLaVEuNy3s1S4izyxpQJKzXTLJVMK06NKaPLYPWFG5L5pAp6Mkol/YNi313VIQSCPX1S0q4Vga1CF8s10la/9HXJ49LFat6u8I51kmqeUMqz9lrndKv21+1kqVJDK4lbtmiyrhNkWqG4q+cCNceniiyVdjUGY2O8evtVPf2qjfQYtTFqvKYLvPIlla35yqQ92WOpbbLsh2IrLrR9vyxfSqqQFhUdl/nsKtXWwkaZtmCXNVfkFv9GukjWuX2SLJ8b9MpX+fweebCyRVNVlvns+OV85Kh+Cb1lSY0qVVKhMK+Vv0uUQq6tQh7UA0XN9RFvLjN6+FnXoulw7vk7lRzG2w5j4Oj5spc0h8vSpUvxjW98AzfccANWrFjxXnYG3/rWt/CjH/0Izc3NOOOMM/D9738fp556aua4eDyOxYsX42c/+xm6u7tx9tln4/7778e4ceNynOnwyGMGhBBCCCGEEDK6OfRIal9/h8Mrr7yCH/3oR/jgBz8ovl+2bBmWL1+O++67D6+88gpqampw7rnnor3dcwm0aNEiPPnkk1i9ejVeeOEFdHR0YP78+Uhrdz9HCDeMhBBCCCGEEJIL08+/AdLR0YHPf/7z+PGPf4zycu9JNmMMVqxYgdtuuw0XXXQRpk2bhocffhhdXV147LHHAACtra148MEH8b3vfQ/nnHMOZsyYgUcffRSvv/46nnnmmSOssIQbRkIIIYQQQgjJwSG3Gn39AUBbW5v4i+tXASy+/OUv41Of+hTOOecc8f22bdvQ2NiIefPmZb4Lh8OYM2cO1q1bBwBYv349ksmkSFNXV4dp06Zl0gwW3DASQgghhBBCSA4GsmEcP348SktLM39Lly7tNc/Vq1fjtdde6zW+sbHnHffq6mrxfXV1dSausbERoVBI3JnUaQaLYfz2KSGEEEIIIYS8zxjTt6jNe/E7d+5ESYknEhQOZwtC7dy5EzfccAOefvppRCKRrPhDaMEjY0zWd9nF6DvNQOEdRkIIIYQQQgjJwUBEb0pKSsRfbxvG9evXo6mpCTNnzkQgEEAgEMBzzz2Hf//3f0cgEMjcWdR3CpuamjJxNTU1SCQSaG5uzplmsOAdxhzEq134Ii78cb2nljv2ZIEnBx2MyrQJS77Yl1QS8upHCiFVr6Xg1bG2+45gi5TkdyOeVHRMudFIKdcF2rWCjZZETxZ54XipctGQ29MAEiVSLjtZ4OXjBpRstBJ0CnV65Ys2KXcTnVLeO9jlnSe8RZa9aLc81lgy1+lCKa0twurHmXiZDNu60kUNMiqhXA+0TrLGSYeUDI8e8Cruj8u2TRaWinC41ZKuVq4H0kUiKFx9FO1S8t2qf10rLy2X7VpuP9wS5UJFSbvbrjwSJdq1hAza7ZtSquBx6+mKwBRPDSzdJd2gHC7JYp9XZ8f7ZU/LzfvSuW1EuzHx2a4UUtreZThZ5E29voTsuNBB2Vf+lk4voN2YWNL+2lWBLyENyq6bls6HNCdxnkBTm0orE7vF3jwTq5OS7bAk+QPt0g4DrbKePstlSaSxU8Qli6UdJMZa84gaZq7lXiCh3CYU75RLXqDVG08VW6TLjWSptFNfwqu37t90VOZry8q7NfKX41Cr5T6ktkLE+fe3i7DtcscUyLrYbkh6Elhl0v1r9X3yuLGqrHLc+GPeuHHVHJMoVm4erPNo10w+1Ub2vKLnjURxTzidUPkfJqmIAxPqybNrnBqTVjv5EnnsXZm+T7mUsMOOcr/TOVGeMx3ywuEWaZdhZe9OzOtXPW8I1z0qTrtk8lnjQ7e3nudCu6yLTTV2UmO8dTo2Vo7lhHUHBQDCBzwXDgHlNssolyz+bsu1kBorncfJdTBWbrk7UZ48Dkz35pjSwhoRF2mS10cFb3puN8L71IKplytrPtU2YruB0m0b3Sft0raLdJVsL79yqSTPL+cUp7AgR0pkjYVEnTdfJspzz2M9x3ofD7m38U6qxo2b2z6SRV4b6XwS1vVjOjGM71MNsh/Gs88+G6+//rr47gtf+AJOPvlk3HLLLTj++ONRU1ODtWvXYsaMGQCARCKB5557Dvfccw8AYObMmQgGg1i7di0WLFgAAGhoaMCmTZuwbNmy/hemHwybnps0aRIcxxF/t956q0izY8cOXHDBBSgsLERVVRW+8pWvIKF80BBCCCGEEEJIf3Fc06+//lJcXIxp06aJv8LCQlRWVmLatGlwHAeLFi3CkiVL8OSTT2LTpk244oorUFBQgEsuuQQAUFpaiquuugo33XQTfvvb32LDhg249NJLMX369CwRnSNlWN1hvOOOO3D11VdnwkVF3i9E6XQan/rUpzBmzBi88MILOHDgABYuXAhjDFauXDkUxSWEEEIIIYQMc/rjZ/Fw/TDm4uabb0Z3dzeuvfZaNDc344wzzsDTTz+N4mLvzv+9996LQCCABQsWoLu7G2effTZWrVoFv39wntg4xLDaMBYXF6OmpqbXuKeffhpvvPEGdu7cibq6OgDA9773PVxxxRW46667xMunhBBCCCGEENIvBvmR1N74/e9/L8KO46C+vh719fU5j4lEIli5cuX7fnNs2DySCgD33HMPKisr8aEPfQh33XWXeNz0xRdfxLRp0zKbRQA477zzEI/HsX79+qEoLiGEEEIIIWSYMxDRm5HIsLnDeMMNN+DDH/4wysvL8fLLL+PrX/86tm3bhv/4j/8A0KMipBWBysvLEQqF8voiicfjwqFmW1tbzrSEkOEF7ZuQkQvtmxBy1HBNz19faUYoQ7phrK+vx7e+9a28aV555RWcfvrp+OpXv5r57oMf/CDKy8vxj//4j5m7jkC2rxKgb18kS5cu7bUMRe/64A/7UPauUqJT6mK2GlSySN6wtVU/sxTj1L1dW/nUUSJWWnGq8zhP9SpQrlT/rHwCHVKNLdgm62KrvPliUmHNVlvtKYN3nlShfC66s0YpiNlCbmqE+S3hNJ9SV81SPrXC3WOVmqkMomi3V7foXqmk6WuTYSdhndgn27Z7sifPqVVkK9+Q7dddaamCReQY0/0dbvHCrlJQbZ/g5eOkZVsGO2Q+RXu8sms103SVbBRb2db4pepcKM9Y0KpvvriXNkt5U6kDRhotJU6l8hYbIxX20iHvPHrMx5u9fmn1ec/quzHV8X2Qy76dtGefwXZblVCm032VKPX6x1b8BaTyrKvGfbBLZhw5aLWjmp9iNVIy1lfptZtWuNMqijZpny6f16aBZqlCinjuOTI+UToE7lK2mCzM/aCKbUOhkFJfLJCNJFRmVb0iB6R4WXSvNXepMenr8tK6BVIhMEsBssRr264amVarWdoYNS7ipbIuycLcYzuy31JF3qc2OCm13hR65XPD8hz+uJpArfdV3IhSWEx65ww1SiVWpJXqbYE3V7iFSmExLtvEVofVCqpJtW7ZYhB6vuwe855Kap5x2Bu57DtR7MAf7skr0iLj/DFrjgrK83VVWetcJH9Z7PqE2pXqaJtSQrXmSVt1GgASSo3XKfbC+jrBVuf0qeHpS8g5PtzY4eUZU4m1Su14z8bjZbnt21XTrx7bbsArg78vdU57flIX2YW75Jpd/FdrblD2boJe+dIF+S9pu0+o9NIq1Xhb5VOTVtOIa7VfuE3WK7q7Q4R9ez0FWhNTKt9jKkUwUaUUfe18Unn89CkFX1uBOnhAzvVuVI6TlDXe9PqXDqu1qSL3NU/AsqtUVNmV9SZZenCEzocEx2SP+d7SjFSG9JHU6667Dlu2bMn7N23atF6PPfPMMwEAb7/9NoAeXyT6TmJzczOSyWReXyRf//rX0dramvnbuXPnINWOEDLU0L4JGbnQvgkhRw1j+vc3QhnSO4xVVVWoqqo6rGM3bNgAAKitrQUAzJo1C3fddRcaGhoy3z399NMIh8OYOXNmznzC4XCvDjUJIcMf2jchIxfaNyHkaDEUKqnHEsPiHcYXX3wRL730Es466yyUlpbilVdewVe/+lVceOGFmDBhAgBg3rx5OOWUU3DZZZfhO9/5Dg4ePIjFixfj6quvpkIqIYQQQggh5PA4CiqpxzLDYsMYDofx85//HN/61rcQj8cxceJEXH311bj55pszafx+P371q1/h2muvxcc+9jFEo1Fccskl+O53vzuEJSeEEEIIIYQMZ5y0gdPHLUQnPXJ3jMNiw/jhD38YL730Up/pJkyYgP/93/89CiUihBBCCCGEjAYcY/IKzR1KM1IZFhtGQgghhBBCCBkS+Egq6Y2ytxMIBHwItknpcl9SSbh3WBrBShraBCyZZqVHawKy6U3Qb8X5VFr1Ur/xdH2Dncp1RrMnp+zvkPrFWmI+bUmmJ8tzSzYDQNxy39FdpeXSkTPcNUbG2W41inaq9lJS311jvHPqX23sfPrCqHp3TinzPteqfrCKoCXNY1IBG7BVwZXcuKvk2k3AK39AeTSI7PM+azcaWtbalq7XbkjCrWpsWjLmWjK8u0rW25YG93fJfLqrLdcDY9XYVG0UafbKH9kvbUfLjRvLDYCWQw92eHGhDkvqPuniXRw5/phB4L1HR4IdnisDf3OXLKNyDZIo9d6H7q6UfZMsRk58aeVGoMKqU5FMq8dSgSX+HFDuOWxb0/1fsF3Ju3d5RpOqlCe13SMAQNIaZ20TZVy3sml7bovsl1HBJu+zq921KBtJFOR2GRBqUS4kLPcYRrnGsec5MQcDSBbLxu2ssdxClKj5R431UJvX9tl2KYtn92Fho+yzzuM8ezITakVc8bty/Pk7vT4L7G2VJ0moNgl79fYZtWa4ud3mxCZItympAq/NfOrxKn9Mzjn2HONPaDcUuUXYQ0mZ7yE3JE6it9QDJ9Ru4I8fsm85mCI7vXZMl0oXNrEyz61BlxJXT8ukYjwHupWLgU5Z95TlLSGtllp7/geAcKvlQkKtrX6rfQoaZGOF32wQYVPuDcqUctcQq5JrYleV1+ed4+Q57bEcapFxkYMyHOi2y677WNqiPbbCB6U7GTck05qgl1aZu3CrY5QroYPTpGHa67J2fZQqkOG0ZUKO8nZjz08hOc2ie5ycW92JXhmKtjbLOLW+OJaLm0CHMgZ1DeQkLHdQ2tVI1Ovf2LhSEafdidj95O+WA067h7HbN6DdzljFO2R7h0hYLuecAVy7HXP0RwWVdxgJIYQQQgghZPThuCbrh5De0oxUuGEkhBBCCCGEkBw4bvZd/97SjFS4YSSEEEIIIYSQXPCRVEIIIYQQQgghvULRG0IIIYQQQgghvUG3GqRXotsOIuALZ31vCtR3aVsStFtEOSlLWksrXEWVVJrPUgXzSxWrQItW8vTUqZx2KbnpHrRUuCxFRwBwHBn2WcqsTko+eJ0okypqvpRX/qRSE+uYIiXEnLhX/vLNsi5Fe7y0WoE2HZHKaIkSS8GwWKnQKTUvn6W6lyiTfRQvV/lail2ddZBxZbkfQA+2KzVGK9tUsZJ1DKhJI+LlO+FDTSLqrhOezHz+RctMEfffb8wQ4fAvvboF90gVNceVZTfWOLLVVQHADcj2bDnBa2vjk+OtsMHLt2qjHG/+NjXmO6ywGuOpCqnUZyuS+ve1yLK3tmc+RyrKvDzcwZFYK97egYC/Zyw6XVY7KoViYcMASv/kyQIW7pKGEK/wbEa3dyqqFEKt8epTKom2rQFAwV6vfP4Opdrc7bWH0y3HgymSso6pKk+9TysxZ6n6Wmp4hY1yXBXtluWzbTHQLe0gVWipK1fKNomXKqXeVi+f6G6pFqrnp3iVV7f2cVL5NGmJFGolRK2+Gm7x6lKwT55D20jaOo1WstUKmvEq1/os8yl5x2t7W3kVAHxxpXxq1zuo1gG1FtlK21pKMjbWKqCamrKUUO25tFjm0zZBKeaO9T7Hx6rGjcq6BPZ69lH+hkw65k8980YqJZW9D5fyLR0IBHpsN0v5OOzVwaeUxMs3e3Uo3inbN1Yp10R7TUoUyT7W7zHZSpq2kigARA7KdgtYyuf64tO2A3+XbF+3Wqrd2gqcrrJ3PcdED1q2p5RP/ZYSri8hj0tF1Tir8FmflX23yEaJ2POarotSSW07wZtru8YodWrL3n3KfIJakfygNe+qcZ9UKr/dlt3Gxij18kKvLh2T5HGFO3S9vc/RRjVRKFVXf8xWPlXXVTFZOWPNB/EJZbJ8Qatf/Hoe0wruXrh9nCx7V40sbnycV4ayse0irmWf1xFlr0pbqXnZs7NUKoatGKa4Bkj3sSGk6A0hhBBCCCGEjD54h5EQQgghhBBCSO8Y9EP05qiUZEjghpEQQgghhBBCckGVVEIIIYQQQgghveGkDZw+biE6fb3jOIzhhpEQQgghhBBCcjHK7zD6+k5CCCGEEEIIIaOUQxvGvv76ydKlS/GRj3wExcXFGDt2LD7zmc9g61apIWuMQX19Perq6hCNRjF37lxs3rxZpInH47j++utRVVWFwsJCXHjhhdi1a9egVNmGdxhz0HraWASCEZRsbRXfOwdkWLjACEgpaDFw0kpyPK10ty1XGXCUC4QCKVGcKvLC/kIp/e2MLfNOoaS0kyXK3USZJS+ubqPbsv8A4LfktCs3S3nnmj/KsL/bk4NOF0j9eWNJPDtKfjjUEs8Z1rL6RsnGJ8u9utnuOAAgVi7Txi318YCW3T7gyxkX6lSy+1ZdtBuFRLE8tvNkr42a2mXkJU//v8znsj/Jso/bKaW1A5ZbhXiV7M90WNbT2ENTuSEJdsp8Iy1eXYJt6pztXj/4uqTrBqTUuPZb7RCTaQM7pLy9kBQPyTGenjox89mWVE8nYsA2HDFtxxchEOxx+1HQ6JUz0KFcUyhJcttVibBZAEFLDt/+DEg3FTps1M92tow9AIQa2ryAbm97jlE2oWXZYc0jul7pqBy/6YgVr9Y/7RbAJlksx69tI/64chGgq2IVobtGys/rNkqHvHyzXFxYQ8moKVnjs5oouk/PY6qA1nzlhmXG3WPl+I01eQVOyyjRDrpebSdJ10fBDm8shPfL+dGvbNHXbE1Yyh1Mge0+Qsu+J2Q+6eqyzOdYeZGIi5eJIFIFXl6BFtkmoR0yHLXcx0QPyPKlCgLvFXtwLklaTiqCP/Sefe+XY8ln2ZeeM21XKrpvjDQZBDssFw3K1Fw17mw3G9p+og1qXrRtOs/Fp3Cjguz13S5/vFy2azqsKmMRapPzj5PKPV4d7aLFaoeU8hxm2ywAdI/1yusGZdmTUe06wwsn1dqaLPEK4STVnKyaNhDz0gbb1Rq4X6Yt2Ge53xor2y9R6rV9WtXTVfYes643mk6XrqUiLbIBi3Zaa22nciHVqVwNWZ9Dep2yXKr42qXrGBORE2b7iWWZz/FSecpkqbruSnvnaX23TMRFrTlP1yte4Z0zlVTz6nBikO8wPvfcc/jyl7+Mj3zkI0ilUrjtttswb948vPHGGygs7Bkry5Ytw/Lly7Fq1SqceOKJuPPOO3Huuedi69atKC7uMYZFixbhl7/8JVavXo3KykrcdNNNmD9/PtavXw+/v49FcABww0gIIYQQQgghORjsdxjXrFkjwg899BDGjh2L9evX4xOf+ASMMVixYgVuu+02XHTRRQCAhx9+GNXV1XjsscdwzTXXoLW1FQ8++CAeeeQRnHPOOQCARx99FOPHj8czzzyD8847b4C1zA0fSSWEEEIIIYSQXAzyI6ma1taeJxgrKioAANu2bUNjYyPmzZuXSRMOhzFnzhysW7cOALB+/Xokk0mRpq6uDtOmTcukGSx4h5EQQgghhBBCcuGa7Oewe0sDoK2tTXwdDocRDod7OwJAz7uKN954Iz7+8Y9j2rRpAIDGxkYAQHV1tUhbXV2N7du3Z9KEQiGUl5dnpTl0/GDBO4yEEEIIIYQQkosB3GEcP348SktLM39Lly7Nm/V1112HP//5z/jZz36WFecovQRjTNZ32UXtO81A4R1GQgghhBBCCMmFcQHX7TsNgJ07d6KkxBMxy3d38frrr8dTTz2F559/HuPGjct8X1NTA6DnLmJtbW3m+6ampsxdx5qaGiQSCTQ3N4u7jE1NTZg9e3b/69YPuGHMgT/uwu+6cLri+RNq1cKcGSqlorCU0jIF3mAyKq1WCA02d3tplTIiLGVUoegIwJeQZY00W6p/WmVLqzpa6nGOSntI4S6Tl6Ug6CRl2X2x3O3lhrS0nKWEWCjrki6QaWPlXjheohQglZ06ljiaVlhMWN2iFcM6HdWeVj4+NUxCHTJc9ivv2KLtsnxOwnt0ITFWqqh1Vctx0j7Oa2utxKeV+mxFOP0wgd8n+8VWbvTHZEZO3FKP1Oq+MVXxiDWOC9UY12PVHkdapTfulUGoCiYP//0Aceq4gf+9R0d8ydwLgLY9+4V2o9vCkuR0lYKhVgT2J736aZvwxaVap0ArMVs2opVP3ahSTQxa7a8VipulUmao1bK9gJZGlEF7rnASMl/Hmhq0ErPGVqjU74EElEJxwR6vvGV/6hZxxm6TkJybTESpRUYtewqqOUYpoQbbLAVDpfQXVeUNN9tjQTaYrYKrlVidtFao9MKOUh3WKr0IW5NZUNXbikuVSlnHWKW006Q11+o5pmi3GseWYrFWBg6osD2v+DtVXd6rpj/dx3rbT3wpb3rR6pxpyzazni6zk+r21ePeaht/TGYU6c6tNOpTc4qteq7PY1QZ7HnEDWlVbF1AL210v5xTstZ7O6zaRLSRGudZSueWwmqoXeaj+yFlKaHq9itsVErdlqq3UXYq6qLaS6uX2+t9qlDZd4eyRaubglnK0JZqq1oGQq16rvc+a/V5rV5uz0Hd4+UFSKi0QIQDe5q9gOoXW50+ViuvKRJFap6z+qVoj8yneJeau2LesXo+D1oK4/Z4BwDHKp8/lWd9O9ZxDbIMpNc0QElJidgw9oYxBtdffz2efPJJ/P73v8fkyZNF/OTJk1FTU4O1a9dixowZAIBEIoHnnnsO99xzDwBg5syZCAaDWLt2LRYsWAAAaGhowKZNm7Bs2bLDqGRuuGEkhBBCCCGEkFwYN3MHMW+afvLlL38Zjz32GP7nf/4HxcXFmXcOS0tLEY1G4TgOFi1ahCVLlmDKlCmYMmUKlixZgoKCAlxyySWZtFdddRVuuukmVFZWoqKiAosXL8b06dMzqqmDBTeMhBBCCCGEEJKLQfbD+IMf/AAAMHfuXPH9Qw89hCuuuAIAcPPNN6O7uxvXXnstmpubccYZZ+Dpp5/O+GAEgHvvvReBQAALFixAd3c3zj77bKxatWpQfTAC3DASQgghhBBCSG4G8EhqfzD92Fw6joP6+nrU19fnTBOJRLBy5UqsXLmy3+c+HLhhJIQQQgghhJBcuAaZF67zphmZcMNICCGEEEIIIbkY5EdShxvcMBJCCCGEEEJILlwXfd9h7L/ozXCDG8YcJIv9cEN+uMVSgtynB0PKkn/WMvu2BH5U5mOU7L4IazlvpdvsdMa8zx2dIs5tt/w5dEu5ef0CrGP5hXGCyr9EnkHvFEmZZhRKuWfpIiS341CnD5l9Y8n5O0oeX8t5Ry0Z52CHko2OaFl1W4Zbl8n7HFBS3/64chFiy+Nr1wgJlbbbk5L2aVctXV4/hWNScjq0R/vOQE50e7qWlL52J6DdWDh2f6tfyEzEk313tSR3WMpG25LnWuZd95lov67cUtvG1/vnIyEdceC8Nw5stzB+7ZoioMeSF05Flay9dayrmjvLDqym0PLkPtUUPluSX40rW24+0CkP9HXKceZvtuaGlPLBogl4FTAROTe4hdJdR7LUC+s2sWXibRl9QNYLkPXWsv+JEmkHiVKvfIFuObf6Y5YrCj3OtVsAK96fljZs9DRc4tXTHgdAdr3TYXss5K53qF3WS7uisMeNLyndL/hVf7tlXl5pbe92OlUePa/ZYd1HWXL51pqn7dvRS4gdr9e4Q2UaJEfTttucrFeObG8+yuWJ7QJF27DGHh8mKuP0eLXXlax20cWz4vOtQVlrjAqL/tBuapRXEzvedjUDAMkiry56nKek6SFeao1X7eapS4bt8qWUPcUqZdhJe3NQ1rxhu7dK6jlFtV+X5ZZE2UH3GDnPWacU9gwAKeuSJ6kuh5JFMm3Qci8SbpVp42WyrW0XUgWN0r61+7LE1LGZzyaQ+xonax1Wns1C7blt2J5Le8LpnGmFy6ksty32Io7hC+8wEkIIIYQQQgjplXQ/3GrwDiMhhBBCCCGEjD6McWH62DD2FT+c4YaREEIIIYQQQnJhTN8qqHwklRBCCCGEEEJGIaYffhi5YSSEEEIIIYSQUUg6na0apDF9xA9juGHMQdtEB/6wg1S4THwfiJeKsK2kNRBFUEf/CGFyx+nxaasq+hJK1coKa4UrX0IpeSZtNcG+pNss1S2/UodUypVCBU6rElq3843+JUYp5NnqXkapVWapvnXZapH9/4VHK4jBZ6vk5a+n3d/JUqUkqVTLjOPJyfnSxfKUQm1V9VlKKd/ZYdVe+px2XbJUy1S9bVVKE9Rlt06ZZ9zqeK0ymUXUU9/zR5RqsFW+rjFew6cTgyOTmijxIR3qySttKQQ7RvZjVh2c3HGibfoYgvahOh89zly7aVTfpAq9KdwNK2XGEqlmKhRCB/IjqLZhdaw9foNKwdAEvLhApxpX2kbsMaiHckfueUTjhnOPkay2zjNnu0qg2FbQzFa9za3cGOxSNm0pXQaUunLWOtFtzdFavTikCmjNBz6lrG3bk78P5Vj7kau+lE/tOUePv3RQzZ9WWictFV/T7/VZKukHNuCIiVX64A/lGAd5ljq7fn2qvuaJy1rD7XyzFKplWnvsZCmJW8POVfVzZZNmKYDnQ5RBndNek7RCaaBLniTc6oVVF+e1NSTy27dQXM2z5mSh1khb7dQo88k312u11ZCldhrdLw/zK2XbgNV+ge78auqOZbdZ86O+BrIk040eU8ncSvADQc+lqUKv0bKucaz2zF7TrHGRGMjic2xhXBemD5ljvsNICCGEEEIIIaMRPpJKCCGEEEIIIaRXXNPHLW1ww0gIIYQQQgghoxGTdmH6eIeRj6QSQgghhBBCyGjEuMj7EnQmzciEG0ZCCCGEEEIIyYFxDUwfj6RmiTmOILhhVBzq7HQ81vM/IeMdpfBki1MdLZVU11IQ0+pdxgqblFbcVApdqcNUSTWDo5Ka9ax3PpVUqHPmVagcJJVUfU6tkurabaJUR1XYDvq06q2tjJbVZwNQSdVyaL7c5ctSSbXrgtxlH1SVVDubVG5Vx7Sl7ptO9Njl4U7KGft+Lx9A2rSu3/umkmrH51MEhJw7tEqhbf8+Pcek9Jzz/qikCjtV48oeS/YY68lWhe0x2MfYcYSSp4rLU7cs9T4394lcrQhq1SXruDwqqSap+8zKONWHSmoqj0qqnodNnn7Q85x9jiNRSbXbxJHlSev50yqfrmfad0gldfDtO4v3QSU1K588Kqna3geikipsvK8mGiSVVDHn6XVO27QVTuvzZ31hH6jDg6SSqrO1hqS+EWRU+cSlSr62TKp8lL0jj73nW9+z1mFlT/b1Sda1iX1tcAQqqfmua7KucayqZK+b1rg4QhsfSlIm3ucdxJQeECMIxwzHXnsf2bVrF8aPHz/UxSCE5GHnzp0YN27cgI+jfRNy7EP7JmRkc7g2PhTEYjFMnjwZjY2N/UpfU1ODbdu2IRKJ9J14GMENo8J1XWzduhWnnHIKdu7ciZKSkqEu0pDQ1taG8ePHsw1GcRsci/U3xqC9vR11dXXw+Qbuk9F1XezZswfGGEyYMOGYqtvR5Fjs26PNaG+DY7H+tO/B41js36PJaK8/cGy2wZHa+FARi8WQSCT6TgggFAqNuM0iwEdSs/D5fDjuuOMAACUlJceMkQ0VbAO2wbFW/9LS0sM+1ufzYdy4cWhrawNw7NXtaDPa6w+wDY61+tO+B5fR3gajvf7AsdcGR2LjQ0UkEhmRm8CBMHy294QQQgghhBBCjircMBJCCCGEEEII6RVuGHshHA7j9ttvRzgcHuqiDBlsA7bBSK7/SK5bfxjt9QfYBiO5/iO5bv1ltLfBaK8/wDYggwtFbwghhBBCCCGE9ArvMBJCCCGEEEII6RVuGAkhhBBCCCGE9Ao3jIQQQgghhBBCeoUbxl64//77MXnyZEQiEcycORP/93//N9RFGhSef/55XHDBBairq4PjOPjFL34h4o0xqK+vR11dHaLRKObOnYvNmzeLNPF4HNdffz2qqqpQWFiICy+8ELt27TqKtTh8li5dio985CMoLi7G2LFj8ZnPfAZbt24VaUZ6G/zgBz/ABz/4wYxfplmzZuE3v/lNJn6k1x8YufYN0MZHu43TvnsYqTZO+x7d9g3QxskQYohg9erVJhgMmh//+MfmjTfeMDfccIMpLCw027dvH+qiHTG//vWvzW233WYef/xxA8A8+eSTIv7uu+82xcXF5vHHHzevv/66+exnP2tqa2tNW1tbJs2XvvQlc9xxx5m1a9ea1157zZx11lnmtNNOM6lU6ijXZuCcd9555qGHHjKbNm0yGzduNJ/61KfMhAkTTEdHRybNSG+Dp556yvzqV78yW7duNVu3bjXf+MY3TDAYNJs2bTLGjPz6j2T7NoY2PtptfLTbtzEj28Zp36Pbvo2hjZOhgxtGxUc/+lHzpS99SXx38sknm1tvvXWISvT+oBcb13VNTU2NufvuuzPfxWIxU1paah544AFjjDEtLS0mGAya1atXZ9Ls3r3b+Hw+s2bNmqNW9sGiqanJADDPPfecMWZ0toExxpSXl5v/+I//GBX1Hy32bQxt3BjauDGjy76NGT02TvumfR9itNk4GRr4SKpFIpHA+vXrMW/ePPH9vHnzsG7duiEq1dFh27ZtaGxsFHUPh8OYM2dOpu7r169HMpkUaerq6jBt2rRh2T6tra0AgIqKCgCjrw3S6TRWr16Nzs5OzJo1a8TXfzTbNzD6xjcwum18tNk3MLptfDT0r2Y02zcwOm2cDB3cMFrs378f6XQa1dXV4vvq6mo0NjYOUamODofql6/ujY2NCIVCKC8vz5lmuGCMwY033oiPf/zjmDZtGoDR0wavv/46ioqKEA6H8aUvfQlPPvkkTjnllBFf/9Fs38DoGd+HGK02PlrtGxjdNj4a+tdmtNo3MLptnAwdgaEuwLGI4zgibIzJ+m6kcjh1H47tc9111+HPf/4zXnjhhay4kd4GJ510EjZu3IiWlhY8/vjjWLhwIZ577rlM/Eiv/2i2b2Dk9+8hRquNj3b7Bka3jY+G/gVGr30DtHEyNPAOo0VVVRX8fn/WryxNTU1Zv9iMNGpqagAgb91ramqQSCTQ3NycM81w4Prrr8dTTz2FZ599FuPGjct8P1raIBQK4QMf+ABOP/10LF26FKeddhr+7d/+bcTXfzTbNzB6xjcwum18tNo3MLptfDT07yFGs30Do9vGydDBDaNFKBTCzJkzsXbtWvH92rVrMXv27CEq1dFh8uTJqKmpEXVPJBJ47rnnMnWfOXMmgsGgSNPQ0IBNmzYNi/YxxuC6667DE088gd/97neYPHmyiB8NbdAbxhjE4/ERX//RbN/A6BjftPFsRot9A6PbxkdD/9K+e2c02TgZQo6Gss5w4pAk94MPPmjeeOMNs2jRIlNYWGj++te/DnXRjpj29nazYcMGs2HDBgPALF++3GzYsCEjN3733Xeb0tJS88QTT5jXX3/dXHzxxb3KMY8bN84888wz5rXXXjN/+7d/O2zkmP/f//t/prS01Pz+9783DQ0Nmb+urq5MmpHeBl//+tfN888/b7Zt22b+/Oc/m2984xvG5/OZp59+2hgz8us/ku3bGNr4aLfx0W7fxoxsG6d9j277NoY2ToYObhh74fvf/76ZOHGiCYVC5sMf/nBGsnm48+yzzxoAWX8LFy40xvRIUt9+++2mpqbGhMNh84lPfMK8/vrrIo/u7m5z3XXXmYqKChONRs38+fPNjh07hqA2A6e3ugMwDz30UCbNSG+DK6+8MjO2x4wZY84+++zMQmPMyK+/MSPXvo2hjY92G6d99zBSbZz2Pbrt2xjaOBk6HGOMeX/vYRJCCCGEEEIIGY7wHUZCCCGEEEIIIb3CDSMhhBBCCCGEkF7hhpEQQgghhBBCSK9ww0gIIYQQQgghpFe4YSSEEEIIIYQQ0ivcMBJCCCGEEEII6RVuGAkhhBBCCCGE9Ao3jIQQQgghhBBCeoUbRvK+M3fuXCxatGjEnPOKK67AZz7zmfclb0KGI7RxQkYutG9CSGCoC0DI+8ETTzyBYDCYCU+aNAmLFi066oseIeT9gTZOyMiF9k3IsQU3jGREUlFRMdRFIIS8j9DGCRm50L4JObbgI6nkqNLc3IzLL78c5eXlKCgowPnnn4+33norE79q1SqUlZXh//v//j9MnToVRUVF+OQnP4mGhoZMmlQqha985SsoKytDZWUlbrnlFixcuFA8YmI/zjJ37lxs374dX/3qV+E4DhzHAQDU19fjQx/6kCjfihUrMGnSpEw4nU7jxhtvzJzr5ptvhjFGHGOMwbJly3D88ccjGo3itNNOw3//938PToMRMsygjRMycqF9EzI64YaRHFWuuOIKvPrqq3jqqafw4osvwhiDv/u7v0Mymcyk6erqwne/+1088sgjeP7557Fjxw4sXrw4E3/PPffgpz/9KR566CH84Q9/QFtbG37xi1/kPOcTTzyBcePG4Y477kBDQ4NYuPrie9/7Hn7yk5/gwQcfxAsvvICDBw/iySefFGm++c1v4qGHHsIPfvADbN68GV/96ldx6aWX4rnnnut/wxAyQqCNEzJyoX0TMkoxhLzPzJkzx9xwww3mzTffNADMH/7wh0zc/v37TTQaNf/1X/9ljDHmoYceMgDM22+/nUnz/e9/31RXV2fC1dXV5jvf+U4mnEqlzIQJE8ynP/3prHMeYuLEiebee+8V5br99tvNaaedJr679957zcSJEzPh2tpac/fdd2fCyWTSjBs3LnOujo4OE4lEzLp160Q+V111lbn44ovztgshIwXaOCEjF9o3IYTvMJKjxpYtWxAIBHDGGWdkvqusrMRJJ52ELVu2ZL4rKCjACSeckAnX1taiqakJANDa2oq9e/fiox/9aCbe7/dj5syZcF13UMvb2tqKhoYGzJo1K/NdIBDA6aefnnmk5Y033kAsFsO5554rjk0kEpgxY8agloeQYx3aOCEjF9o3IaMXbhjJUcOo9wbs7w+9kwBAKKMBgOM4Wcfa6fPlnQ+fz5d1nP1YTX84tMD96le/wnHHHSfiwuHwgMtEyHCGNk7IyIX2Tcjohe8wkqPGKaecglQqhT/+8Y+Z7w4cOIA333wTU6dO7VcepaWlqK6uxssvv5z5Lp1OY8OGDXmPC4VCSKfT4rsxY8agsbFRLDgbN24U56qtrcVLL72U+S6VSmH9+vWiTuFwGDt27MAHPvAB8Td+/Ph+1YmQkQJtnJCRC+2bkNEL7zCSo8aUKVPw6U9/GldffTV++MMfori4GLfeeiuOO+44fPrTn+53Ptdffz2WLl2KD3zgAzj55JOxcuVKNDc3Z/1iaTNp0iQ8//zz+NznPodwOIyqqirMnTsX+/btw7Jly/CP//iPWLNmDX7zm9+gpKQkc9wNN9yAu+++G1OmTMHUqVOxfPlytLS0ZOKLi4uxePFifPWrX4Xruvj4xz+OtrY2rFu3DkVFRVi4cOFhtRUhwxHaOCEjF9o3IaMX3mEkR5WHHnoIM2fOxPz58zFr1iwYY/DrX/866xGWfNxyyy24+OKLcfnll2PWrFkoKirCeeedh0gkkvOYO+64A3/9619xwgknYMyYMQCAqVOn4v7778f3v/99nHbaaXj55ZeFkhsA3HTTTbj88stxxRVXYNasWSguLsbf//3fizTf/va38a//+q9YunQppk6divPOOw+//OUvMXny5AG0DCEjA9o4ISMX2jchoxPHHM6D44QcQ7iui6lTp2LBggX49re/PdTFIYQMMrRxQkYutG9Cjn34SCoZdmzfvh1PP/005syZg3g8jvvuuw/btm3DJZdcMtRFI4QMArRxQkYutG9Chh98JJUMO3w+H1atWoWPfOQj+NjHPobXX38dzzzzTL9fuieEHNvQxgkZudC+CRl+8JFUQgghhBBCCCG9wjuMhBBCCCGEEEJ6hRtGQgghhBBCCCG9wg0jIYQQQgghhJBe4YaREEIIIYQQQkivcMNICCGEEEIIIaRXuGEkhBBCCCGEENIr3DASQgghhBBCCOkVbhgJIYQQQgghhPQKN4yEEEIIIYQQQnrl/wcq95nOfunsaQAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAGwCAYAAACpYG+ZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbQRJREFUeJzt3Xl4U1X+BvD3JmnSvaVAF6RsoiyyKWipIoJUVmURZ0RQYWRgRgsoiwL+HFZn6uCGOizOqMCMMCCKioooIIJoQUQRRKzAoEVoC4Jt6ZY2yf39wTRD7PmGZqFNyPt5njwPnHvvuecuCYe7nFfTdV0HERERUQgw1HcDiIiIiOoKOz5EREQUMtjxISIiopDBjg8RERGFDHZ8iIiIKGSw40NEREQhgx0fIiIiChmm+m5AIHE4HDhx4gRiYmKgaVp9N4eIiAKYrus4e/YsmjRpAoPh4l1HqKioQGVlpc/1mM1mhIeH+6FFwY0dn/OcOHECqamp9d0MIiIKIseOHUPTpk0vSt0VFRVo2Twa+SftPteVnJyMo0ePhnznhx2f88TExAAAJnzYD5aosBrTX9/RXbmcpUDd09eEMbEdwl531Fylky5cgDII3wVNKDcI/2mQ6nFHapMu/cdHKnczdri/2iu2yd2FvYs8prl0fnizbs2hLjfYhPIqeQXGKmEdNvUy0rqlbdAc8rqlusRlhCuz0vHWDfIBt5uFZYyeXf0V94c7wgD60jliEI6RQTxGnu9zCMtI+0Pc5272n/QbIvF037pbt92inlbeSF0emXGyZh1lVnx19xLnvx0XQ2VlJfJP2vHjnhaIjfH+qlLxWQead/0BlZWV7PjUdwMCSfXtLUtUGCzRNXshBuFkMVo86/howl7XhB9ewIuOj/QPnof1uFMnHR8/tfeS6fiInQl1uXT13eBm5dK/FdIyl0rHRxP+4+EwXfyOj7R9YsdHqEc+Ruz41KgrTD3NKHSITFEWua46eDQiOkZDdIz363G4/bELLez4EBERBTi77oDdh/+M2XVvLkVemtjxISIiCnAO6HD4cBnal2UvNXydnYiIiEIGr/gQEREFOAcc8OVmlW9LX1rY8SEiIgpwdl2HXXj7r7bL0zm81UVEREQhg1d8iIiIAhwfbvYfdnyIiIgCnAM67Oz4+AVvdREREVHI4BUfBTsMsCv6hFG56n5izDH10/Ly8PHCit08fCZFDGjCiFbS/AabeuVSPQDgMKu32y6U26KMwvzCiK/uIgGkofzFEX6FcmH73I0EK0aOqDcPDmH7bOHqcrswcqw7Jqu6UWGlnp0fpjJ56GtjhTQcuHD8hJGNdQ9HVT43Tb2MtG89rUc6FoAcGSOO3OzhyNRGNxmTpgrpOAknqPC9EEdVdjP6tDh6slCXOCK99BslnLPuGCqlocjVxQ4P2wrI2x1Wqv6CF1lrDq1vr6y7qyi81eU/7PgQEREFOL7V5T+81UVEREQhg1d8iIiIApzjvx9flqdz2PEhIiIKcHYf3+ryZdlLDTs+REREAc6uw8d0dv+1JdjxGR8iIiIKGbziQ0REFOD4jI//sONDREQU4BzQYIfnY3+dvzydw1tdREREFDJ4xYeIiCjAOfRzH1+Wp3PY8VFw6BocivHMDVXq+c1FNmW5wcPH6KUICACwRQoxEBZhiH/hyBqlyANpaHwAmhC9IUZNCJttLlZHIZjK3cQnlKl3usOs3h+2SPWGS7Eb7kjD5pukFAFhFWEWIdpDKAc8j0+ojPEsNsIUKa9bs6v3oUF9mruNWlGvwE1shHDeirER0inoxbVsKVLCVCHEvAj7Q4pJMJXK57lJigkR2C3q81+KpvAmHkX6bamMFiJsLOp6xPPGzTQp9kM6n8ML1cfIaJV/14zCcQ0rVjeqrLxmZIWjvO6enLH7eKvLl2UvNbzVRURERCGDV3yIiIgCHK/4+A87PkRERAFOegTDk+XpnKC51dWiRQtomlbjk5mZCQDo1atXjWl//OMf67nVREREFEiC5orP7t27Ybf/7wHAb775Brfccgt+85vfOMvGjRuHefPmOf8eGRlZp20kIiK6GHiry3+CpuPTuHFjl78/8cQTuPzyy3HTTTc5yyIjI5GcnFzXTSMiIrqo7DDA7sNNGs/eG7y0Bc2trvNVVlbi1VdfxX333QftvNcbV65ciUaNGqFDhw6YOXMmysrK3NZjtVpRXFzs8iEiIgo0+n+f8fH2o/MZH6egueJzvrfeeguFhYUYM2aMs2zkyJFo3rw5mjRpgn379mH69OnIycnBunXrxHqysrIwd+7cOmgxERERBYKg7Pi8/PLLGDBgAJo0aeIsGz9+vPPPHTt2REpKCvr06YMjR47g8ssvV9Yzc+ZMTJkyxfn34uJipKamXryGExEReYHP+PhP0HV8fvzxR2zevNntlRwASEtLAwAcPnxY7PhYLBZYLMJwo0RERAHCrhtg92ZIcufyfmxMkAu6Z3yWLVuGxMREDBo0yO18e/fuBQCkpKTUQauIiIgoGATVFR+Hw4Fly5Zh9OjRMJn+1/QjR45g1apVGDhwIBo2bIh9+/Zh8uTJ6NmzJzp16uTxekY0+BzRMTX7hK9d2V05f1ipOlhJzqFRl7vrzEvPpYl1CfM7hMwed7lRWs2Imv/WpS6vipDyw9T5QppUEYDwQvXKTWXqdxQMVer/1kh5YA6TvN16mHqaQ8qHErLLpNyhMDfZTVI2m7SrpBw5KfvKLu9yGAxC7pe6SbAJmU426Txws26RsM8NQr6W1FapHJD3YViJutwiZD1JbbW5yUezh6unucuaUq5amN3g5pUe6bfCVK4+bx0mIUdLyglzc1HdXY6XiqVIvYGGKnV5aZL8T5w9XCgXzs/URqdqlNlKrTgqrsG/HNDg8OFahUMKUQxBQdXx2bx5M3Jzc3Hfffe5lJvNZmzevBkLFy5EaWkpUlNTMXz4cDz22GP11FIiIiL/4TM+/hNUHZ++fftCVyRBp6amYtu2bfXQIiIiIgomQdXxISIiCkW+P9zMW13V2PEhIiIKcOee8fEhpJS3upyC7q0uIiIiIm/xig8REVGAc/iY1cW3uv6HHR8iIqIAx2d8/IcdHyIiogDngIHj+PgJn/EhIiKikMErPkRERAHOrmuwS8Ns13J5OocdH4V2YRGIDas5tn1MarFy/pKf45XlljPq+sNK1ZcczWflS5HSrV1rnHqCNBy7xFghfynCz6iHgzcXqsfBjzgljJsvxWsIUQ8AEHZWyCQQ2CLV481Lw+mHnRVyCgA4hMgKe7g698AgRFAYbOoNd5jlC67mInW7qqLVX9myZGG7hVVobq56V8ao91V5I/X8uvArIp3/7tatCREG4b+o96FROD2kqA5355pE+vfCLkR1SLERdrO8bilKw2BTH0BDpXonGis9i7gAgKpo9TqqIoXoEuGcsgvRNu5EnhKyNITnUYxCTEh5Y/X57y4uwyb8RpZcrm7T5Ka7aq63xIYd8ir8yu7jw812L251HT9+HNOnT8f777+PsrIytG7dGsuWLUO3bt0AALquY/bs2fjHP/6BwsJC3HDDDViyZAmuuOIKZx1nzpzBxIkT8c4778BgMGD48OF47rnnEB0d7fW2+Iq3uoiIiMjFL7/8ghtuuAFhYWF4//338e233+Lpp59GgwYNnPMsWLAAzz//PJYuXYpdu3YhKioK/fr1Q0VFhXOeUaNG4cCBA9i0aRPeffddbN++HePHj6+PTXLiFR8iIqIA59ANcPjwVpfjv1fRiotd71xYLBZYLDUvjf31r39Famoqli1b5ixr2bKl88+6rmPhwoV47LHHMGTIEADAP//5TyQlJeGtt97CiBEjcPDgQWzcuBG7d+92XiV64YUXMHDgQDz11FNo0qSJ19vjC17xISIiCnDVt7p8+QDnsi3j4uKcn6ysLOX61q9fj27duuE3v/kNEhMTcfXVV+Mf//iHc/rRo0eRn5+PjIwMZ1lcXBzS0tKQnZ0NAMjOzkZ8fLyz0wMAGRkZMBgM2LWr5q3DusIrPkRERCHi2LFjiI2Ndf5ddbUHAP7zn/9gyZIlmDJlCh599FHs3r0bkyZNgtlsxujRo5Gfnw8ASEpKclkuKSnJOS0/Px+JiYku000mExISEpzz1Ad2fIiIiAKcA769mVX9WHhsbKxLx0ec3+FAt27d8Je//AUAcPXVV+Obb77B0qVLMXr0aK/bEQh4q4uIiCjAVQ9g6MvHEykpKWjfvr1LWbt27ZCbmwsASE5OBgAUFBS4zFNQUOCclpycjJMnT7pMt9lsOHPmjHOe+sCODxEREbm44YYbkJOT41L2/fffo3nz5gDOPeicnJyMLVu2OKcXFxdj165dSE9PBwCkp6ejsLAQe/bscc7z0UcfweFwIC0trQ62Qo23uoiIiAKc71ldni07efJkXH/99fjLX/6C3/72t/j888/x97//HX//+98BAJqm4aGHHsLjjz+OK664Ai1btsSf/vQnNGnSBEOHDgVw7gpR//79MW7cOCxduhRVVVWYMGECRowYUW9vdAHs+BAREQU8BzQ44MszPp4te+211+LNN9/EzJkzMW/ePLRs2RILFy7EqFGjnPM88sgjKC0txfjx41FYWIgePXpg48aNCA//3+iQK1euxIQJE9CnTx/nAIbPP/+819vhD+z4EBERBbi6vuIDALfeeituvfVWcbqmaZg3bx7mzZsnzpOQkIBVq1Z5vO6Lic/4EBERUcjgFR+FTyo0RIXVvCxYfjBeOb9R6D5WCNlG0IRLjm6iVIxCpJTRKmX2yHV5yh4utFdTBwzZ7OodElaqztkxuMsXsgvbV1SmrqtMndmjVapDoHST3PfXIoSgH2F3GCqErC6r+uCVXim/UmoLVwcfSflQRiG7yVyiLnf3nz8pU8ryi3p+aR0G4Zy1xsuX3B3qwyeS9kd5I3V5+Bn5SxZ+WjhHhHwvMT8vXv29kPLDzlXmZpoH82tSo4TsKwAwlam/f7pBXZe4HcLvmrs3sCtjhCwym7q95Y3U+1bKFXPHXKIujz4irKN3zfIqN/vV33zP6uJ1jmrs+BAREQU4h67B4cs4Pkxnd2IXkIiIiEIGr/gQEREFOIePt7o8HcDwUsaODxERUYDzPZ2dHZ9q3BNEREQUMnjFh4iIKMDZocHuwwCGvix7qWHHh4iIKMDxVpf/cE8QERFRyOAVHyIiogBnh2+3q9TDq4YmdnyIiIgCHG91+Q87PgqPH7kVpqiacQUJB9XDk1vj1L1wW4S6fk3oekuxFIA8nH5YibrcIUQx6CZ1Wx1mN9ENwvDx0jD4epiwbmkV7uITotQZBvaoOGW55lC3yVRYrp6/XM72MBiFSA6jOk7C2liIuNDV5VKEBwAYrerjVJqsblNljBAzUaheR1iJ/P+/8obq7ZNYitTrkGI0DDb5gIvRA0IcgrQPqyLU++lsU/l/zKVJ6nMt5dNSoU3qYpMQm1Im1A/I+0o8TgbhNydcvW9Lmqj3BwA5gkX90wJTuXBcha+StYG8apt0vIVRhnXhXyxp3WHCoQOAmOPCb6ewq5490KdGmb2sAsBn8kr8qD5CSi9V3BNEREQUMnjFh4iIKMDp0ODw4Rkfna+zO7HjQ0REFOB4q8t/uCeIiIgoZPCKDxERUYBz6BocwkPftV2ezmHHh4iIKMDZfUxn92XZSw33BBEREYUMXvEhIiIKcLzV5T/s+BAREQU4Bwxw+HCTxpdlLzVBsyfmzJkDTdNcPm3btnVOr6ioQGZmJho2bIjo6GgMHz4cBQUF9dhiIiIiCjRB0/EBgKuuugp5eXnOz44dO5zTJk+ejHfeeQdr167Ftm3bcOLECdx+++312FoiIiL/sOuazx86J6hudZlMJiQnJ9coLyoqwssvv4xVq1bh5ptvBgAsW7YM7dq1w86dO9G9e3dlfVarFVar1fn34uJiAMDPXyXBEB5eY/4W36uDX6ri1NlGcjaV+gQsb+gmT0eIyzKWqQO+dCHjSjep12Esk7ObNLucKaViE7YvrETdVmkbAMBQalWW60IWmWZTt1Wa3y0pi0zYPoNVvW67kJ9kjZOPd1S+ep9EnlKv+9TVUj6aeh2Je9T79dy61cs4wjz74ayKVLfJXCKfT+Zi4UQX9nlFvJCnFqWuJjZXqB8Qj/eZq9SVxfwkfPeE3RR50s15XqXeJ5Wx6p9o3aheSWW0FLwlrlrMuZKyuhxC3p+Uk2culs8bg5ADqAmniFFqq5B1ZikSNgKA+UyFsvxMhxhleUVRzX8THOoIwIuCz/j4T1Bd8Tl06BCaNGmCVq1aYdSoUcjNzQUA7NmzB1VVVcjIyHDO27ZtWzRr1gzZ2dlifVlZWYiLi3N+UlNTL/o2EBEReUr/bzq7tx+dIzc7Bc2eSEtLw/Lly7Fx40YsWbIER48exY033oizZ88iPz8fZrMZ8fHxLsskJSUhPz9frHPmzJkoKipyfo4dO3aRt4KIiIjqU9Dc6howYIDzz506dUJaWhqaN2+O1157DREREV7VabFYYLFY/NVEIiKii8IODXYfgkZ9WfZSEzRXfH4tPj4eV155JQ4fPozk5GRUVlaisLDQZZ6CggLlM0FERETBxKH/7zkf7z71vQWBI2g7PiUlJThy5AhSUlLQtWtXhIWFYcuWLc7pOTk5yM3NRXp6ej22koiIiAJJ0NzqmjZtGm677TY0b94cJ06cwOzZs2E0GnHXXXchLi4OY8eOxZQpU5CQkIDY2FhMnDgR6enp4htdREREwaL6IWVflqdzgqbj89NPP+Guu+7C6dOn0bhxY/To0QM7d+5E48aNAQDPPvssDAYDhg8fDqvVin79+mHx4sX13GoiIiLfOaDB4cNzOr4se6kJmo7P6tWr3U4PDw/HokWLsGjRojpqEREREQWboOn4EBERhSpfR1/myM3/w44PERFRgOMzPv7DPUFEREQhg1d8FBK+dcAUVjMsRhcyauwWdblNyCqy/KLOxYo6IWf5WI4XK8s1qzq8xnxaPWhDZYuG6vnz1PW7ZVW312xUb7e9QbS6mkbyAJSOJuqcJFOpeh+azqr3h7FEncuDcqEcgOZQBwaFFQk5aAb1docJu9ZoVWe8AYCxQr19ZmEsjgYH1W0KK1Nvg0GoHwBMVvVKjL+oc48q4zz7GQkrls9zY6n6+FXF1cxJAoBwYXCSsFL1sTCVyzlh0ve1Un3aylluYUI9Ue6y+NR1RR1Xh0HZotXH21Sq/i2yFMnrroxRt7cqSl1XeKF6H0bnqr9Ldou8bin/TcrDM0qZZjHqc9AaL5+bVdHq3xaD8NWIPFJzn9ut8vfI3xzwMauLDzc7seNDREQU4HQf3+rS2fFxYseHiIgowDGd3X/4jA8RERGFDF7xISIiCnCh8lbX+vXrPV7mlltu8SisnB0fIiKiABcqt7qGDh3q0fyapuHQoUNo1apVrZcJji4gERERhYT8/Hw4HI5afSIjIz2un1d8iIiIAlyoZHWNHj3ao9tWd999N2JjYz1aBzs+REREAS5UbnUtW7bMo/mXLFni8Tp4q4uIiIhczJkzB5qmuXzatm3rnF5RUYHMzEw0bNgQ0dHRGD58OAoKClzqyM3NxaBBgxAZGYnExEQ8/PDDsNnUA6HWJXZ8iIiIAlz1FR9fPp666qqrkJeX5/zs2LHDOW3y5Ml45513sHbtWmzbtg0nTpzA7bff7pxut9sxaNAgVFZW4rPPPsOKFSuwfPlyzJo1q1br/vrrr/H4449j8eLF+Pnnn12mFRcX47777vN4e6rxVpeCpdAOk6nmUOTScPphwpDsmjA6vj1c3d80/6KuHwD0cPWhKuySoCy3FKqHUo/4oUhdf5ib4fQ19RdGE8rLWsSr131MvW5zobxqa2P1vV5pqHt7pHo/2aNj1OuulOMTIERQGM+UKsv1CHUEhbRvNbs6dgAAyhMtyvLKGPV2m8+qIw9MQmSFXYg8AADNJkRWVKj/pxZepT7XNLvQpp9LxHVXXhanLheiB6S4hehjQnSJsA0AYCpT1xX1o7qu8svUkQcSo1WOy7DGq8+Rqhj1OWX+RR0P4TCr6zFWyuvWHOp9G1mgXsbyszpGQ5POg0r5XNOF9lobCt8lu3T+q49rWZIcC2OLUNcVVqo+byMKas5vl3+y/c5ft7qKi10zdCwWCywW9e+NyWRCcnJyjfKioiK8/PLLWLVqFW6++WYA525RtWvXDjt37kT37t3x4Ycf4ttvv8XmzZuRlJSELl26YP78+Zg+fTrmzJkDs1k+Nh9++CFuu+02XHHFFTh79ixmzZqFtWvXonfv3gCA8vJyrFixAq+88opX+4JXfIiIiEJEamoq4uLinJ+srCxx3kOHDqFJkyZo1aoVRo0ahdzcXADAnj17UFVVhYyMDOe8bdu2RbNmzZCdnQ0AyM7ORseOHZGUlOScp1+/figuLsaBAwfctnHOnDmYNm0avvnmG/zwww945JFHMHjwYGzcuNGXTXfiFR8iIqIA568rPseOHXN5C0q62pOWlobly5ejTZs2yMvLw9y5c3HjjTfim2++QX5+PsxmM+Lj412WSUpKQn5+PoBzr6Sf3+mpnl49zZ0DBw7gX//6F4BzdxYeeeQRNG3aFHfccQdWr16Na6+9tvYbrsCODxERUYDT4dsr6dU38GJjY2v1+veAAQOcf+7UqRPS0tLQvHlzvPbaax69bu4Ni8WCwsJCl7KRI0fCYDDgzjvvxNNPP+1T/bzVRUREFODq4+Hm88XHx+PKK6/E4cOHkZycjMrKyhqdk4KCAuczQcnJyTXe8qr+u+q5ofN16dIFW7durVE+YsQIvPTSS5g0aZIPW8KODxEREV1ASUkJjhw5gpSUFHTt2hVhYWHYsmWLc3pOTg5yc3ORnp4OAEhPT8f+/ftx8uRJ5zybNm1CbGws2rdv73Zd999/P44fP66cdtddd2H58uXo2bOn19vCW11EREQBrq4HMJw2bRpuu+02NG/eHCdOnMDs2bNhNBpx1113IS4uDmPHjsWUKVOQkJCA2NhYTJw4Eenp6ejevTsAoG/fvmjfvj3uueceLFiwAPn5+XjssceQmZkpPldUbdiwYRg2bJg4feTIkRg5cqRH23M+XvEhIiIKcHV9q+unn37CXXfdhTZt2uC3v/0tGjZsiJ07d6Jx48YAgGeffRa33norhg8fjp49eyI5ORnr1q1zLm80GvHuu+/CaDQiPT0dd999N+69917MmzfPq+1/4IEHaozn4y1e8SEiIiIXq1evdjs9PDwcixYtwqJFi8R5mjdvjg0bNvilPa+++iqmTZuGRo0a+VwXOz5EREQBLlSyuiS6rh5Y0hvs+BAREQU4Xdeg+9B58WXZSw07PkRERBTQzp4967e62PFRCCuqhMlU87lvrVKdB2M+qc5uMgtZVrqibgAwnFXn77gT/02heoJDnbOjm9WH3BEl56boRmE7DOpyU5l6P9lj1YNelV4mD4Zli1Svw1Konl9at8GqzhGCXSgHAIdwaTVM+NoIl2IdFvX8UpYVAJhKhXbpQn5Ypboug019HpiK5HPNXGJVT6gUgolsUls9vzRt+kX9toe0r8JPCbli5V4kQJepc9vsQl6WsUK9b40Vnu8Po1V9jphK3GTJKWjCOWuQ2gQg6pQ6O00rFc4DgaOBOrtME36LAECzqttr/kU9v13ILKyKUmd+Rf0kn+f2cPUylbHqdeiKYl3eNL9zQPNpAENflq0Pf//735GamooBAwbgww8/xA8//IDx48f7pW52fIiIiAJcqD3jM2zYMAwePBg9evTA3Llz8dZbb/mtbr7OTkRERAFj+/btOHjwINLS0tC9e3dcd911OHjwILZv3+6X+nnFh4iIKMCF0sPN1XEVJ06cwI8//ogTJ05g69at0DTNpxGbq7HjQ0REFOBC6VbX7NmzYbPZcPPNN2PHjh2YNGkSVq5cCZPJP10W3uoiIiIKcNVXfHz5BJPnn38eQ4cORZcuXXDHHXfg+eef91vdvOJDREREAWXSpEnQ/vtm9IQJE+Bw83agp3jFh4iIKMDpPuZ0BdsVn1deeQUffvghAGDz5s145ZVX/FY3r/gQEREFOB1eDY3lsnww4evsREREFBL4OjsREVGIc0CDFiIjN/N19npgLK6A0VjzwqAmDc3vEIaVF65LalZh6H93IuVYByWjejh23SKUu7n25zCrJ+pCJIdRiIeQoi+ic9WRHwBgPCNMKy1Tl1vUkQdi3ILBzYZHqevSw9T7UKrLUKE+P7Qq+WE9Q5V6HQa7EH8hRRVUCusQjh0AMe4EZeXKYr1SOP+FdWix0eKqNSFCxCjESTiEYyGVu+MQoimk81azCd9vKYpEikBxU5ehSr0/DMXqYyFGsEjHCACsQjSFWYixkX6LpOMtxKYAgD1S2OdCHI6hUtgfJuF8dnOemwvV220+oy6POFnzu2ezeR4z5K1QGseHr7MTERFRSOHr7ERERCHMoWvQQmQAQ4CvswMAsrKycO211yImJgaJiYkYOnQocnJyXObp1asXNE1z+fzxj3+spxYTERH5h677/gkmJpMJX3/9Nfbv3w+DwQCTyYS3334bQ4cOxaOPPopK6fGFWgiajs+2bduQmZmJnTt3YtOmTaiqqkLfvn1RWur6DMi4ceOQl5fn/CxYsKCeWkxERETe+sMf/oDvv/8eAPCf//wHI0aMQGRkJNauXYtHHnnE63qD5lbXxo0bXf6+fPlyJCYmYs+ePS5PeUdGRiI5Obmum0dERHTRhNLDzdW+//57dOnSBQCwdu1a9OzZE6tWrcKnn36KESNGYOHChV7VGzRXfH6tqKgIAJCQkOBSvnLlSjRq1AgdOnTAzJkzUVYmvP0DwGq1ori42OVDREQUaEItqwsAdF13PtuzefNmDBw4EACQmpqKn3/+2et6g+aKz/kcDgceeugh3HDDDejQoYOzfOTIkWjevDmaNGmCffv2Yfr06cjJycG6deuU9WRlZWHu3Ll11WwiIiKvhNrDzQDQrVs3PP7448jIyMC2bduwZMkSAMDRo0eRlJTkdb1B2fHJzMzEN998gx07driUjx8/3vnnjh07IiUlBX369MGRI0dw+eWX16hn5syZmDJlivPvxcXFSE1NvXgNJyIiolpZuHAhRo0ahbfeegv/93//h9atWwMAXn/9dVx//fVe1xt0HZ8JEybg3Xffxfbt29G0aVO386alpQEADh8+rOz4WCwWWKQB74iIiAKEr29mBdtbXQDQqVMn7N+/v0b5k08+CaMwSG9tBE3HR9d1TJw4EW+++SY+/vhjtGzZ8oLL7N27FwCQkpJykVtHRER08Zzr+PjycLMfG1PPwsPDfVo+aDo+mZmZWLVqFd5++23ExMQgPz8fABAXF4eIiAgcOXIEq1atwsCBA9GwYUPs27cPkydPRs+ePdGpU6d6bj0REREFgqDp+FQ/1NSrVy+X8mXLlmHMmDEwm83YvHkzFi5ciNLSUqSmpmL48OF47LHHPF6XVlkJTZUVY7OpF5AyvKTcHCkfKszN4RCyaxyWMHV5uHAZUMiukfK4AMAepp4m5UNJ2UYQQvJ0NwNy6uHq7dPKhO3IK1DPL+xbzd2tTikXRsqHihCOhVnKR5P/9+bwcJ8bhHw0Q4W6XCt3l92kHhhMr1BnGOnCea6FqfcHqoTvEQBNyKbSzcKxEHahPVw9vyNM3ue6sM8d0ldJOG+l899UJm+3Scgis0Wrs6zMpUK+VpHwZqpd/pLp0u+adFyNwrlpEs5zIY/r3ELyJCXhO2OSznM32y1lqmlW9bEwVNT8Xmh24ThcBKH4OvvFEjQdH/0C1+lSU1Oxbdu2OmoNERFR3dH/+/FleTonaMfxISIiIvIUOz5EREQBLtQGMMzLy8Orr76KDRs21MjlKi0txbx587yumx0fIiKiQKf74RMkdu/ejfbt2yMzMxN33HEHrrrqKhw4cMA5vaSkxKfBh9nxISIiCnS+Xu0Jois+jz76KIYNG4ZffvkFBQUFuOWWW3DTTTfhq6++8kv9QfNwMxEREV369uzZg0WLFsFgMCAmJgaLFy9Gs2bN0KdPH3zwwQdo1qyZT/Wz40NERBTgQm3k5oqKCpe/z5gxAyaTCX379sUrr7ziU93s+BAREQW4UBrHp0OHDvjss89qDD48bdo0OBwO3HXXXT7Vz2d8iIiIKGDce++9NULIqz3yyCOYO3euT7e72PEhIiIKdNUPKPvyCRK///3v8eqrr4rTp0+fjqNHj3pdP291qVRWqWMlKoWh/MsrlOVSBIUmpcq6iU/QxZgE9Tqqoi/+oZUiF6S4BfF75+bes0HYbml4fCmaQheOHcxCrAKgji2BHJ9gF46FtD8cJs9/iDSHehnNJuxEgxCb4o4USRAunJ/S+S9FtkgRCQB0k7CvhOgSW5RwLCzCOejmv3ri8RBiXgzSPheqkaNcAK1SXVfYmTL1AlIUg/Dbole6iShxCHUJ2y2WC8dOOqbupunCOSj9V12Mn3AXhyNshxi4Y6153mp2+Vz2t1B7xmfDhg1o1aoV2rZti0OHDuH777/HoEGD/FI3r/gQERFRQElJScHkyZMBAA8++CAuu+wyv9XNKz5ERESBLsTCuq6++mpcd911uOeee3DdddehS5cufqubHR8iIqIAF0pvdfXu3RuapuGXX37B119/jS5dumDbtm3QNA0fffSRz/Wz40NEREQBY+vWrQCAO++8Ew888AC2bNmC1atX+61+PuNDREQUDEIgp6vamjVrkJCQgHHjxqFhw4ZYs2aN3+rmFR8iIqIAF0q3ugDgmmuuQd++fQEAf/7zn3Hy5Em/1c0rPkRERIGuntPZn3jiCWiahoceeshZVlFRgczMTDRs2BDR0dEYPnw4CgoKXJbLzc3FoEGDEBkZicTERDz88MOwuRnSotr333/vrOvUqVM4dOiQbxtwHnZ8iIiISLR79268+OKLNSIkJk+ejHfeeQdr167Ftm3bcOLECdx+++3O6Xa7HYMGDUJlZSU+++wzrFixAsuXL8esWbMuuM4mTZpctNfZ2fEhIiIKeJofPp4rKSnBqFGj8I9//AMNGjRwlhcVFeHll1/GM888g5tvvhldu3bFsmXL8Nlnn2Hnzp0AgA8//BDffvstXn31VXTp0gUDBgzA/PnzsWjRIlRKg8r+18V8nZ0dHyIiokDnp1tdxcXFLh+r1ep2tZmZmRg0aBAyMjJcyvfs2YOqqiqX8rZt26JZs2bIzs4GAGRnZ6Njx45ISkpyztOvXz8UFxfjwIED4jp79+6Nm2++GevXr8fKlSuxfv16Z5k/8OFmIiKiEJGamury99mzZ2POnDnKeVevXo0vv/wSu3fvrjEtPz8fZrMZ8fHxLuVJSUnIz893znN+p6d6evU0ycV+nZ0dHxWHDkAR8iKFnQjleoW6J61FRarrkfJpADii1DlJVbHqDCMpu0l6sF93kxslZQyJdQnrNlT58Z3KMCFjyyTkZZWUKMuNiJLXIeR42SM9y42SMqDcvmQhxSQJmUSAkF3mEI5FhZuHC6UsOaEuvUqoS8g606RjB0CXjp9Z/d2QMrlsEVI+mrhqMXtOYhSu1Bts6nUbquTgKF3Kt6sSctOkfC0pH00qB8TjLeXeefw7KGV7AXBI2WxhwrkjxYoJT+66y2aTssXELDLVPtfdhIH5m59Gbj527BhiY2OdxRYhI/LYsWN48MEHsWnTJoSHh/uwYu+c/zr73r17sWbNGtx5551+qdvrW12ffPIJ7r77bqSnp+P48eMAgH/9619ilDwRERF5yU/p7LGxsS4fqeOzZ88enDx5Etdccw1MJhNMJhO2bduG559/HiaTCUlJSaisrERhYaHLcgUFBUhOTgYAJCcn13jLq/rv1fNIrrnmGvzlL38BcO519quvvtrjXSbxquPzxhtvoF+/foiIiMBXX33lvEdYVFTkbCgREREFpz59+mD//v3Yu3ev89OtWzeMGjXK+eewsDBs2bLFuUxOTg5yc3ORnp4OAEhPT8f+/ftdxuDZtGkTYmNj0b59e7frv+KKK5wPU8fHx+PKK6/027Z5davr8ccfx9KlS3Hvvfe63He74YYb8Pjjj/utcURERHTuTqJ0l7G2y3siJiYGHTp0cCmLiopCw4YNneVjx47FlClTkJCQgNjYWEycOBHp6eno3r07AKBv375o37497rnnHixYsAD5+fl47LHHkJmZKV5pOt/p06cxa9YsbN26FSdPnoTjV7cbz5w549lG/ZdXHZ+cnBz07NmzRnlcXFyNy15ERETkowBMZ3/22WdhMBgwfPhwWK1W9OvXD4sXL3ZONxqNePfdd3H//fcjPT0dUVFRGD16NObNm1er+u+55x4cPnwYY8eORVJSEjQ3z4t5wquOT3JyMg4fPowWLVq4lO/YsQOtWrXyR7uIiIgogHz88ccufw8PD8eiRYuwaNEicZnmzZtjw4YNXq3vk08+wY4dO9C5c2evlpd49YzPuHHj8OCDD2LXrl3QNA0nTpzAypUrMW3aNNx///1+bSAREVHI89PDzcGkbdu2KC8v93u9Xl3xmTFjBhwOB/r06YOysjL07NkTFosF06ZNw8SJE/3dRiIiopCm6ec+viwfbBYvXowZM2Zg1qxZ6NChA8J+NRTG+a/le8Krjo+mafi///s/PPzwwzh8+DBKSkrQvn17REdHe9UIIiIiciMAn/G52OLj41FcXFxjxGZd16FpGuzuxqdyw6cBDM1m8wVfSSMiIiLy1KhRoxAWFoZVq1bVz8PN5yeuXsi6deu8agwREREp+PqcThA+4/PNN9/gq6++Qps2bfxab607PnFxcc4/67qON998E3FxcejWrRuAc6M8FhYWetRBClga1MOWS71NIdrAIA39bxCGpxfqAeTh9A1W9ZDp0lDtjnB1m6oiPY+skC6dmirUEzSb+rKkZpeHfddswjQhDkQarEIzyftWopuF+ASLeh/awqX4BM/2HyDfjzdUSgup95OhUjjXpOH6Afl/VSbPog10KVZBOP8BQJOOnxDVIUZ4SMXSuQzP/12QYhVsFqEiu/B7AMAktFeTYi6kOAkh8kOMIQGgxcepJziE2wjSOqRj4SYKRDwe0jkofDHEehzyujWpLuG7oanOW7eZGH4Wgre6unXrhmPHjtVfx2fZsmXOP0+fPh2//e1vsXTpUhj/+4Wy2+144IEHvH7YiIiIiKjaxIkT8eCDD+Lhhx9Gx44dazzc3KlTJ6/q9eoZn1deeQU7duxwdnqAcwMVTZkyBddffz2efPJJrxpDRERECiF4xac6lPS+++5zlmmaVj8PN9tsNnz33Xc1Lj999913NYaUJiIiIh+FYMfn6NGjF6Verzo+v/vd7zB27FgcOXIE1113HQBg165deOKJJ/C73/3Orw0kIiKi0NO8efOLUq9XHZ+nnnoKycnJePrpp5GXlwcASElJwcMPP4ypU6f6tYFEREQhL0Te6lq/fj0GDBhQ43keyYYNG9C7d29ERETUeh1ePZJuMBjwyCOP4Pjx4ygsLERhYSGOHz+ORx55xOW5HyIiIvJd9cjNvnyCwbBhwzwKOx8xYoTzAkxt+TSAIeD9kNFERERE59N1HWPGjIHFYqnV/BUVFR6vw6uOT8uWLd2OoPif//zHm2r9ZtGiRXjyySeRn5+Pzp0744UXXnA+i0RERBR0QuTh5tGjR3s0/6hRozy+AONVx+ehhx5y+XtVVRW++uorbNy4EQ8//LA3VfrNmjVrMGXKFCxduhRpaWlYuHAh+vXrh5ycHCQmJtZr24iIiEh2/piBF4tXHZ8HH3xQWb5o0SJ88cUXPjXIV8888wzGjRvnfLts6dKleO+99/DKK69gxowZ9do2IiIib2jwMZ3dby0Jfn4db3vAgAF44403/FmlRyorK7Fnzx5kZGQ4ywwGAzIyMpCdnV1jfqvViuLiYpcPERERXbp8frj5fK+//joSEhL8WaVHfv75Z9jtdiQlJbmUJyUl4bvvvqsxf1ZWFubOnVuzIocOZfaRkCMkkl7HE3J2NDeDP0r5MQYhy8cRJmQ0CV1dKQsMkN+CNNqkQCR1uUHI8pG2AQC0Spt6grSvhHJDRLi6fjdvIerCqKBSPpSxUshN09Q73eF5fJj4Pz6P/yfoLuVYytLyMAdKXIOb0Va18kp1k4TcNJOb7C1lPXb5/3oOk2d1aVIUmXeDyXpGyrcTjp1mMct1SZlc0jki5YRJvy0eHiPATQabp1W5Oc89zglT/bbodThgb4i8zl4XvOr4XH311S4PN+u6jvz8fJw6dQqLFy/2W+MutpkzZ2LKlCnOvxcXFyM1NbUeW0RERKQQIg831wWvOj5Dhgxx6fgYDAY0btwYvXr1Qtu2bf3WOE81atQIRqMRBQUFLuUFBQVITk6uMb/FYqn1K3NEREQU/Lzq+MyZM8fPzfAPs9mMrl27YsuWLRg6dCgAwOFwYMuWLZgwYUL9No6IiMhbIXLF5/nnn6/1vJMmTfJqHV51fIxGI/Ly8mq8Hn769GkkJiZ6nZjqD1OmTMHo0aPRrVs3XHfddVi4cCFKS0uZIUZEREHL19GXg2Xk5meffbZW82maVrcdH114eNVqtcJsdvMQXR248847cerUKcyaNQv5+fno0qULNm7cWOOBZyIiIgosFyuR/XwedXyqL0FpmoaXXnoJ0dHRzml2ux3bt2+v12d8qk2YMIG3toiI6NIRIre66oJHHZ/qS1C6rmPp0qUugaRmsxktWrTA0qVL/dtCIiKiUBeiHZ+ffvoJ69evR25uLiorXYe7eOaZZ7yq06OOT/UlqN69e2PdunVo0KCBVyslIiIicmfLli0YPHgwWrVqhe+++w4dOnTADz/8AF3Xcc0113hdr1cjN2/dupWdHiIiojpS/XCzL59gM3PmTEybNg379+9HeHg43njjDRw7dgw33XQTfvOb33hdb62v+EyZMgXz589HVFSUy6B/Kt5efiIiIiKFEBy5+eDBg/j3v/8NADCZTCgvL0d0dDTmzZuHIUOG4P777/eq3lp3fL766itUVVUBAL788kuXAQwvOQZNPfS7MGS/uC9sQtyCRIq4AKAJsQ6aEDWhCUPaOyxCfILR8/8OyBEU6nJNiLjQbG6GfXcI7ZJiEpITleX6yZ/V9bg5jzWr+vgZy6rU6xDq0oT9oYfJ65biE6TfLk9/06S2npso7HPhfNYr1TETEs3dcBfCNINV2OdClIvRi98nzezhBXAxmkU9u0GKeIEc22LwU2SLXqXefwCgRUSoJ0hxDFJchnQsSuXzQ7Opf1OlyB24idZRchMzJEWOiL8Jqn8TpAygiyEEn/GJiopyPteTkpKCI0eO4KqrrgJwLqLKW7Xu+GzdutX5548//tjrFRIRERFdSPfu3bFjxw60a9cOAwcOxNSpU7F//36sW7cO3bt397per7qr9913H86ePVujvLS0FPfdd5/XjSEiIqKaQvEZn2eeeQZpaWkAgLlz56JPnz5Ys2YNWrRogZdfftnrer3q+KxYsQLl5eU1ysvLy/HPf/7T68YQERGRgu6HT5Bp1aoVOnXqBODcba+lS5di3759eOONN9C8eXOv6/Xodfbi4mLoug5d13H27FmEh4c7p9ntdmzYsKFGjAURERFRoPCo4xMfHw9N06BpGq688soa0zVNw9y5c/3WOCIiIgLg6+2qILnik5CQgO+//x6NGjVCgwYN3L5IdebMGa/W4VHHZ+vWrdB1HTfffDPeeOMNJCQkOKeZzWY0b94cTZo08aohREREJAiRt7qeffZZxMTEOP98Md4g96jjc9NNNwE4N4JzamoqDKrX+4iIiIi8MHr0aOefx4wZc1HW4VU6e/VDRWVlZcr8jOqHkYiIiMgPQuSKz/mMRiPy8vJqPDt8+vRpJCYmwu5uTDA3vOr4nDp1Cr/73e/w/vvvK6d72xgiIiKqyddX0oPxdXZdGIDSarXCbDZ7Xa9XHZ+HHnoIhYWF2LVrF3r16oU333wTBQUFePzxx/H000973RgiIiIKbc8//zyAcy9MvfTSS4iOjnZOs9vt2L59O9q2bet1/V51fD766CO8/fbb6NatGwwGA5o3b45bbrkFsbGxyMrKwqBBg7xuEBEREYWuZ599FsC5Kz5Lly6F8byIIrPZjBYtWmDp0qVe1+9Vx6e0tNR5z61BgwY4deoUrrzySnTs2BFffvml140JGNFRgNFSs7ys5qCNAOTcHCkDRyLVA8BYUqEs1y3qfC/dqH4S3lgm3IaUMrHckLJuDEL2lrFCnTukSXlEAFDlYd6ZkBulmYUcNCF/DQD0cPUyDrM6J6wqRl1utAqZThVuMsqETDUpGkjKh9LcZBWJpLcohHw0cX5p3d60SfhuGKrUG65LWU9uYsU0IXvOXZ6beuXC8XaTSadVqrdD/G5IOYBSubvvUbj6loGYPVepzv3SKoQ8MDf7zyCtQ/g90j3O6pInid8N4Tjpiu+9bhe+ExdDCD3jc/ToUQBA7969sW7dOjRo0MCv9Xv1WlabNm2Qk5MDAOjcuTNefPFFHD9+HEuXLkVKSopfG0hERBTqQjGyYuvWrX7v9ABeXvF58MEHkZeXBwCYPXs2+vfvj1dffRVmsxkrVqzwawOJiIgo9NjtdixfvhxbtmzByZMn4fjVld+PPvrIq3q96vjcfffdzj937doVP/74I7777js0a9YMjRo18qohRERE5EYQXrXxxYMPPojly5dj0KBB6NChg98GM6x1x2fKlCm1rvSZZ57xqjFERESkEELP+FRbvXo1XnvtNQwcONCv9db6GZ+vvvqqVp+9e/f6tYFERERUt5YsWYJOnTohNjYWsbGxSE9Pdxm7r6KiApmZmWjYsCGio6MxfPhwFBQUuNSRm5uLQYMGITIyEomJiXj44Ydhkx7AVzCbzWjdurXftqlara/4bN261e8rJyIiogur6wEMmzZtiieeeAJXXHEFdF3HihUrMGTIEHz11Ve46qqrMHnyZLz33ntYu3Yt4uLiMGHCBNx+++349NNPAZx7PmfQoEFITk7GZ599hry8PNx7770ICwvDX/7yl1q1YerUqXjuuefwt7/9za+ZXV4940NERER1qI5vdd12220uf//zn/+MJUuWYOfOnWjatClefvllrFq1CjfffDMAYNmyZWjXrh127tyJ7t2748MPP8S3336LzZs3IykpCV26dMH8+fMxffp0zJkzp1YjL+/YsQNbt27F+++/j6uuugphYa5DjKxbt86zjfovpowSERGFiOLiYpeP1Wq94DJ2ux2rV69GaWkp0tPTsWfPHlRVVSEjI8M5T9u2bdGsWTNkZ2cDALKzs9GxY0ckJSU55+nXrx+Ki4tx4MCBWrU1Pj4ew4YNw0033YRGjRohLi7O5eMtXvEhIiIKcP661ZWamupSPnv2bMyZM0e5zP79+5Geno6KigpER0fjzTffRPv27bF3716YzWbEx8e7zJ+UlIT8/HwAQH5+vkunp3p69bTaWLZsWa3m8xQ7PkRERIHOT7e6jh07htjYWGexxaJIKfivNm3aYO/evSgqKsLrr7+O0aNHY9u2bT40wnM2mw0ff/wxjhw5gpEjRyImJgYnTpxAbGysS4aXJ9jxISIiChHVb2nVxvlvVXXt2hW7d+/Gc889hzvvvBOVlZUoLCx0uepTUFCA5ORkAEBycjI+//xzl/qq3/qqnudCfvzxR/Tv3x+5ubmwWq245ZZbEBMTg7/+9a+wWq1e53Wx46NiswO6IjtHeqo8XOgxSxk4JvWjVdrpIrFJYj6ORb0OR6w6J8xUpq7HVCauWs7HEf73IeUnaVZhG8rc3GM2So+hCaeuLuQhSQ/SCfsPAKoSIpXllQ3Uy0Tkq7Pc7BZ1no+YJwXAaBW2Q9jnRqt6nxus6ldHDe7y0SRSrpJw/usV6uOqC+cyAGhWIWvNIGSXmdXngVYlZHuJawY06Tz39GUS6Xsh5HGdmyYcD2lfCeXSvnW7z0+dUa+iUwtleViROjfQcKZEXb+bjDI9TD1NE3LsNOEA6kKOnNusOmGaJmUmqs5/P75pdEEBMI6Pw+GA1WpF165dERYWhi1btmD48OEAgJycHOTm5iI9PR0AkJ6ejj//+c84efKkM9tz06ZNiI2NRfv27Wu1vgcffBDdunXD119/jYYNGzrLhw0bhnHjxnm9Hez4EBERBbi6fp195syZGDBgAJo1a4azZ89i1apV+Pjjj/HBBx8gLi4OY8eOxZQpU5CQkIDY2FhMnDgR6enp6N69OwCgb9++aN++Pe655x4sWLAA+fn5eOyxx5CZmen29tr5PvnkE3z22Wc13gBr0aIFjh8/7tkGnYcdHyIiokBXx1d8Tp48iXvvvRd5eXmIi4tDp06d8MEHH+CWW24BADz77LMwGAwYPnw4rFYr+vXrh8WLFzuXNxqNePfdd3H//fcjPT0dUVFRGD16NObNm1frNjgcDtjtNa+U/vTTT4iJifFsg87Djg8RERG5ePnll91ODw8Px6JFi7Bo0SJxnubNm2PDhg1et6Fv375YuHAh/v73vwMANE1DSUkJZs+e7VOMBTs+REREgS4AnvGpa08//TT69euH9u3bo6KiAiNHjsShQ4fQqFEj/Pvf//a6XnZ8iIiIAlxdP+MTCJo2bYqvv/4aa9aswddff42SkhKMHTsWo0aNQkSE+gWe2mDHh4iIiALO9u3bcf3112PUqFEYNWqUs9xms2H79u3o2bOnV/UysoKIiCjQ6X74BJnevXvjzJmawy0UFRWhd+/eXtfLKz5EREQBLhRvdem6rkxlP336NKKioryulx0fIiIiChi33347gHNvcY0ZM8Zl3B+73Y59+/bh+uuv97p+dnyIiIgCXQi91VWdvK7rOmJiYlweZDabzejevTtHbva78grAoBi23KQeFh1hYcpiXRri311Eg0QxiBMAQIgFMISpD61e4UVUgRCxIQ7XLrRVK1fHEaCk1PM2CftcPEbR6vgJe4z8ZoAtSohDsAu/IEK5sUzY50Z5uHuHWdgOaZh9Yd1iXIA0LL+bdUjHW4qmkEgRF+7WIbZXiLIQowrcxCdIx0Pctw7PzgNN+g4D0DyNrBD3h7ANZuH7AkAXYl6k7XNY1N8Lg0PYPpub7bYL/wQJsTdiPWHqtkq/wW7rktat2A7NLkeB+F0IdXyqU9lbtGiBadOm+XRbS4UdHyIiIgo4s2fPBgCcOnUKOTk5AM4lxjdu3NineoPira4ffvgBY8eORcuWLREREYHLL78cs2fPRmVlpcs8mqbV+OzcubMeW05EROQ7zQ+fYFNWVob77rsPKSkp6NmzJ3r27IkmTZpg7NixKCtzk6x9AUHR8fnuu+/gcDjw4osv4sCBA3j22WexdOlSPProozXm3bx5M/Ly8pyfrl271kOLiYiI/CgEX2efPHkytm3bhnfeeQeFhYUoLCzE22+/jW3btmHq1Kle1xsUt7r69++P/v37O//eqlUr5OTkYMmSJXjqqadc5m3YsCGSk5NrVa/VaoXV+r/nE4qLi/3TYCIiIj8KxdfZ33jjDbz++uvo1auXs2zgwIGIiIjAb3/7WyxZssSreoPiio9KUVEREhISapQPHjwYiYmJ6NGjB9avX++2jqysLMTFxTk/qampF6u5RERE5IGysjIkJSXVKE9MTLz0b3X92uHDh/HCCy/gD3/4g7MsOjoaTz/9NNauXYv33nsPPXr0wNChQ912fmbOnImioiLn59ixY3XRfCIiIs+E4K2u9PR0zJ49GxUVFc6y8vJyzJ07F+np6V7XW6+3umbMmIG//vWvbuc5ePAg2rZt6/z78ePH0b9/f/zmN79xeY+/UaNGmDJlivPv1157LU6cOIEnn3wSgwcPVtZtsVhcBkYiIiIKWEHYefHFc889h379+qFp06bo3LkzAODrr79GeHg4PvjgA6/rrdeOz9SpUzFmzBi387Rq1cr55xMnTqB37964/vrr8fe///2C9aelpWHTpk2+NpOIiIjqWIcOHXDo0CGsXLkS3333HQDgrrvuCu509saNG9f6ffzjx4+jd+/e6Nq1K5YtWwaDMHDZ+fbu3YuUlBRfm0lERFSvQvHhZgCIjIz0aZRmlaB4q+v48ePo1asXmjdvjqeeegqnTp1yTqt+g2vFihUwm824+uqrAQDr1q3DK6+8gpdeeqle2kxEROQ3ITRy8/lycnLwwgsv4ODBgwCAdu3aYcKECS6PwHgqKDo+mzZtwuHDh3H48GE0bdrUZZp+3tD08+fPx48//giTyYS2bdtizZo1uOOOO+q6uUREROSjN954AyNGjEC3bt2cDzPv3LkTHTt2xOrVqzF8+HCv6tV0XQq1CT3FxcWIi4tDRrMHYDIoHnqWMoksZmWxHhetnl/K2XETI6SVlasn2D3L7BEzrrzhaa6SVcjqcpcbJUzTq9QZOZq0fcL9YN1NVpcuZZRJpGw2KYfJTY6QwyLkvwkZXppwHmhCNpvYJgBauXCeC/scNnVdunDOamb19wUAEBHuUbkeIdQlnTdhQgYaAEe4ep8bKtXZTYaSCmU5pAwvd+e5tG+9+c540iZA/P0q6aYe3sNcpD7eYT+XKMvFvDgAunCei3lxUladuww2ad3i91U4ForvmM1hxeYf/4aioiLExsZ63IbaqP53qePv/wKjWfh+1IK9sgL7X3r0orbV3y6//HKMGjUK8+bNcymfPXs2Xn31VRw5csSreoPydXYiIqKQEoKvs+fl5eHee++tUX733XcjLy/P63rZ8SEiIqKA06tXL3zyySc1ynfs2IEbb7zR63qD4hkfIiKiUBaKb3UNHjwY06dPx549e9C9e3cA557xWbt2LebOnesyQLE0Xp8KOz5ERESBLgTf6nrggQcAAIsXL8bixYuV0wBA0zTY7epn8VTY8SEiIgp0IdjxcXj6EH8t8RkfIiIiChns+BAREQW46md8fPkEo23btuG2225D69at0bp1awwePFj5wLMn2PEhIiIKdCH4Ovurr76KjIwMREZGYtKkSZg0aRIiIiLQp08frFq1yut6+YwPERERBZw///nPWLBgASZPnuwsmzRpEp555hnMnz8fI0eO9KpeXvEhIiIKcJqu+/wJNv/5z39w22231SgfPHgwjh496nW9vOKjYG8cB81Uc2hwY0GhegGb+jU6rUw99L8jWh2ToLl7Ha9KiBiQUuoNwtD8UkyCm/gEWIUIAykuQ/qCSW21KOJBqpnU26HHqIdudxjV8xuEiAZ7lByfUBmnnma0qrfbdFaIFxDa5JZRfTx0oVyzefaj5vZHUNrn0ep9rhWXerYOd+eah1EFYrldiDYwyNstRVOI8R7lQmSF9L1wR9oOMbJFiCKJFCJY3P22COu2/KKObjCUCxElJuGfE4Ob/SGs2xEpxAAJ546hysNjB/n3WYoJ0RvE1Cyz1+G1gxB8qys1NRVbtmxB69atXco3b96M1FR1pEptsONDREREAWfq1KmYNGkS9u7di+uvvx4A8Omnn2L58uV47rnnvK6XHR8iIqIAF4ojN99///1ITk7G008/jddeew0A0K5dO6xZswZDhgzxul52fIiIiAJdCN7qAoBhw4Zh2LBhfq2TDzcTERFRQCosLMRLL72ERx99FGfOnAEAfPnllzh+/LjXdfKKDxERUYALxVtd+/btQ0ZGBuLi4vDDDz/g97//PRISErBu3Trk5ubin//8p1f18ooPERFRoAvBAQynTJmCMWPG4NChQwgP/99bpQMHDsT27du9rpdXfIiIiAJcKF7x2b17N1588cUa5Zdddhny8/O9rpdXfIiIiCjgWCwWFBcX1yj//vvv0bhxY6/rZceHiIgo0IXgra7Bgwdj3rx5qKo6N5impmnIzc3F9OnTMXz4cK/rZceHiIgoCIRaMvvTTz+NkpISJCYmory8HDfddBNat26NmJgY/PnPf/a6Xj7jQ0RERAEnLi4OmzZtwo4dO7Bv3z6UlJTgmmuuQUZGhk/1suOjUHx5NExhNXOJYozqC2Sah9k8upBZZaiSL8DpjRuoJ0iLSHlIQjaOZnOzDRbhNBHykERh6gwoR0SYuIjdol7GHqFuk24Stltoqz1C3ueV0epppnJ1XWHh6vmNlep9ayyX85McZnVdDpNnF2ntseocNM3NsauKVe9bU6m6vcYGker5zwgZXifPiOtGmHwuKOuS8paE89/dGWsoFbK3bELek4ffMTGrDgCkjC0hq8vjwEk3eXGOWPW6K+PUx0KLVZcbhAw7KQMNAIxlQu6XsG8dwu+BtbGQ9+dmN0nfAcsZ9Tmlyu6z2UzAAXkdfqXr8rlV2+WDVI8ePdCjRw+/1ceODxERUYALpbe6ysvLsWXLFtx6660AgJkzZ8J6Xli20WjE/PnzXV5x9wQ7PkRERBQwVqxYgffee8/Z8fnb3/6Gq666ChER565Ofvfdd2jSpAkmT57sVf18uJmIiCjQ1fFbXVlZWbj22msRExODxMREDB06FDk5OS7zVFRUIDMzEw0bNkR0dDSGDx+OgoICl3lyc3MxaNAgREZGIjExEQ8//DBs0u3j/1q5ciXGjx/vUrZq1Sps3boVW7duxZNPPukMLfUGOz5EREQBTnP4/vHEtm3bkJmZiZ07d2LTpk2oqqpC3759UVr6v2f3Jk+ejHfeeQdr167Ftm3bcOLECdx+++3O6Xa7HYMGDUJlZSU+++wzrFixAsuXL8esWbPcrvvw4cPo2LGj8+/h4eEwnPeM3HXXXYdvv/3Wsw06D291ERERkYuNGze6/H358uVITEzEnj170LNnTxQVFeHll1/GqlWrcPPNNwMAli1bhnbt2mHnzp3o3r07PvzwQ3z77bfYvHkzkpKS0KVLF8yfPx/Tp0/HnDlzYDbXfGAcOBdMev4zPadOnXKZ7nA4XKZ7ild8iIiIAp2fbnUVFxe7fGrbgSgqKgIAJCQkAAD27NmDqqoql1fL27Zti2bNmiE7OxsAkJ2djY4dOyIpKck5T79+/VBcXIwDB+TX4Zo2bYpvvvlGnL5v3z40bdq0Vu1WYceHiIgowPkyeOH5b4SlpqYiLi7O+cnKyrrguh0OBx566CHccMMN6NChAwAgPz8fZrMZ8fHxLvMmJSU5c7Ty8/NdOj3V06unSQYOHIhZs2ahoqLmEBPl5eWYO3cuBg0adMF2S3iri4iIKND5aRyfY8eOITY21llssQhjIJ0nMzMT33zzDXbs2OH9+j3w6KOP4rXXXkObNm0wYcIEXHnllQCAnJwc/O1vf4PNZsOjjz7qdf3s+BAREYWI2NhYl47PhUyYMAHvvvsutm/f7nJ7KTk5GZWVlSgsLHS56lNQUIDk5GTnPJ9//rlLfdVvfVXPo5KUlITPPvsM999/P2bMmAH9v502TdNwyy23YPHixTWuJHmCt7qIiIgCnL9uddWWruuYMGEC3nzzTXz00Udo2bKly/SuXbsiLCwMW7ZscZbl5OQgNzcX6enpAID09HTs378fJ0+edM6zadMmxMbGon379m7X37JlS2zcuBGnTp3Czp07sXPnTpw6dQobN25Eq1atPNuYX+EVH4WTvapgiKg5NHrlrijl/JZCYah2aagC4XKlyermzHSop0kRDQ6jutxULsUnyOMqGGxCu4Q2QRjJXxpu3hYln4b2MHVlmrBuQ5Vn+8kWLjQWgLlEiAvwMKrDGq8e4t8YKccIGCuEd0+FVVdFq/dhZZywzy3ydhuEhAFdWMRoVS9gTVH/r9JsdnO8o9WX3W2K7yMAGCvU6w47rY7LcBcb4YhUf7+leBRbpLrcUlCmXrUUiQHAEanebkekEBshnf+l6gdVdTf7vCJRiKyIEaJ1hJ8KW4L6GBnsbmJIhN9CY6Wwjgj1SSitQjfI57m0D3Xht7OoZc19aLc6gC2KmS8GXxPWPVw2MzMTq1atwttvv42YmBjnMzlxcXGIiIhAXFwcxo4diylTpiAhIQGxsbGYOHEi0tPT0b17dwBA37590b59e9xzzz1YsGAB8vPz8dhjjyEzM7NWt9iAcw9TX3fddZ41/gLY8SEiIiIXS5YsAQD06tXLpXzZsmUYM2YMAODZZ5+FwWDA8OHDYbVa0a9fPyxevNg5r9FoxLvvvov7778f6enpiIqKwujRozFv3ry62gwldnyIiIgCXF1ndem1eJA6PDwcixYtwqJFi8R5mjdvjg0bNni28ouMHR8iIqJAF8Lp7P7Gh5uJiIgoZPCKDxERUYCr61tdlzJ2fIiIiAJdHb/VdSkLmltdLVq0gKZpLp8nnnjCZZ59+/bhxhtvRHh4OFJTU7FgwYJ6ai0REREFoqC64jNv3jyMGzfO+feYmBjnn4uLi9G3b19kZGRg6dKl2L9/P+677z7Ex8dj/Pjx9dFcIiIiv+CtLv8Jqo5PTEyMOMz1ypUrUVlZiVdeeQVmsxlXXXUV9u7di2eeeYYdHyIiCm4OXR40trbLE4AgutUFAE888QQaNmyIq6++Gk8++SRstv8NIZqdnY2ePXvCbDY7y/r164ecnBz88ssvyvqsViuKi4tdPkRERAFH98OHAATRFZ9JkybhmmuuQUJCAj777DPMnDkTeXl5eOaZZwCci7j/dZZIdYhZfn4+GjRoUKPOrKwszJ079+I3noiIiAJCvXZ8ZsyYgb/+9a9u5zl48CDatm2LKVOmOMs6deoEs9mMP/zhD8jKyqp15sevzZw506Xe4uJipKam4sa238Mcba4x/9e7OinriSwQgmU87WHLsTJwmNQX54REJ/FSni1CPcXaQN6HUq6TsVLI2ZEyxzQhV8zNWSitQ8zgETZcyr4yu9nnFfHq7CG7sD9M5eq2hpVK+WjS0QMMleoMKodZ3SYpi8xQpa7fXCmvW8qMk3KxpHPTLpxrpS1ilOWAnDFnjVPXFf6Luk32cCHby812SxlNIuF81mzqMCs9zM2JLpy3ml3dXl3IHHOE1/zdAgC42TZTuRDOJnzHpMw2R5jwfRGaBAAGm3TeqttkEX5qy4WcMHe/LVLuV4lJvVD5jSU1yuxlFcCL8jr8SYOPz/j4rSXBr147PlOnTnVmfkikFNa0tDTYbDb88MMPaNOmDZKTk51x99Wq/y49F2SxWLzuNBEREdUZjtzsN/Xa8WncuDEaN27s1bJ79+6FwWBAYmIiACA9PR3/93//h6qqKoSFnYvq3bRpE9q0aaO8zUVEREShJygebs7OzsbChQvx9ddf4z//+Q9WrlyJyZMn4+6773Z2akaOHAmz2YyxY8fiwIEDWLNmDZ577jmXW1lERETBqPp1dl8+dE5QPNxssViwevVqzJkzB1arFS1btsTkyZNdOjVxcXH48MMPkZmZia5du6JRo0aYNWsWX2UnIqLgx5Gb/SYoOj7XXHMNdu7cecH5OnXqhE8++aQOWkRERETBKCg6PkRERKFM03VoPjyg7Muylxp2fIiIiAKdA/L4JbVdngAEycPNRERERP7AKz5EREQBjre6/IcdHyIiokDHt7r8hh0fhU93XgVDeHiN8ub/UY+Xbs4/61H94tD4RvWw6wBQkRKtLLc2UB9CW83mA3ATCeBmjEe7UFf0T+pyo5TgId1YdTOWuqlMiJo4XaEsd0So90dZknqE7oqG8t3eiobqcmnI/ohTUpSFUI+bG812YTvs4eqFqqLU5VJcRniBev8BgGZTL2OoUB9YrVxdbmwcqywvbRohrrsiQb0dhir1r7YUH2KNC1OWSzEFAOAQohUMwvlsUCdToDRZfeKElbn5l0eYFFYqRDcI579cv+frhl2YIMSjSFE1mptnS8xn1RPDitVZK8Ziq7pJZepzyhqvPg8AoCpKvR1Smxwf1/wNtlfW4T+hHLnZb/iMDxEREYUMXvEhIiIKcL6OvsyRm/+HHR8iIqJAx1tdfsNbXURERBQyeMWHiIgowGkO9w+K12Z5OocdHyIiokDHW11+w1tdREREFDJ4xYeIiCjQcQBDv2HHh4iIKMAxssJ/eKuLiIiIQgav+BAREQU6PtzsN+z4qBigvBZWFa3O0jJHqXOgtCp1zo6U1WWLFUKxIGcSSXlP0vzSfd6IU/KXQsokCi9Ub19YkTpnx1SkztmBlF0GQA9T73Mpk8uaoA5ccgiRPYZKebujTgjLCPtDE7KNpNdIHRbPL7iaytT7PPykkF1mVu+/qjghmMoN3aA+P03l6jZJ+8N8Vj0/ABiFTC7pPLfGCdll0cL3RY7DE+nCr2RlpDC/Qcqyks9zc7F6u8PK1cvYI4Qssmghu0/6PYB8PKTjKmXrmUrVEyoayXlZdrN6GUO48L03qzO57GFCVl2JfK5FHRO+Mxb1PixPUKxbyHG7KHQAvrySzn6PEzs+REREAY7P+PgPn/EhIiKikMErPkRERIFOh4/P+PitJUGPHR8iIqJAx4eb/Ya3uoiIiChk8IoPERFRoHNAfKOu1ssTAHZ8iIiIAh7f6vIf3uoiIiKikMErPkRERIGODzf7DTs+REREgY4dH7/hrS4iIiIKGbzio2BMLoMhsuYj8FWRUjiPuiftEPJ0pPwkY4UQAgUgskQdChP1g5CTVKmuS8q+0g1yH1iqCyb1MrpZfVrZY9T5ULpRXrfDrJ7mEPK9jBXqVxeM6lge2MPdrNsk5D0Jb1aElUvrFo5RlfyahcEm/O9MONd06VgIuVHSNgBAxE/FynJbvJCTJOSmGRxCBlSpOsvtXMPUdVXGevZTFX5GvZ+MbrLZHMIqqiI9+/+hVI/m5j/ctgj1ASlNVH9fI4TMMZNwDoa7y0crU3+/DVb1capKUP8Omn8uUZeflDdcswq/LTahvcI5JYqQ8w+l37yqOHX2YnErRXOE35WLgld8/IZXfIiIiAKdww8fD23fvh233XYbmjRpAk3T8NZbb7lM13Uds2bNQkpKCiIiIpCRkYFDhw65zHPmzBmMGjUKsbGxiI+Px9ixY1FSou4k1xV2fIiIiAJc9evsvnw8VVpais6dO2PRokXK6QsWLMDzzz+PpUuXYteuXYiKikK/fv1QUfG/S2GjRo3CgQMHsGnTJrz77rvYvn07xo8f7/V+8Afe6iIiIqIaBgwYgAEDBiin6bqOhQsX4rHHHsOQIUMAAP/85z+RlJSEt956CyNGjMDBgwexceNG7N69G926dQMAvPDCCxg4cCCeeuopNGnSpM625Xy84kNERBToqp/x8eUDoLi42OVjtVq9as7Ro0eRn5+PjIwMZ1lcXBzS0tKQnZ0NAMjOzkZ8fLyz0wMAGRkZMBgM2LVrlw87wzfs+BAREQU6h+77B0Bqairi4uKcn6ysLK+ak5+fDwBISkpyKU9KSnJOy8/PR2Jiost0k8mEhIQE5zz1gbe6iIiIQsSxY8cQGxvr/LvFon6L7VLGKz5ERESBzk+3umJjY10+3nZ8kpOTAQAFBQUu5QUFBc5pycnJOHnypMt0m82GM2fOOOepD+z4EBERBTxfOz3+HcenZcuWSE5OxpYtW5xlxcXF2LVrF9LT0wEA6enpKCwsxJ49e5zzfPTRR3A4HEhLS/NrezzBW11ERERUQ0lJCQ4fPuz8+9GjR7F3714kJCSgWbNmeOihh/D444/jiiuuQMuWLfGnP/0JTZo0wdChQwEA7dq1Q//+/TFu3DgsXboUVVVVmDBhAkaMGFFvb3QB7PgQEREFvnoYufmLL75A7969nX+fMmUKAGD06NFYvnw5HnnkEZSWlmL8+PEoLCxEjx49sHHjRoSH/2/E7JUrV2LChAno06cPDAYDhg8fjueff9777fCDoOj4fPzxxy47/3yff/45rr32Wvzwww9o2bJljenZ2dno3r27R+uzVxmgV9W8C2gWhn03FPyirqhC/ZqgUYpoMArj0AOAJuUkSOPjq9eh2YR1SPUAgBBz4QgXlhFGCDWWqmM3xG0D4LBI2ydEVhSXq2evUh87KeoBABwR6nvfepiwb+3qDRfXLexXd6S4E12I8LBHqucPK5ZjI3ThPNTsUoyGutgWqT52NjcREJUxQkRJmHC8hQgKg9BWqR4AcAiHQ1yHlORiFeIyKtz8wyM0SxO+S2GlQhzIWfV3zOAmDgcO9UrE88Ah7NtIdSSNodzNuSZ9v6VyIWbC3fdYIp3PBiFKRlPtcg8TNHzi8PF2lXDc3OnVqxd0Nx0mTdMwb948zJs3T5wnISEBq1at8njdF1NQdHyuv/565OXluZT96U9/wpYtW1zGBwCAzZs346qrrnL+vWHDhnXSRiIiIgp8QdHxMZvNLk+AV1VV4e2338bEiROh/ep//g0bNqzXp8WJiIj8Tnec+/iyPAEI0re61q9fj9OnT+N3v/tdjWmDBw9GYmIievTogfXr17utx2q11hjFkoiIKOD46XV2CtKOz8svv4x+/fqhadOmzrLo6Gg8/fTTWLt2Ld577z306NEDQ4cOddv5ycrKchnBMjU1tS6aT0RE5Bk/jdxM9dzxmTFjBjRNc/v57rvvXJb56aef8MEHH2Ds2LEu5Y0aNcKUKVOQlpaGa6+9Fk888QTuvvtuPPnkk+L6Z86ciaKiIufn2LFjF2U7iYiIKDDU6zM+U6dOxZgxY9zO06pVK5e/L1u2DA0bNsTgwYMvWH9aWho2bdokTrdYLCE5XDcREQWZenid/VJVrx2fxo0bo3HjxrWeX9d1LFu2DPfeey/CwsIuOP/evXuRkpLiSxOJiIjqnw4fOz5+a0nQC4q3uqp99NFHOHr0KH7/+9/XmLZixQqYzWZcffXVAIB169bhlVdewUsvvVTXzSQiIqIAFVQdn5dffhnXX3892rZtq5w+f/58/PjjjzCZTGjbti3WrFmDO+64o45bSURE5Ge81eU3QdXxcTf64+jRozF69Og6bA0REVEdcTggDotf6+UJCNLX2YmIiIi8EVRXfOqKw2YEqmrm1BiEzB6xJ21RZ9cgXHiTzCw/sO2wqKc5otTrcJjU4T8Gm3obtEo5dEYX8qGkdehCFpkmXGo1/VIhrtv0S5k4zRO6lPFjdvMVEP5boAlZPlJekCNK2H8WOaurSlhGyigzCdlNxgp1ucPsJi8rNVpok7AP/fjfp7AyIefKKuTkVXl2+d7ddtvNwvksLCLNLzG6aavBKuRDCd8ZY7mwP8rUWV3uznOHWfidMni2fVKOnFeEn1TNrt5uKQ9PKgcACNl60q+wuSi8RpldHcd4cfBWl9+w40NERBTo2PHxG97qIiIiopDBKz5ERESBzqHDp8F4GFnhxI4PERFRgNN1B3QfEtZ9WfZSw44PERFRoNN9DBrlMz5OfMaHiIiIQgav+BAREQU63cdnfHjFx4kdHyIiokDncACaD8/p8BkfJ97qIiIiopDBKz5ERESBjre6/IYdH4UbrjwMc3TNYdw/6d9eOX9U+1bKcoNNXb84BL6cWAGHkHLhEJbRhdHmpSulUlvdEr5H4tVYoU2OsJpDwTtXIewrj8tN6sY6hNH6z7VLiKYwC7EfwvzSdkNz80MkXZaWFqlQxwVolZ7FDgBAROpZZbnNrl6H3SZEdVQJERdn5RNdD1NvoKHcs7gMPVyKKpAv92vCdiBCiEMwCOeHQ4i+EPYHABiFfRJ2VoieUSdTwFIYqSx3d4dE+q2wC98N6YwyVHlW7g1dSMVwCP+SOdylaAiHw9pAXR5zzc81yuxlVuAFN+vwI93hgO7DrS6+zv4/vNVFREREIYNXfIiIiAIdb3X5DTs+REREgc6hu789fiHs+DjxVhcRERGFDF7xISIiCnS6DncP59dueQLY8SEiIgp4ukOH7sOtLp0dHyd2fIiIiAKd7oBvV3z4Ons1PuNDREREIYNXfIiIiAIcb3X5Dzs+REREgY63uvyGHZ/zVPeIq0rV48E7KiqU5XarMJy+p5EVbs5LaZJDGJnf08gKXRrh3x1/RVa4Wben0RTSzVsxssLdPrcJkQR2IbJCmN+7yAphoTqIrLCXWdXldiGaQoqsEMr1cvmA6zZhAz2NrPDihBYjK3DxIyu0CvVPsb1Cqktdj12IsvAqskL6fkv1SL93dRFZIRxubyIr7OqfeeX3orqsLq6m2FDl0/iFNvjxQAQ5dnzOc/bsuYyiNwa/Vs8tISKiYHH27FnExcVdlLrNZjOSk5OxI3+Dz3UlJyfDbHYTUBgiNJ03/pwcDgdOnDiBmJgYaJqG4uJipKam4tixY4iNja3v5vkVty04cduCE7ctOF1o23Rdx9mzZ9GkSRMYDBfvXaGKigpUVgqX8zxgNpsRHi6HQocKXvE5j8FgQNOmTWuUx8bGXnJf6GrctuDEbQtO3Lbg5G7bLtaVnvOFh4ezw+JHfJ2diIiIQgY7PkRERBQy2PFxw2KxYPbs2bBYLPXdFL/jtgUnbltw4rYFp0t520IZH24mIiKikMErPkRERBQy2PEhIiKikMGODxEREYUMdnyIiIgoZLDjI1i0aBFatGiB8PBwpKWl4fPPP6/vJnlszpw50DTN5dO2bVvn9IqKCmRmZqJhw4aIjo7G8OHDUVBQUI8tlm3fvh233XYbmjRpAk3T8NZbb7lM13Uds2bNQkpKCiIiIpCRkYFDhw65zHPmzBmMGjUKsbGxiI+Px9ixY1FSUlKHW6F2oW0bM2ZMjePYv39/l3kCdduysrJw7bXXIiYmBomJiRg6dChycnJc5qnNeZibm4tBgwYhMjISiYmJePjhh2GzCeFQdaQ229arV68ax+6Pf/yjyzyBuG1LlixBp06dnAP3paen4/3333dOD9ZjBlx424L1mFHtseOjsGbNGkyZMgWzZ8/Gl19+ic6dO6Nfv344efJkfTfNY1dddRXy8vKcnx07djinTZ48Ge+88w7Wrl2Lbdu24cSJE7j99tvrsbWy0tJSdO7cGYsWLVJOX7BgAZ5//nksXboUu3btQlRUFPr164eK84JlR40ahQMHDmDTpk149913sX37dowfP76uNkF0oW0DgP79+7scx3//+98u0wN127Zt24bMzEzs3LkTmzZtQlVVFfr27YvS0lLnPBc6D+12OwYNGoTKykp89tlnWLFiBZYvX45Zs2bVxyY51WbbAGDcuHEux27BggXOaYG6bU2bNsUTTzyBPXv24IsvvsDNN9+MIUOG4MCBAwCC95gBF942IDiPGXlApxquu+46PTMz0/l3u92uN2nSRM/KyqrHVnlu9uzZeufOnZXTCgsL9bCwMH3t2rXOsoMHD+oA9Ozs7DpqoXcA6G+++abz7w6HQ09OTtaffPJJZ1lhYaFusVj0f//737qu6/q3336rA9B3797tnOf999/XNU3Tjx8/Xmdtv5Bfb5uu6/ro0aP1IUOGiMsEy7bpuq6fPHlSB6Bv27ZN1/XanYcbNmzQDQaDnp+f75xnyZIlemxsrG61Wut2A9z49bbpuq7fdNNN+oMPPiguEyzbpuu63qBBA/2ll166pI5Ztept0/VL65iRGq/4/EplZSX27NmDjIwMZ5nBYEBGRgays7PrsWXeOXToEJo0aYJWrVph1KhRyM3NBQDs2bMHVVVVLtvZtm1bNGvWLOi28+jRo8jPz3fZlri4OKSlpTm3JTs7G/Hx8ejWrZtznoyMDBgMBuzatavO2+ypjz/+GImJiWjTpg3uv/9+nD592jktmLatqKgIAJCQkACgdudhdnY2OnbsiKSkJOc8/fr1Q3Fxscv/0uvbr7et2sqVK9GoUSN06NABM2fORFlZmXNaMGyb3W7H6tWrUVpaivT09EvqmP1626oF+zEj9xhS+is///wz7Ha7y0kNAElJSfjuu+/qqVXeSUtLw/Lly9GmTRvk5eVh7ty5uPHGG/HNN98gPz8fZrMZ8fHxLsskJSUhPz+/fhrsper2qo5Z9bT8/HwkJia6TDeZTEhISAj47e3fvz9uv/12tGzZEkeOHMGjjz6KAQMGIDs7G0ajMWi2zeFw4KGHHsINN9yADh06AECtzsP8/Hzlsa2eFghU2wYAI0eORPPmzdGkSRPs27cP06dPR05ODtatWwcgsLdt//79SE9PR0VFBaKjo/Hmm2+iffv22Lt3b9AfM2nbgOA+ZlQ77PhcwgYMGOD8c6dOnZCWlobmzZvjtddeQ0RERD22jDwxYsQI5587duyITp064fLLL8fHH3+MPn361GPLPJOZmYlvvvnG5TmzS4W0bec/Z9WxY0ekpKSgT58+OHLkCC6//PK6bqZH2rRpg71796KoqAivv/46Ro8ejW3bttV3s/xC2rb27dsH9TGj2uGtrl9p1KgRjEZjjTcUCgoKkJycXE+t8o/4+HhceeWVOHz4MJKTk1FZWYnCwkKXeYJxO6vb6+6YJScn13g43Waz4cyZM0G3va1atUKjRo1w+PBhAMGxbRMmTMC7776LrVu3omnTps7y2pyHycnJymNbPa2+SdumkpaWBgAuxy5Qt81sNqN169bo2rUrsrKy0LlzZzz33HOXxDGTtk0lmI4Z1Q47Pr9iNpvRtWtXbNmyxVnmcDiwZcsWl3vAwaikpARHjhxBSkoKunbtirCwMJftzMnJQW5ubtBtZ8uWLZGcnOyyLcXFxdi1a5dzW9LT01FYWIg9e/Y45/noo4/gcDicP2zB4qeffsLp06eRkpICILC3Tdd1TJgwAW+++SY++ugjtGzZ0mV6bc7D9PR07N+/36Vzt2nTJsTGxjpvT9SHC22byt69ewHA5dgF4rapOBwOWK3WoD5mkuptUwnmY0aC+n66OhCtXr1at1gs+vLly/Vvv/1WHz9+vB4fH+/yFH8wmDp1qv7xxx/rR48e1T/99FM9IyNDb9SokX7y5Eld13X9j3/8o96sWTP9o48+0r/44gs9PT1dT09Pr+dWq509e1b/6quv9K+++koHoD/zzDP6V199pf/444+6ruv6E088ocfHx+tvv/22vm/fPn3IkCF6y5Yt9fLycmcd/fv316+++mp9165d+o4dO/QrrrhCv+uuu+prk5zcbdvZs2f1adOm6dnZ2frRo0f1zZs369dcc41+xRVX6BUVFc46AnXb7r//fj0uLk7/+OOP9by8POenrKzMOc+FzkObzaZ36NBB79u3r753715948aNeuPGjfWZM2fWxyY5XWjbDh8+rM+bN0//4osv9KNHj+pvv/223qpVK71nz57OOgJ122bMmKFv27ZNP3r0qL5v3z59xowZuqZp+ocffqjrevAeM113v23BfMyo9tjxEbzwwgt6s2bNdLPZrF933XX6zp0767tJHrvzzjv1lJQU3Ww265dddpl+55136ocPH3ZOLy8v1x944AG9QYMGemRkpD5s2DA9Ly+vHlss27p1qw6gxmf06NG6rp97pf1Pf/qTnpSUpFssFr1Pnz56Tk6OSx2nT5/W77rrLj06OlqPjY3Vf/e73+lnz56th61x5W7bysrK9L59++qNGzfWw8LC9ObNm+vjxo2r0QkP1G1TbRcAfdmyZc55anMe/vDDD/qAAQP0iIgIvVGjRvrUqVP1qqqqOt4aVxfattzcXL1nz556QkKCbrFY9NatW+sPP/ywXlRU5FJPIG7bfffdpzdv3lw3m81648aN9T59+jg7PboevMdM191vWzAfM6o9Tdd1ve6uLxERERHVHz7jQ0RERCGDHR8iIiIKGez4EBERUchgx4eIiIhCBjs+REREFDLY8SEiIqKQwY4PERERhQx2fIiIiChksONDFCR69eqFhx566JJZ55gxYzB06NCLUjcRkcRU3w0gosC1bt06hIWFOf/eokULPPTQQ3XeASMi8hd2fIhIlJCQUN9NICLyK97qIgpCv/zyC+699140aNAAkZGRGDBgAA4dOuScvnz5csTHx+ODDz5Au3btEB0djf79+yMvL885j81mw6RJkxAfH4+GDRti+vTpGD16tMvtp/NvdfXq1Qs//vgjJk+eDE3ToGkaAGDOnDno0qWLS/sWLlyIFi1aOP9ut9sxZcoU57oeeeQR/Dom0OFwICsrCy1btkRERAQ6d+6M119/3T87jIjov9jxIQpCY8aMwRdffIH169cjOzsbuq5j4MCBqKqqcs5TVlaGp556Cv/617+wfft25ObmYtq0ac7pf/3rX7Fy5UosW7YMn376KYqLi/HWW2+J61y3bh2aNm2KefPmIS8vz6UTdSFPP/00li9fjldeeQU7duzAmTNn8Oabb7rMk5WVhX/+859YunQpDhw4gMmTJ+Puu+/Gtm3bar9jiIgugLe6iILMoUOHsH79enz66ae4/vrrAQArV65Eamoq3nrrLfzmN78BAFRVVWHp0qW4/PLLAQATJkzAvHnznPW88MILmDlzJoYNGwYA+Nvf/oYNGzaI601ISIDRaERMTAySk5M9avPChQsxc+ZM3H777QCApUuX4oMPPnBOt1qt+Mtf/oLNmzcjPT0dANCqVSvs2LEDL774Im666SaP1kdEJGHHhyjIHDx4ECaTCWlpac6yhg0bok2bNjh48KCzLDIy0tnpAYCUlBScPHkSAFBUVISCggJcd911zulGoxFdu3aFw+Hwa3uLioqQl5fn0l6TyYRu3bo5b3cdPnwYZWVluOWWW1yWraysxNVXX+3X9hBRaGPHh+gSdf7bWACgaVqN52r8wWAw1Kj3/FtutVFSUgIAeO+993DZZZe5TLNYLL41kIjoPHzGhyjItGvXDjabDbt27XKWnT59Gjk5OWjfvn2t6oiLi0NSUhJ2797tLLPb7fjyyy/dLmc2m2G3213KGjdujPz8fJfOz969e13WlZKS4tJem82GPXv2OP/evn17WCwW5ObmonXr1i6f1NTUWm0TEVFt8IoPUZC54oorMGTIEIwbNw4vvvgiYmJiMGPGDFx22WUYMmRIreuZOHEisrKy0Lp1a7Rt2xYvvPACfvnlF+fbWiotWrTA9u3bMWLECFgsFjRq1Ai9evXCqVOnsGDBAtxxxx3YuHEj3n//fcTGxjqXe/DBB/HEE0/giiuuQNu2bfHMM8+gsLDQOT0mJgbTpk3D5MmT4XA40KNHDxQVFeHTTz9FbGwsRo8e7dW+IiL6NV7xIQpCy5YtQ9euXXHrrbciPT0duq5jw4YNNW5vuTN9+nTcdddduPfee5Geno7o6Gj069cP4eHh4jLz5s3DDz/8gMsvvxyNGzcGcO4K1OLFi7Fo0SJ07twZn3/+ucvbYwAwdepU3HPPPRg9ejTS09MRExPjfKi62vz58/GnP/0JWVlZaNeuHfr374/33nsPLVu29GDPEBG5p+kX46Y/EQUdh8OBdu3a4be//S3mz59f380hIrooeKuLKET9+OOP+PDDD3HTTTfBarXib3/7G44ePYqRI0fWd9OIiC4a3uoiClEGgwHLly/HtddeixtuuAH79+/H5s2b0a5du/puGhHRRcNbXURERBQyeMWHiIiIQgY7PkRERBQy2PEhIiKikMGODxEREYUMdnyIiIgoZLDjQ0RERCGDHR8iIiIKGez4EBERUcj4f/ycOVNv+alAAAAAAElFTkSuQmCC",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -8336,13 +6066,13 @@
}
],
"source": [
- "mae_score[[\"z500\", \"z850\", \"z1000\"]].to_array(dim=\"field\").plot(col=\"field\")"
+ "mae_score[\"geopotential850\"].plot(x=\"longitude\", y=\"latitude\")"
]
},
{
"cell_type": "code",
"execution_count": null,
- "id": "95287070-b739-49c6-9982-08d4dd332a25",
+ "id": "cbd99564-4260-4271-a26e-6bc29a4fe9d5",
"metadata": {},
"outputs": [],
"source": []
@@ -8364,7 +6094,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.13.2"
+ "version": "3.13.5"
},
"nbsphinx": {
"orphan": true
diff --git a/notebooks/tutorial/cnn_training/stats/mean.npy b/notebooks/tutorial/cnn_training/stats/mean.npy
deleted file mode 100644
index 7e66889a..00000000
Binary files a/notebooks/tutorial/cnn_training/stats/mean.npy and /dev/null differ
diff --git a/notebooks/tutorial/cnn_training/stats/std.npy b/notebooks/tutorial/cnn_training/stats/std.npy
deleted file mode 100644
index 387960d7..00000000
Binary files a/notebooks/tutorial/cnn_training/stats/std.npy and /dev/null differ
diff --git a/packages/data/src/pyearthtools/data/download/weatherbench.py b/packages/data/src/pyearthtools/data/download/weatherbench.py
index 894246ca..05ebeb1d 100644
--- a/packages/data/src/pyearthtools/data/download/weatherbench.py
+++ b/packages/data/src/pyearthtools/data/download/weatherbench.py
@@ -4,7 +4,6 @@
import hashlib
from pathlib import Path
from typing import Literal
-from abc import ABC, abstractmethod
import fsspec
import xarray as xr
@@ -160,7 +159,7 @@ def open_local_dataset(path: Path, variables: list[str], level: list[int]) -> xr
return dset_full
-class WeatherBench2(ABC, AdvancedTimeDataIndex):
+class WeatherBench2(AdvancedTimeDataIndex):
"""WeatherBench2 cloud-optimized ground truth and baseline datasets
https://github.com/google-research/weatherbench2
@@ -179,7 +178,8 @@ class WeatherBench2(ABC, AdvancedTimeDataIndex):
@decorators.variable_modifications("variables")
def __init__(
self,
- url: str,
+ dataset_url: str,
+ license_url: str,
*,
variables: str | list[str] | None = None,
level: int | list[int] | None = None,
@@ -201,6 +201,10 @@ def __init__(
downloaded.
Args:
+ dataset_url (str):
+ URL of the zarr dataset
+ license_url (str):
+ License of the dataset
variables (str | list[str] | None, optional):
Variables to retrieve, can be either short_name or long_name.
Default to None, to retrieve all variables.
@@ -216,12 +220,11 @@ def __init__(
License has been read. Defaults to False.
"""
super().__init__(transforms or TransformCollection(), data_interval="1 hour")
- self.record_initialisation()
# retrieve variables name mapping and levels for the dataset
from pyearthtools.data.download._weatherbench import DATASETS_INFOS
- long_names, valid_levels = DATASETS_INFOS[url]
+ long_names, valid_levels = DATASETS_INFOS[dataset_url]
# create short variables name mappings
short_names = {val: key for key, val in long_names.items() if val is not None}
@@ -250,18 +253,18 @@ def __init__(
def open_online_dataset():
# skip parsing unused variables, this can make loading much faster
drop_variables = [var for var in long_names if var not in set(variables)]
- ds = xr.open_zarr(url, chunks=chunks, drop_variables=drop_variables, **kwargs)
+ ds = xr.open_zarr(dataset_url, chunks=chunks, drop_variables=drop_variables, **kwargs)
if level is not None:
ds = Select(level=level, ignore_missing=True)(ds)
return ds
if download_dir is None:
ds = open_online_dataset()
- license = self.license_url
+ license = license_url
else:
# use a hash of the url to identify the dataset subfolder
- url_hash = hashlib.sha256(url.encode()).hexdigest()
+ url_hash = hashlib.sha256(dataset_url.encode()).hexdigest()
download_path = Path(download_dir) / url_hash
# try to open dataset from download dir if defined
@@ -271,11 +274,11 @@ def open_online_dataset():
except MissingVariableFile:
ds_remote = open_online_dataset()
save_local_dataset(download_path, ds_remote)
- (download_path / "dataset_url").write_text(url)
+ (download_path / "dataset_url").write_text(dataset_url)
ds = open_local_dataset(download_path, variables, level)
if not (license := download_path / "LICENSE").is_file():
- with fsspec.open(self.license_url, "rt").open() as fd:
+ with fsspec.open(license_url, "rt").open() as fd:
license_txt = fd.read()
license.write_text(license_txt)
@@ -291,11 +294,6 @@ def open_online_dataset():
self._license = license
self._kwargs = kwargs
- @property
- @abstractmethod
- def license_url(self):
- pass
-
@property
def _desc_(self) -> dict[str, str]:
return {
@@ -347,7 +345,7 @@ class WB2ERA5(WeatherBench2):
}
@decorators.check_arguments(resolution=["raw", "1440x721", "240x121", "64x32"])
- def __init__(self, resolution: str = "64x32", **kwargs):
+ def __init__(self, *, resolution: str = "64x32", **kwargs):
"""
See :class:`pyearthtools.data.download.weatherbench.WeatherBench2` for additional
parameters.
@@ -358,13 +356,11 @@ def __init__(self, resolution: str = "64x32", **kwargs):
The "raw" dataset is not subsampled, i.e. is hourly with 36 levels.
Defaults to "64x32".
"""
- url = f"gs://weatherbench2/datasets/era5/{self.DATASETS[resolution]}"
- super().__init__(url, **kwargs)
+ dataset_url = f"gs://weatherbench2/datasets/era5/{self.DATASETS[resolution]}"
+ license_url = "gs://weatherbench2/datasets/era5/LICENSE"
+ super().__init__(dataset_url, license_url, **kwargs)
self.resolution = resolution
-
- @property
- def license_url(self):
- return "gs://weatherbench2/datasets/era5/LICENSE"
+ self.record_initialisation()
@classmethod
def sample(cls):
@@ -405,7 +401,7 @@ class WB2ERA5Clim(WeatherBench2):
@decorators.check_arguments(
resolution=["1440x721", "512x256", "240x121", "64x32"], period=["1990-2017", "1990-2019"]
)
- def __init__(self, resolution: str = "64x32", period: str = "1990-2017", **kwargs):
+ def __init__(self, *, resolution: str = "64x32", period: str = "1990-2017", **kwargs):
"""
See :class:`pyearthtools.data.download.weatherbench.WeatherBench2` for additional
parameters.
@@ -418,14 +414,12 @@ def __init__(self, resolution: str = "64x32", period: str = "1990-2017", **kwarg
Covered time period, either "1990-2017" or "1990-2019".
Defaults to "1990-2017".
"""
- url = f"gs://weatherbench2/datasets/era5-hourly-climatology/{self.DATASETS[(period, resolution)]}"
- super().__init__(url, **kwargs)
+ dataset_url = f"gs://weatherbench2/datasets/era5-hourly-climatology/{self.DATASETS[(period, resolution)]}"
+ license_url = "gs://weatherbench2/datasets/era5-hourly-climatology/LICENSE"
+ super().__init__(dataset_url, license_url, **kwargs)
self.period = period
self.resolution = resolution
-
- @property
- def license_url(self):
- return "gs://weatherbench2/datasets/era5-hourly-climatology/LICENSE"
+ self.record_initialisation()
@classmethod
def sample(cls):